1
|
Schott M, Vehlow A, Benka M, Lagies S, Kammerer B, Rieckmann T, Cordes N. Aqueous extracts from Dioscorea sansibarensis Pax show cytotoxic and radiosensitizing potential in 3D growing HPV-negative and HPV-positive human head and neck squamous cell carcinoma models. Biomed Pharmacother 2024; 179:117305. [PMID: 39167841 DOI: 10.1016/j.biopha.2024.117305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024] Open
Abstract
Numerous natural substances have anti-cancer properties. Especially indigenous people use aqueous plant extracts for tea or ointments including Dioscorea sansibarensis Pax to treat various diseases. The aim of this study was to evaluate the cytotoxic and radiosensitizing potential of aqueous extracts from Dioscorea sansibarensis Pax collected from Kenya in a panel of HPV-negative and -positive head and neck squamous cell carcinoma (HNSCC) cells grown in three-dimensional laminin-rich extracellular matrix (3D lrECM). The results show cytotoxicity, radiosensitization and increased levels of residual double strand breaks (DBS) by Dioscorea sansibarensis Pax extracts in HPV-negative and -positive HNSCC models in a concentration- and cell model-dependent manner. Application of ROS scavengers indicated an association between ROS-induced DSB and radiosensitization through Dioscorea sansibarensis Pax pretreatment. High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) based characterization of Dioscorea sansibarensis Pax identified the main components of the extract including camptothecin. Overall, Dioscorea sansibarensis Pax aqueous extracts alone and in combination with X-ray irradiation showed effective anticancer properties, which are worthy of further mechanistic investigation.
Collapse
Affiliation(s)
- Mandy Schott
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Anne Vehlow
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Moritz Benka
- Core Competence Metabolomics, Hilde-Mangold-Haus, University of Freiburg, Freiburg 79104, Germany; Institute of Organic Chemistry, University of Freiburg, Freiburg 79104, Germany; Hermann Staudinger Graduate School, University of Freiburg, Freiburg 79104, Germany
| | - Simon Lagies
- Core Competence Metabolomics, Hilde-Mangold-Haus, University of Freiburg, Freiburg 79104, Germany; Department of Pneumology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Bernd Kammerer
- Core Competence Metabolomics, Hilde-Mangold-Haus, University of Freiburg, Freiburg 79104, Germany; Institute of Organic Chemistry, University of Freiburg, Freiburg 79104, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg 79104, Germany
| | - Thorsten Rieckmann
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Otorhinolaryngology, University Medical Center Hamburg Eppendorf, Germany
| | - Nils Cordes
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiooncology - OncoRay, Dresden 01328, Germany; German Cancer Consortium, Partner Site Dresden: German Cancer Research Center, Heidelberg 69120, Germany; Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany.
| |
Collapse
|
2
|
Scharf RM, Gonçalves CO, da Silva Fernandes A, Mazzei JL, Raquel Anastácio Ferraz E, Fernando Araujo Lima C, Felzenszwalb I. Antimutagenic and antitumor activities of a water-soluble fraction of soursop ( syn Graviola, Annona muricata L.) fruit pulp. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:310-324. [PMID: 38285000 DOI: 10.1080/15287394.2024.2309335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Soursop (Annona muricata) is a tropical tree whose decoction derived from bark, root, seed, or leaf has been used for medicinal uses. In addition, the fruit itself is considered a food, and the juice is utilized to treat heart and liver diseases. The aim of this study was to determine the phenolic content. In addition, a water-soluble fraction of the soursop fruit pulp (WSSP) was examined for the following properties: antioxidant, mutagenic, and antimutagenicity. UV-visible spectrophotometry determined total phenolic content by the Folin-Ciocalteu method to be 11.22 ± 0.6 mg of gallic acid equivalent per gram dried extract, and free-radical scavenging activity by the 2,2'-diphenyl-1-picryl-hydrazyl (DPPH•) showed an EC50 of 1032 µg/ml. In the Salmonella/microsome assay, no marked mutagenicity was induced following WSSP treatment, and a chemopreventive capacity was observed in the antimutagenic assay. The cytotoxicity assays were carried out using the water-soluble tetrazolium salt and lactate dehydrogenase (LDH) assays demonstrated that WSSP induced significant cytotoxicity in MCF-7 and Caco-2 cells, indicating greater effectiveness of cytotoxic action by destroying cell membrane integrity. Data suggest that WSSP may exert beneficial effects as a DNA chemopreventive and antitumor agent.
Collapse
Affiliation(s)
- Raissa Miranda Scharf
- Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carine Oliveira Gonçalves
- Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andreia da Silva Fernandes
- Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Luiz Mazzei
- Department of Natural Products, Institute of Drug Technology, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Elisa Raquel Anastácio Ferraz
- Laboratory of Toxicology, Department of Pharmacy and Pharmaceutical Administration, Pharmacy College, Fluminense Federal University, Niterói, Brazil
| | - Carlos Fernando Araujo Lima
- Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Pharmaceutical and Technological Innovation, Molecular and Cell Biology Graduate Program, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Israel Felzenszwalb
- Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Pashirova TN, Nemtarev AV, Buzyurova DN, Shaihutdinova ZM, Dimukhametov MN, Babaev VM, Voloshina AD, Mironov VF. Terpenes-Modified Lipid Nanosystems for Temozolomide, Improving Cytotoxicity against Glioblastoma Human Cancer Cells In Vitro. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:55. [PMID: 38202510 PMCID: PMC10780480 DOI: 10.3390/nano14010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
Currently, increasing the efficiency of glioblastoma treatment is still an unsolved problem. In this study, a combination of promising approaches was proposed: (i) an application of nanotechnology approach to create a new terpene-modified lipid system (7% w/w), using soybean L-α-phosphatidylcholine, N-carbonyl-methoxypolyethylene glycol-2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine for delivery of the chemotherapy drug, temozolomide (TMZ, 1 mg/mL); (ii) use of TMZ associated with natural compounds-terpenes (1% w/w) abietic acid and Abies sibirica Ledeb. resin (A. sibirica). Different concentrations and combinations of terpene-lipid systems were employed to treat human cancer cell lines T 98G (glioblastoma), M-Hela (carcinoma of the cervix) and human liver cell lines (Chang liver). The terpene-lipid systems appeared to be unilamellar and of spherical shape under transmission electron microscopy (TEM). The creation of a TMZ-loaded terpene-lipid nanosystem was about 100 nm in diameter with a negative surface charge found by dynamic light scattering. The 74% encapsulation efficiency allowed the release time of TMZ to be prolonged. The modification by terpenes of TMZ-loaded lipid nanoparticles improved by four times the cytotoxicity against human cancer T 98G cells and decreased the cytotoxicity against human normal liver cells. Terpene-modified delivery lipid systems are of potential interest as a combination therapy.
Collapse
Affiliation(s)
- Tatiana N. Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (D.N.B.); (Z.M.S.); (M.N.D.); (V.M.B.); (A.D.V.); (V.F.M.)
| | - Andrey V. Nemtarev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (D.N.B.); (Z.M.S.); (M.N.D.); (V.M.B.); (A.D.V.); (V.F.M.)
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia
| | - Daina N. Buzyurova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (D.N.B.); (Z.M.S.); (M.N.D.); (V.M.B.); (A.D.V.); (V.F.M.)
| | - Zukhra M. Shaihutdinova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (D.N.B.); (Z.M.S.); (M.N.D.); (V.M.B.); (A.D.V.); (V.F.M.)
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia
| | - Mudaris N. Dimukhametov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (D.N.B.); (Z.M.S.); (M.N.D.); (V.M.B.); (A.D.V.); (V.F.M.)
| | - Vasily M. Babaev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (D.N.B.); (Z.M.S.); (M.N.D.); (V.M.B.); (A.D.V.); (V.F.M.)
| | - Alexandra D. Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (D.N.B.); (Z.M.S.); (M.N.D.); (V.M.B.); (A.D.V.); (V.F.M.)
| | - Vladimir F. Mironov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (D.N.B.); (Z.M.S.); (M.N.D.); (V.M.B.); (A.D.V.); (V.F.M.)
| |
Collapse
|
4
|
Hsieh CC, Yang CY, Peng B, Ho SL, Tsao CH, Lin CK, Lin CS, Lin GJ, Lin HY, Huang HC, Chang SC, Sytwu HK, Chia WT, Chen YW. Allyl Isothiocyanate Suppresses the Proliferation in Oral Squamous Cell Carcinoma via Mediating the KDM8/CCNA1 Axis. Biomedicines 2023; 11:2669. [PMID: 37893043 PMCID: PMC10604360 DOI: 10.3390/biomedicines11102669] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The dysregulated expression of cyclin genes can lead to the uncontrolled proliferation of cancer cells. Histone demethylase Jumonji-C domain-containing protein 5 (KDM8, JMJD5) and cyclin A1 (CCNA1) are pivotal in cell cycle progression. A promising candidate for augmenting cancer treatment is Allyl isothiocyanate (AITC), a natural dietary chemotherapeutic and epigenetic modulator. This study aimed to investigate AITC's impact on the KDM8/CCNA1 axis to elucidate its role in oral squamous cell carcinoma (OSCC) tumorigenesis. The expression of KDM8 and CCNA1 was assessed using a tissue microarray (TMA) immunohistochemistry (IHC) assay. In vitro experiments with OSCC cell lines and in vivo experiments with patient-derived tumor xenograft (PDTX) and SAS subcutaneous xenograft tumor models were conducted to explore AITC's effects on their expression and cell proliferation. The results showed elevated KDM8 and CCNA1 levels in the OSCC patient samples. AITC exhibited inhibitory effects on OSCC tumor growth in vitro and in vivo. Additionally, AITC downregulated KDM8 and CCNA1 expression while inducing histone H3K36me2 expression in oral cancer cells. These findings underscore AITC's remarkable anticancer properties against oral cancer, highlighting its potential as a therapeutic option for oral cancer treatment by disrupting the cell cycle by targeting the KDM8/CCNA1 axis.
Collapse
Grants
- TSGH-C01-109017, TSGH-C05-110035, TSGH-C04-111037, TSGH-D-110148, TSGH-D-110149, TSGH-D-110151, TSGH-D-110152, TSGH-D-110154, TSGH-C02-112032 Tri-Service General Hospital, Taiwan, Republic of China
- MAB-E-109003, MAB-D-110003, MND-MAB-110-043, MND-MAB-110-076, MND-MAB-C-111036, MAB-E-111002, MND-MAB-D-111149, MND-MAB-D-112176, MND-MAB-C08-112033 Ministry of National Defense, Taiwan, Republic of China
- MOST 108-2314-B-016-005 Ministry of Science and Technology, Taiwan, Republic of China
- KAFGH-E-111047, KAFGH_E_112061 Kaohsiung Armed Forces General Hospital, Taiwan, Republic of China
- KSVGH112-135 Kaohsiung Veterans General Hospital, Taiwan, Republic of China
- HAFGH_E_112018 Hualien Armed Forces General Hospital, Taiwan, Republic of China
- CTH107A-2C01 Cardinal Tien Hospital, Taipei, Taiwan, Republic of China
Collapse
Affiliation(s)
- Cheng-Chih Hsieh
- Department of Pharmacy, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- School of Pharmacy and Institute of Pharmacy, National Defense Medical Center, Taipei 114, Taiwan
| | - Cheng-Yu Yang
- School of Dentistry, National Defense Medical Center, Taipei 114, Taiwan
- Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, Taipei 114, Taiwan
| | - Bo Peng
- School of Dentistry, National Defense Medical Center, Taipei 114, Taiwan
- Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, Taipei 114, Taiwan
| | - Sien-Lin Ho
- Department of Pharmacy, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- School of Dentistry, National Defense Medical Center, Taipei 114, Taiwan
| | - Chang-Huei Tsao
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan
- Department of Medical Research, Tri-Service General Hospital, Taipei 114, Taiwan
| | - Chih-Kung Lin
- Division of Anatomic Pathology, Taipei Tzu Chi Hospital, New Taipei City 231, Taiwan
| | - Chun-Shu Lin
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Centre, Taipei 114, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Gu-Jiun Lin
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan
| | - Heng-Yi Lin
- Department of Dentistry, Cardinal Tien Hospital, New Taipei City 231, Taiwan
| | - Hung-Chi Huang
- School of Dentistry, National Defense Medical Center, Taipei 114, Taiwan
- Department of Dentistry, Hualien Armed Forces General Hospital, Hualien 971, Taiwan
| | - Szu-Chien Chang
- School of Dentistry, National Defense Medical Center, Taipei 114, Taiwan
- Department of Dentistry, Kaohsiung Armed Forces General Hospital, Kaohsiung 813, Taiwan
| | - Huey-Kang Sytwu
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli 350, Taiwan
| | - Wei-Tso Chia
- Department of Orthopedics, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 302, Taiwan
- Department of Nursing, Yuan Pie University of Medical Technology, Hsinchu 302, Taiwan
- Tri-Service General Hospital, Taipei 114, Taiwan
| | - Yuan-Wu Chen
- School of Dentistry, National Defense Medical Center, Taipei 114, Taiwan
- Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, Taipei 114, Taiwan
| |
Collapse
|
5
|
Liew YX, Karen-Ng LP, Vincent-Chong VK. A Comprehensive Review of Natural Products as Therapeutic or Chemopreventive Agents against Head and Neck Squamous Cell Carcinoma Cells Using Preclinical Models. Biomedicines 2023; 11:2359. [PMID: 37760799 PMCID: PMC10525836 DOI: 10.3390/biomedicines11092359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a type of cancer that arises from the epithelium lining of the oral cavity, hypopharynx, oropharynx, and larynx. Despite the advancement of current treatments, including surgery, chemotherapy, and radiotherapy, the overall survival rate of patients afflicted with HNSCC remains poor. The reasons for these poor outcomes are due to late diagnoses and patient-acquired resistance to treatment. Natural products have been extensively explored as a safer and more acceptable alternative therapy to the current treatments, with numerous studies displaying their potential against HNSCC. This review highlights preclinical studies in the past 5 years involving natural products against HNSCC and explores the signaling pathways altered by these products. This review also addresses challenges and future directions of natural products as chemotherapeutic and chemoprevention agents against HNSCC.
Collapse
Affiliation(s)
- Yoon Xuan Liew
- Oral Cancer Research & Coordinating Centre (OCRCC), Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Lee Peng Karen-Ng
- Oral Cancer Research & Coordinating Centre (OCRCC), Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Vui King Vincent-Chong
- Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
6
|
Boretti A. Natural Products as Cancer Chemo Preventive Agents: Where We Stand. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221144579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This work briefly reviews cancer chemoprevention. This is a very challenging field, as products with a high level of toxicity such as chemotherapeutic agents may be proposed and accepted only under life-threatening conditions. Cancer chemoprevention is otherwise limited to completely safe substances, preferably having neither toxic nor side effects, administered in relatively low amounts. Phases of clinical trials, therapeutic end-points, and biomarkers of chemoprevention are difficult to be defined. The clinical trials needed to prove the efficacy of chemopreventive agents must be very long and extremely widespread to achieve significance, with many variables difficult to control, and therefore subjected to many confounding factors. This makes them almost impossible. It is, therefore, no surprise, if the progress of chemoprevention has been so far very limited. There are only a few examples of direct use of chemopreventive agents, under investigation, but with anything but established protocols, in addition to indirect uses such as general supplementation with antioxidant, anti-inflammatory, and immune-supportive agents. Cancer chemoprevention remains a potentially very rewarding approach, certainly worth further study, but extremely difficult to pursue, in need of different methodological approaches to producing valuable chemopreventive compounds of clear dosages and benefits.
Collapse
|
7
|
Salcedo‐Bellido I, Requena P, Mateos R, Ortega‐Rico C, Olmedo‐Requena R, Lozano‐Lorca M, Arrebola JP, Barrios‐Rodríguez R. Factors associated with the development of second primary tumours in head and neck cancer patients. Eur J Cancer Care (Engl) 2022; 31:e13699. [PMID: 36117311 PMCID: PMC9787413 DOI: 10.1111/ecc.13699] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/15/2022] [Accepted: 08/31/2022] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The development of second primary tumours (SPTs) is one of the main causes of low survival in patients with head and neck cancer (HNC). The aim of this study was to review the evidence about factors associated with developing SPTs in patients with HNC. METHODS An updated systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, and the search was performed in Pubmed and Scopus. Only original articles with a cohort or case-control design were included. Article quality was assessed with the Newcastle-Ottawa scale. RESULTS Thirty-six and two case-control studies were included, with quality medium (n = 5) to high (n = 33). Tobacco showed a significant association with SPT development, with risks ranging from 1.41 (95%CI: 1.04-1.91) to 5.52 (95%CI: 2.91-10.49). Regarding alcohol, risks ranged from 1.46 (95%CI: 1.12-1.91) to 21.3 (95%CI: 2.9-156). Location of the index tumour in the hypopharynx/oropharynx, absence of human papillomavirus and presence of a premalignant lesion also increased the risk of SPTs. More controversy was found for sex, age and other clinical factors of the tumour. CONCLUSION Toxic lifestyle habits and clinical factors were associated with the risk of SPTs in HNC patients. These findings may improve individualised prevention strategies in its follow-up.
Collapse
Affiliation(s)
- Inmaculada Salcedo‐Bellido
- Departamento de Medicina Preventiva y Salud PúblicaUniversidad de GranadaGranadaSpain,Instituto de Investigación Biosanitaria de Granada (ibs.Granada)GranadaSpain,Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP)MadridSpain
| | - Pilar Requena
- Departamento de Medicina Preventiva y Salud PúblicaUniversidad de GranadaGranadaSpain,Instituto de Investigación Biosanitaria de Granada (ibs.Granada)GranadaSpain,Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP)MadridSpain
| | - Rocío Mateos
- Departamento de Medicina Preventiva y Salud PúblicaUniversidad de GranadaGranadaSpain
| | - Carmen Ortega‐Rico
- Departamento de Medicina Preventiva y Salud PúblicaUniversidad de GranadaGranadaSpain
| | - Rocío Olmedo‐Requena
- Departamento de Medicina Preventiva y Salud PúblicaUniversidad de GranadaGranadaSpain,Instituto de Investigación Biosanitaria de Granada (ibs.Granada)GranadaSpain,Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP)MadridSpain
| | - Macarena Lozano‐Lorca
- Departamento de Medicina Preventiva y Salud PúblicaUniversidad de GranadaGranadaSpain,Instituto de Investigación Biosanitaria de Granada (ibs.Granada)GranadaSpain
| | - Juan Pedro Arrebola
- Departamento de Medicina Preventiva y Salud PúblicaUniversidad de GranadaGranadaSpain,Instituto de Investigación Biosanitaria de Granada (ibs.Granada)GranadaSpain,Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP)MadridSpain
| | - Rocío Barrios‐Rodríguez
- Departamento de Medicina Preventiva y Salud PúblicaUniversidad de GranadaGranadaSpain,Instituto de Investigación Biosanitaria de Granada (ibs.Granada)GranadaSpain,Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP)MadridSpain
| |
Collapse
|
8
|
Ryan NM, Lamenza FF, Upadhaya P, Pracha H, Springer A, Swingler M, Siddiqui A, Oghumu S. Black raspberry extract inhibits regulatory T-cell activity in a murine model of head and neck squamous cell carcinoma chemoprevention. Front Immunol 2022; 13:932742. [PMID: 36016924 PMCID: PMC9395668 DOI: 10.3389/fimmu.2022.932742] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) are one of the most diagnosed malignancies globally, with a 5-year survival rate of approximately 40% to 50%. Current therapies are limited to highly invasive surgery, aggressive radiation, and chemotherapies. Recent reports have demonstrated the potential phytochemical properties of black raspberries in inhibiting the progression of various cancers including HNSCCs. However, the effects of black raspberry extracts on immune cells of the tumor microenvironment, specifically regulatory T cells during HNSCC, have not been investigated. We used a mouse model of 4-nitroquinoline-1-oxide (4NQO) chemically induced HNSCC carcinogenesis to determine these effects. C57BL/6 mice were exposed to 4NQO for 16 weeks and regular water for 8 weeks. 4NQO-exposed mice were fed the AIN-76A control mouse diet or the AIN76 diet supplemented with black raspberry extract. At terminal sacrifice, tumor burdens and immune cell recruitment and activity were analyzed in the tumor microenvironment, draining lymph nodes, and spleens. Mice fed the BRB extract-supplemented diet displayed decreased tumor burden compared to mice provided the AIN-76A control diet. Black raspberry extract administration did not affect overall T-cell populations as well as Th1, Th2, or Th17 differentiation in spleens and tumor draining lymph nodes. However, dietary black raspberry extract administration inhibited regulatory T-cell recruitment to HNSCC tumor sites. This was associated with an increased cytotoxic immune response in the tumor microenvironment characterized by increased CD8+ T cells and enhanced Granzyme B production during BRB extract-mediated HNSCC chemoprevention. Interestingly, this enhanced CD8+ T-cell antitumoral response was localized at the tumor sites but not at spleens and draining lymph nodes. Furthermore, we found decreased levels of PD-L1 expression by myeloid populations in draining lymph nodes of black raspberry-administered carcinogen-induced mice. Taken together, our findings demonstrate that black raspberry extract inhibits regulatory T-cell recruitment and promotes cytotoxic CD8 T-cell activity at tumor sites during HNSCC chemoprevention. These results demonstrate the immunomodulatory potential of black raspberry extracts and support the use of black raspberry-derived phytochemicals as a complementary approach to HNSCC chemoprevention and treatment.
Collapse
Affiliation(s)
- Nathan M. Ryan
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Felipe F. Lamenza
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Puja Upadhaya
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Hasan Pracha
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Anna Springer
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Michael Swingler
- Department of Microbiology, Immunology, and Inflammation, Center of Neurovirology and Gene Editing, School of Medicine, Temple University, Philadelphia, PA, United States
| | - Arham Siddiqui
- Kentucky College of Osteopathic Medicine, University of Pikeville, Pikeville, KY, United States
| | - Steve Oghumu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- *Correspondence: Steve Oghumu,
| |
Collapse
|
9
|
Vieira GV, Somera dos Santos F, Lepique AP, da Fonseca CK, Innocentini LMAR, Braz-Silva PH, Quintana SM, Sales KU. Proteases and HPV-Induced Carcinogenesis. Cancers (Basel) 2022; 14:cancers14133038. [PMID: 35804810 PMCID: PMC9264903 DOI: 10.3390/cancers14133038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Human papillomavirus (HPV) infection is a sexually transmitted disease with high prevalence worldwide. Although most HPV infections do not lead to cancer, some HPV types are correlated with the majority of cervical cancers, and with some anogenital and oropharyngeal cancers. Moreover, enzymes known as proteases play an essential role in the pathogenic process in HPV-induced carcinogenesis. This review highlights the role of proteases and recent epidemiological data regarding HPV-dependent carcinogenesis. Abstract Persistent infection with Human papillomavirus (HPV) is the main etiologic factor for pre-malignant and malignant cervical lesions. Moreover, HPV is also associated with oropharynx and other anogenital carcinomas. Cancer-causing HPV viruses classified as group 1 carcinogens include 12 HPV types, with HPV 16 and 18 being the most prevalent. High-risk HPVs express two oncoproteins, E6 and E7, the products of which are responsible for the inhibition of p53 and pRB proteins, respectively, in human keratinocytes and cellular immortalization. p53 and pRB are pleiotropic proteins that regulate the activity of several signaling pathways and gene expression. Among the important factors that are augmented in HPV-mediated carcinogenesis, proteases not only control processes involved in cellular carcinogenesis but also control the microenvironment. For instance, genetic polymorphisms of matrix metalloproteinase 1 (MMP-1) are associated with carcinoma invasiveness. Similarly, the serine protease inhibitors hepatocyte growth factor activator inhibitor-1 (HAI-1) and -2 (HAI-2) have been identified as prognostic markers for HPV-dependent cervical carcinomas. This review highlights the most crucial mechanisms involved in HPV-dependent carcinogenesis, and includes a section on the proteolytic cascades that are important for the progression of this disease and their impact on patient health, treatment, and survival.
Collapse
Affiliation(s)
- Gabriel Viliod Vieira
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil; (G.V.V.); (C.K.d.F.); (L.M.A.R.I.)
| | - Fernanda Somera dos Santos
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil; (F.S.d.S.); (S.M.Q.)
| | - Ana Paula Lepique
- Department of Immunology, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo 05508-000, SP, Brazil;
| | - Carol Kobori da Fonseca
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil; (G.V.V.); (C.K.d.F.); (L.M.A.R.I.)
| | - Lara Maria Alencar Ramos Innocentini
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil; (G.V.V.); (C.K.d.F.); (L.M.A.R.I.)
- Clinical Hospital of Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, SP, Brazil
| | - Paulo Henrique Braz-Silva
- Department of Stomatology, School of Dentistry, University of Sao Paulo, São Paulo 05508-000, SP, Brazil;
- Laboratory of Virology, Institute of Tropical Medicine of Sao Paulo, School of Medicine, University of Sao Paulo, Sao Paulo 05403-000, SP, Brazil
| | - Silvana Maria Quintana
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil; (F.S.d.S.); (S.M.Q.)
| | - Katiuchia Uzzun Sales
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil; (G.V.V.); (C.K.d.F.); (L.M.A.R.I.)
- Correspondence: ; Tel.: +55-16-3315-9113
| |
Collapse
|
10
|
Lan Y, Liang Y, Xiao X, Shi Y, Zhu M, Meng C, Yang S, Khan MT, Zhang YJ. Stoichioproteomics study of differentially expressed proteins and pathways in head and neck cancer. BRAZ J BIOL 2021; 83:e249424. [PMID: 34730606 DOI: 10.1590/1519-6984.249424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/20/2021] [Indexed: 01/16/2023] Open
Abstract
Hypoxia is a prominent feature of head and neck cancer. However, the oxygen element characteristics of proteins and how they adapt to hypoxia microenvironments of head and neck cancer are still unknown. Human genome sequences and proteins expressed data of head and neck cancer were retrieved from pathology atlas of Human Protein Atlas project. Then compared the oxygen and carbon element contents between proteomes of head and neck cancer and normal oral mucosa-squamous epithelial cells, genome locations, pathways, and functional dissection associated with head and neck cancer were also studied. A total of 902 differentially expressed proteins were observed where the average oxygen content is higher than that of the lowly expressed proteins in head and neck cancer proteins. Further, the average oxygen content of the up regulated proteins was 2.54% higher than other. None of their coding genes were distributed on the Y chromosome. The up regulated proteins were enriched in endocytosis, apoptosis and regulation of actin cytoskeleton. The increased oxygen contents of the highly expressed and the up regulated proteins might be caused by frequent activity of cytoskeleton and adapted to the rapid growth and fast division of the head and neck cancer cells. The oxygen usage bias and key proteins may help us to understand the mechanisms behind head and neck cancer in targeted therapy, which lays a foundation for the application of stoichioproteomics in targeted therapy and provides promise for potential treatments for head and neck cancer.
Collapse
Affiliation(s)
- Y Lan
- Chongqing Normal University, College of Life Sciences, Shapingba, Chongqing, P.R. China
| | - Y Liang
- Chongqing Normal University, College of Life Sciences, Shapingba, Chongqing, P.R. China
| | - X Xiao
- Chongqing Normal University, College of Life Sciences, Shapingba, Chongqing, P.R. China
| | - Y Shi
- Chongqing Normal University, College of Life Sciences, Shapingba, Chongqing, P.R. China
| | - M Zhu
- Chongqing Normal University, College of Life Sciences, Shapingba, Chongqing, P.R. China
| | - C Meng
- Chongqing Normal University, College of Life Sciences, Shapingba, Chongqing, P.R. China
| | - S Yang
- Ningxia University, School of Life Sciences, Xixia, Yinchuan, Ningxia, P.R. China
| | - M T Khan
- The University of Lahore-Pakistan, Institute of Molecular Biology and Biotechnology, Lahore, Pakistan
| | - Y J Zhang
- Chongqing Normal University, College of Life Sciences, Shapingba, Chongqing, P.R. China
| |
Collapse
|
11
|
Porcheri C, Mitsiadis TA. New Scenarios in Pharmacological Treatments of Head and Neck Squamous Cell Carcinomas. Cancers (Basel) 2021; 13:cancers13215515. [PMID: 34771677 PMCID: PMC8583200 DOI: 10.3390/cancers13215515] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most frequent types of cancer with a lethal outcome in half of the diagnosed cases. Mostly, HNSCC develops in the oral cavity, and its development is associated with tobacco and areca nut/betel quid usage, alcohol consumption, and HPV infection. Oral squamous cell carcinoma, as other head and neck cancers, presents a high degree of intratumor heterogeneity, which makes their treatment difficult, and directly correlates with drug resistance. Since the classical treatments for HNSCC oftentimes do not resolve the clinical picture, there is great need for novel therapeutic approaches, models for drug testing, and new drug delivery systems.
Collapse
|
12
|
Almalki Z, Algregri M, Alhosin M, Alkhaled M, Damiati S, Zamzami MA. In vitro cytotoxicity of curcuminoids against head and neck cancer HNO97 cell line. BRAZ J BIOL 2021; 83:e248708. [PMID: 34468533 DOI: 10.1590/1519-6984.248708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/17/2021] [Indexed: 11/21/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a malignant tumour of Head and Neck Cancer (HNC). The recent therapeutic approaches used to treat cancer have adverse side effects. The natural agents exhibiting anticancer activities are generally considered to have a robust therapeutic potential. Curcuminoids, one of the major active compounds of the turmeric herb, are used as a therapeutic agent for several diseases including cancer. In this study, the cytotoxicity of curcuminoids was investigated against OSCC cell line HNO97. Our data showed that curcuminoids significantly inhibits the proliferation of HNO97 in a time and dose-dependent manner (IC50=35 μM). Cell cycle analysis demonstrated that curcuminoids increased the percentage of G2/M phase cell populations in the treated groups. Treating HNO97 cells with curcuminoids led to cell shrinking and increased detached cells, which are the typical appearance of apoptotic cells. Moreover, flow cytometry analysis revealed that curcuminoids significantly induced apoptosis in a time-dependent manner. Furthermore, as a response to curcuminoids treatment, comet tails were formed in cell nuclei due to the induction of DNA damage. Curcuminoids treatment reduced the colony formation capacity of HNO97 cells and induced morphological changes. Overall, these findings demonstrate that curcuminoids can in vitro inhibit HNC proliferation and metastasis and induce apoptosis.
Collapse
Affiliation(s)
- Z Almalki
- King Abdulaziz University, Faculty of Science, Department of Biochemistry, Jeddah, Saudi Arabia
| | - M Algregri
- King Abdulaziz University, King Fahad Medical Research Canter, Jeddah, Saudi Arabia
| | - M Alhosin
- King Abdulaziz University, Faculty of Science, Department of Biochemistry, Jeddah, Saudi Arabia
| | - M Alkhaled
- University of Jeddah, Faculty of Science, Department of Biological Sciences, Jeddah, Saudi Arabia
| | - S Damiati
- King Abdulaziz University, Faculty of Science, Department of Biochemistry, Jeddah, Saudi Arabia
| | - M A Zamzami
- King Abdulaziz University, Faculty of Science, Department of Biochemistry, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Huang W, Gao Z, Zhang Z, Fang W, Wang Z, Wan Z, Shi L, Wang K, Ke S. Selective and effective anticancer agents: Synthesis, biological evaluation and structure-activity relationships of novel carbazole derivatives. Bioorg Chem 2021; 113:104991. [PMID: 34051416 DOI: 10.1016/j.bioorg.2021.104991] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022]
Abstract
Carbazole alkaloids is an important class of natural products with diverse biological functions. So, the aim of this article is to explore new chemical entities containing carbazole scaffold as potential novel cytotoxic agents based on our developed three-component indole-to-carbazole reaction. Two series of carbazole derivatives were designed and synthesized, and their in vitro cytotoxic activities against three cell lines (A875, HepG2, and MARC145) were evaluated. The results indicated that some of these carbazole derivatives exhibited significantly good cytotoxic activities against tested cell lines compared with the control 5-fluorouracil (5-FU). Especially, carbazole acylhydrazone compounds 7g and 7p displayed high inhibitory activity on cancer cells, but almost no activity on normal cells. Further analysis of induced apoptosis for potential compounds indicated that the potential antitumor agents induced cell death in A875 cells at least partly (initially) by apoptosis, which might be used as promising lead scaffold for discovery of novel carbazole-type cytotoxic agents.
Collapse
Affiliation(s)
- Wenbo Huang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Zilin Gao
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhigang Zhang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Wei Fang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Zuoqian Wang
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Ministry of Agriculture Key Laboratory of Integrated Pest Management in Crops in Central China, Wuhan 430064, China
| | - Zhongyi Wan
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Liqiao Shi
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Kaimei Wang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Shaoyong Ke
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| |
Collapse
|
14
|
Lele W, Lei L, Liting Q. Resveratrol sensitizes A549 cells to irradiation damage via suppression of store-operated calcium entry with Orai1 and STIM1 downregulation. Exp Ther Med 2021; 21:587. [PMID: 33850559 PMCID: PMC8027717 DOI: 10.3892/etm.2021.10019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 11/26/2020] [Indexed: 01/04/2023] Open
Abstract
Resveratrol is a natural polyphenol with multiple positive biofunctions and was found to have potential as a radiosensitizer with an intricate molecular mechanism. Store-operated calcium entry (SOCE) is a novel intracellular calcium regulatory pattern that is mainly mediated by iron channels, such as by the stromal interaction molecule (STIM) and calcium release-activated calcium channel protein (Orai) families. SOCE was recently reported to be suppressed via the downregulation of STIM or Orai families for the promotion of tumor cell death induced by resveratrol. In the present study, resveratrol combined with irradiation treatment were found to induce more evident cell damage compared with irradiation treatment alone, as shown with Cell Counting Kit-8 assay and mitochondrial membrane potential detection with rhodamine 123. Additionally, resveratrol combined with irradiation treatment decreased the expression of STIM1 and Orai1, while it had no effects on STIM2, Orai2 and Orai3. Moreover, resveratrol combined with irradiation treatment lead to alleviated thapsigargin-induced SOCE. In addition, overexpression of STIM1 and Orai1 reversed resveratrol-induced SOCE inhibition and reduced death in A549 cells under irradiation. In summary, the present results revealed that resveratrol can significantly enhance the effect of irradiation damage on lung adenocarcinoma A549 cells, and this effect may be mediated by suppression of SOCE with reduced expression of both STIM1 and Orai1.
Collapse
Affiliation(s)
- Wu Lele
- Department of General Medicine, First People's Hospital of Yuhang, Hangzhou, Zhejiang 311100, P.R. China.,Department of Radiotherapy, Anhui Provincial Hospital, Hefei, Anhui 230031, P.R. China
| | - Lv Lei
- Department of Radiotherapy, Anhui Provincial Hospital, Hefei, Anhui 230031, P.R. China.,Epigenetic Laboratory, Anhui Provincial Hospital, Hefei, Anhui 230031, P.R. China
| | - Qian Liting
- Department of Radiotherapy, Anhui Provincial Hospital, Hefei, Anhui 230031, P.R. China.,Epigenetic Laboratory, Anhui Provincial Hospital, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
15
|
Irani S. New Insights into Oral Cancer-Risk Factors and Prevention: A Review of Literature. Int J Prev Med 2020; 11:202. [PMID: 33815726 PMCID: PMC8000242 DOI: 10.4103/ijpvm.ijpvm_403_18] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/13/2019] [Indexed: 12/16/2022] Open
Abstract
The oral cancer constitutes 48% of head and neck cancer cases. Ninety percent of oral cancer cases are histologically diagnosed as oral squamous cell carcinomas (OSCCs). Despite new management strategies, the 5-year survival rate of oral cancer is still below 50% in most countries. Head and neck cancers are heterogeneous tumors, and this characteristic of them provides a challenge to treatment plan. Due to the poor outcomes in oral cancer, prevention is a necessity. In this review, a relevant English Literature search in PubMed, ScienceDirect, and Google Scholar from 2000 to mid-2018 was performed. All published articles related to oral cancer and its prevention were included. The risk factors of oral cancer and strategies of oral cancer prevention will be discussed.
Collapse
Affiliation(s)
- Soussan Irani
- Dental Research Centre, Department of Oral Pathology, Dental Faculty, Hamadan University of Medical Sciences, Hamadan, Iran
- School of Medicine, Griffith University, Gold Coast, Australia
| |
Collapse
|
16
|
Li H, Qu X, Qian W, Song Y, Wang C, Liu W. Andrographolide-loaded solid lipid nanoparticles enhance anti-cancer activity against head and neck cancer and precancerous cells. Oral Dis 2020; 28:142-149. [PMID: 33295090 DOI: 10.1111/odi.13751] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/15/2020] [Accepted: 12/04/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Increasing evidence indicates that andrographolide (ADG) exhibits anti-cancer activity against various cancer cell lines. However, its high hydrophobicity and poor bioavailability restrict its clinical application as a chemopreventative agent. Previously, we have shown that ADG-loaded solid lipid nanoparticles (SLNs) significantly enhanced the bioavailability and anti-hyperlipidemic activity of ADG. OBJECTIVES We aimed to investigate whether ADG-SLN enhanced the bioavailability and anti-cancer efficacy of ADG in the human immortalized oral epithelial (HIOEC), precancerous leukoplakia (Leuk1), HN6, and HN30 cells that represented an in vitro model of stepwise head and neck squamous cell carcinoma development. RESULTS The 50% inhibitive concentration (IC50) of ADG-SLN was significantly lower than that of free ADG against HIOEC, Leuk1, and HN6 and HN30 cells. Moreover, ADG-SLN was more effective than free ADG in promoting cell cycle arrest and apoptosis. Importantly, intracellular absorption of ADG was significantly higher in HN6 cells treated with ADG-SLN compared with free ADG-treated cells. CONCLUSIONS Our preliminary study demonstrates that ADG-SLN exhibits superior inhibitory activity against head and neck cancer and precancerous cells compared with free ADG. This effect is due to the higher efficiency of cellular uptake and intracellular absorption by ADG-SLN.
Collapse
Affiliation(s)
- Hongquan Li
- Shanghai Xuhui District Dental Disease Center, Shanghai, China
| | - Xingzhou Qu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Wenhao Qian
- Shanghai Xuhui District Dental Disease Center, Shanghai, China
| | - Yang Song
- Shanghai Xuhui District Dental Disease Center, Shanghai, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai, China
| | - Wei Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
17
|
Therapeutic Potential of the Natural Compound S-Adenosylmethionine as a Chemoprotective Synergistic Agent in Breast, and Head and Neck Cancer Treatment: Current Status of Research. Int J Mol Sci 2020; 21:ijms21228547. [PMID: 33202711 PMCID: PMC7697526 DOI: 10.3390/ijms21228547] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022] Open
Abstract
The present review summarizes the most recent studies focusing on the synergistic antitumor effect of the physiological methyl donor S-adenosylmethionine (AdoMet) in association with the main drugs used against breast cancer and head and neck squamous cell carcinoma (HNSCC), two highly aggressive and metastatic malignancies. In these two tumors the chemotherapy approach is recommended as the first choice despite the numerous side effects and recurrence of metastasis, so better tolerated treatments are needed to overcome this problem. In this regard, combination therapy with natural compounds, such as AdoMet, a molecule with pleiotropic effects on multiple cellular processes, is emerging as a suitable strategy to achieve synergistic anticancer efficacy. In this context, the analysis of studies conducted in the literature highlighted AdoMet as one of the most effective and promising chemosensitizing agents to be taken into consideration for inclusion in emerging antitumor therapeutic modalities such as nanotechnologies.
Collapse
|
18
|
Liu K, Zhao F, Yan J, Xia Z, Jiang D, Ma P. Hispidulin: A promising flavonoid with diverse anti-cancer properties. Life Sci 2020; 259:118395. [PMID: 32905830 DOI: 10.1016/j.lfs.2020.118395] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
Abstract
In recent years, natural products have increasingly attracted more attention because of their potential anticancer activity and low intrinsic toxicity. Hispidulin is a natural flavonoid with a wide range of biological activities, including anti-inflammatory, antifungal, antiplatelet, anticonvulsant, anti-osteoporotic, and notably anticancer activities. Numerous in vivo and in vitro studies have shown that hispidulin, as a potential anticancer drug, affects cell proliferation, apoptosis, cell cycle, angiogenesis, and metastasis. Moreover, hispidulin exhibits synergistic anti-tumor effects when combined with some common clinical anticancer drugs (e.g., gemcitabine, 5-fluoroucil, sunitinib, temozolomide, and TRAIL). The combination of hispidulin and chemotherapeutic drugs reduces the efflux of chemotherapeutic drugs, enhances the chemosensitivity of cancer cells, and reverses drug resistance. Herein, we outlined the anticancer effects of hispidulin in various cancers and its intracellular molecular targets and related mechanisms of its anticancer activity. Based on the available literature, it can be established that hispidulin has significant potential to become an important complementary medicine for cancer prevention and treatment. However, more in-depth in vitro and in vivo studies should be conducted to support its translation from bench to bedside.
Collapse
Affiliation(s)
- Kaili Liu
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Fei Zhao
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Jingjing Yan
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Zhengchao Xia
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Dandan Jiang
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Peizhi Ma
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou, China.
| |
Collapse
|
19
|
Bostan M, Petrică-Matei GG, Radu N, Hainarosie R, Stefanescu CD, Diaconu CC, Roman V. The Effect of Resveratrol or Curcumin on Head and Neck Cancer Cells Sensitivity to the Cytotoxic Effects of Cisplatin. Nutrients 2020; 12:nu12092596. [PMID: 32859062 PMCID: PMC7551591 DOI: 10.3390/nu12092596] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022] Open
Abstract
Natural compounds can modulate all three major phases of carcinogenesis. The role of the natural compounds such as resveratrol (RSV) and curcumin (CRM) in modulation of anticancer potential of platinum-based drugs (CisPt) is still a topic of considerable debate. In order to enhance head and neck cancer (HNSCC) cells’ sensitivity to the cytotoxic effects of CisPt combined treatments with RSV or CRM were used. The study aim was to evaluate how the RSV or CRM associated to CisPt treatment modulated some cellular processes such as proliferation, P21 gene expression, apoptotic process, and cell cycle development in HNSCC tumor cell line (PE/CA-PJ49) compared to a normal cell line (HUVEC). The results showed that RSV or CRM treatment affected the viability of tumor cells more than normal cells. These natural compounds act against proliferation and sustain the effects of cisplatin by cell cycle arrest, induction of apoptosis and amplification of P21 expression in tumor cells. In conclusion, using RSV or CRM as adjuvants in CisPt therapy might have a beneficial effect by supporting the effects induced by CisPt.
Collapse
Affiliation(s)
- Marinela Bostan
- Center of Immunology, Stefan S. Nicolau’ Institute of Virology, 030304 Bucharest, Romania;
- Department of Immunology, Victor Babeș’ National Institute of Pathology, 050096 Bucharest, Romania
| | | | - Nicoleta Radu
- Department of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Βucharest, Romania;
- Biotechnology Department, National Institute for Chemistry and Petrochemistry R&D of Bucharest, 060021 Bucharest, Romania
| | - Razvan Hainarosie
- Otorhinolaryngology and Head and Neck Surgery Department-University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania; (R.H.); (C.D.S.)
| | - Cristian Dragos Stefanescu
- Otorhinolaryngology and Head and Neck Surgery Department-University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania; (R.H.); (C.D.S.)
| | - Carmen Cristina Diaconu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania
- Correspondence: (C.C.D.); (V.R.)
| | - Viviana Roman
- Center of Immunology, Stefan S. Nicolau’ Institute of Virology, 030304 Bucharest, Romania;
- Correspondence: (C.C.D.); (V.R.)
| |
Collapse
|
20
|
ROS-Mediated Therapeutic Strategy in Chemo-/Radiotherapy of Head and Neck Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5047987. [PMID: 32774675 PMCID: PMC7396055 DOI: 10.1155/2020/5047987] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/26/2020] [Indexed: 12/24/2022]
Abstract
Head and neck cancer is a highly genetic and metabolic heterogeneous collection of malignancies of the lip, oral cavity, salivary glands, pharynx, esophagus, paranasal sinuses, and larynx with five-year survival rates ranging from 12% to 93%. Patients with head and neck cancer typically present with advanced stage III, IVa, or IVb disease and are treated with comprehensive modality including chemotherapy, radiotherapy, and surgery. Despite advancements in treatment modality and technique, noisome recurrence, invasiveness, and resistance as well as posttreatment complications severely influence survival rate and quality of life. Thus, new therapeutic strategies are urgently needed that offer enhanced efficacy with less toxicity. ROS in cancer cells plays a vital role in regulating cell death, DNA repair, stemness maintenance, metabolic reprogramming, and tumor microenvironment, all of which have been implicated in resistance to chemo-/radiotherapy of head and neck cancer. Adjusting ROS generation and elimination to reverse the resistance of cancer cells without impairing normal cells show great hope in improving the therapeutic efficacy of chemo-/radiotherapy of head and neck cancer. In the current review, we discuss the pivotal and targetable redox-regulating system including superoxide dismutases (SODs), tripeptide glutathione (GSH), thioredoxin (Trxs), peroxiredoxins (PRXs), nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1 (Nrf2/keap1), and mitochondria electron transporter chain (ETC) complexes and their roles in regulating ROS levels and their clinical significance implicated in chemo-/radiotherapy of head and neck cancer. We also summarize several old drugs (referred to as the non-anti-cancer drugs used in other diseases for a long time) and small molecular compounds as well as natural herbs which effectively modulate cellular ROS of head and neck cancer to synergize the efficacy of conventional chemo-/radiotherapy. Emerging interdisciplinary techniques including photodynamic, nanoparticle system, and Bio-Electro-Magnetic-Energy-Regulation (BEMER) therapy are promising measures to broaden the potency of ROS modulation for the benefit of chemo-/radiotherapy in head and neck cancer.
Collapse
|
21
|
Desai P, Thumma NJ, Wagh PR, Zhan S, Ann D, Wang J, Prabhu S. Cancer Chemoprevention Using Nanotechnology-Based Approaches. Front Pharmacol 2020; 11:323. [PMID: 32317961 PMCID: PMC7146461 DOI: 10.3389/fphar.2020.00323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/05/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer research in pursuit of better diagnostic and treatment modalities has seen great advances in recent years. However, the incidence rate of cancer is still very high. Almost 40% of women and men are diagnosed with cancer during their lifetime. Such high incidence has not only resulted in high mortality but also severely compromised patient lifestyles, and added a great socioeconomic burden. In view of this, chemoprevention has gained wide attention as a method to reduce cancer incidence and its relapse after treatment. Among various stems of chemoprevention research, nanotechnology-based chemoprevention approaches have established their potential to offer better efficacy and safety. This review summarizes recent advances in nanotechnology-based chemoprevention strategies for various cancers with emphasis on lung and bronchial cancer, colorectal, pancreatic, and breast cancer and highlights the unmet needs in this developing field towards successful clinical translation.
Collapse
Affiliation(s)
- Preshita Desai
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Naga Jyothi Thumma
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Pushkaraj Rajendra Wagh
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Shuyu Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China
| | - David Ann
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Duarte, CA, United States
| | - Jeffrey Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Sunil Prabhu
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
22
|
Lee E, Han AR, Nam B, Kim YR, Jin CH, Kim JB, Eun YG, Jung CH. Moscatilin Induces Apoptosis in Human Head and Neck Squamous Cell Carcinoma Cells via JNK Signaling Pathway. Molecules 2020; 25:molecules25040901. [PMID: 32085431 PMCID: PMC7071095 DOI: 10.3390/molecules25040901] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 12/21/2022] Open
Abstract
Dendrobii Herba is an herbal medicine that uses the stems of Dendrobium species (Orchidacea). It has been traditionally used to treat fever, hydrodipsomania, stomach disorders, and amyotrophia. In our previous study, a bibenzyl compound, moscatilin, which is isolated from Dendrobii Herba, showed potent cytotoxicity against a FaDu human pharyngeal squamous carcinoma cell line. Prompted by this finding, we performed additional studies in FaDu cells to investigate the mechanism of action. Moscatilin induced FaDu cell death by using 5 μM of concentration and by mediating apoptosis, whereas cell proliferation following treatment with 1 μM of moscatilin was not suppressed to the same levels as by the anti-cancer agent, cisplatin. Apoptosis-related protein expression (cleaved caspase-8, cleaved caspase-7, cytochrome c, cleaved caspase-9, cleaved caspase-3, and poly (ADP-ribose) polymerase (PARP) was increased by treating with 5 μM of moscatilin. This suggests that moscatilin-mediated apoptosis is associated with the extrinsic and intrinsic apoptotic signaling pathways. In addition, moscatilin-induced apoptosis was mediated by the c-Jun N-terminal kinase (JNK) signaling pathway. Overall, this study identified additional biological activity of moscatilin derived from natural products and suggested its potential application as a chemotherapeutic agent for the management of head and neck squamous cell carcinoma.
Collapse
Affiliation(s)
- Eunji Lee
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Kyung Hee University, Seoul 02447, Korea; (E.L.); (Y.-G.E.)
| | - Ah-Reum Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 56212, Korea; (A.-R.H.); (B.N.); (Y.-R.K.); (C.H.J.); (J.-B.K.)
| | - Bomi Nam
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 56212, Korea; (A.-R.H.); (B.N.); (Y.-R.K.); (C.H.J.); (J.-B.K.)
| | - Ye-Ram Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 56212, Korea; (A.-R.H.); (B.N.); (Y.-R.K.); (C.H.J.); (J.-B.K.)
| | - Chang Hyun Jin
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 56212, Korea; (A.-R.H.); (B.N.); (Y.-R.K.); (C.H.J.); (J.-B.K.)
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 56212, Korea; (A.-R.H.); (B.N.); (Y.-R.K.); (C.H.J.); (J.-B.K.)
| | - Young-Gyu Eun
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Kyung Hee University, Seoul 02447, Korea; (E.L.); (Y.-G.E.)
| | - Chan-Hun Jung
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Kyung Hee University, Seoul 02447, Korea; (E.L.); (Y.-G.E.)
- Jeonju AgroBio-Materials Institute, Jeonju-si, Jeollabuk-do 54810, Korea
- Correspondence: ; Tel.: +82-63-711-102
| |
Collapse
|
23
|
Nosková K, Dovrtělová G, Zendulka O, Strakošová M, Peš O, Juřica J. Lycopene increases metabolic activity of rat liver CYP2B, CYP2D and CYP3A. Pharmacol Rep 2020; 72:156-165. [PMID: 32016858 DOI: 10.1007/s43440-019-00007-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Lycopene as a naturally occurring carotenoid is a common part of the human diet. Several beneficial properties of lycopene have been identified, with the most studied being anti-cancer and antioxidant activity. However, no evidence of possible drug-drug or drug-food supplement interactions has been found. METHODS We studied the in vivo effect of lycopene on the selected rat liver cytochromes P450 (CYPs): CYP1A2, CYP2B, CYP2C11, CYP2C6, CYP2D, and CYP3A. Lycopene was administered to rats intragastrically at doses of 4, 20, and 100 mg/kg/day for 10 consecutive days. Total protein content, P450 Content, and metabolic activity of selected CYPs were evaluated in the rat liver microsomal fraction. RESULTS Increased CYP2B, CYP2D, and CYP3A metabolic activities were observed in animals treated with the lycopene dose of 100 mg/kg/day. The content of CYP3A1 protein was increased by the dose of 100 mg/kg/day and CYP3A2 protein was increased by all administered doses of lycopene. CONCLUSION The results of our study indicate that lycopene increased the metabolic activity of enzymes that are orthologues to the most clinically important human enzymes involved in xenobiotic metabolism. The risk of pharmacokinetic interactions between lycopene dietary supplements and co-administered drugs should be evaluated.
Collapse
Affiliation(s)
- Kristýna Nosková
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | | | - Ondřej Zendulka
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Markéta Strakošová
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Ondřej Peš
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Juřica
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
- Masaryk Memorial Cancer Institute, Brno, Czech Republic.
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic.
| |
Collapse
|
24
|
Current Prospects of Molecular Therapeutics in Head and Neck Squamous Cell Carcinoma. Pharmaceut Med 2019; 33:269-289. [DOI: 10.1007/s40290-019-00288-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Guo Y, Hao Y, Guan G, Ma S, Zhu Z, Guo F, Bai J. Mukonal Inhibits Cell Proliferation, Alters Mitochondrial Membrane Potential and Induces Apoptosis and Autophagy in Human CNE1 Nasopharyngeal Carcinoma Cells. Med Sci Monit 2019; 25:1976-1983. [PMID: 30877718 PMCID: PMC6431110 DOI: 10.12659/msm.913915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background Nasopharyngeal carcinoma results in high patient morbidity and mortality, due to early metastasis, and toxicity due to chemotherapy. Mukonal is plant-derived carbazole alkaloid that has been used in traditional Chinese medicine to treat several types of cancer. This study aimed to investigate the effects of mukonal on cell proliferation, apoptosis, autophagy, and the mitochondrial membrane potential of nasopharyngeal carcinoma cells in vitro. Material/Methods CNE1 human nasopharyngeal carcinoma cells and NP69 normal nasopharyngeal epithelial cells were cultured with and without treatment with increasing doses of mukonal. Cell viability was determined by the MTT assay. Fluorescence microscopy was used to detect reactive oxygen species (ROS), mitochondrial membrane potential, and the release of cytochrome C. Flow cytometry was used to examine changes in the cell cycle, electron microscopy examined cell autophagy, and Western blot was performed to measure levels of proteins associated with autophagy and apoptosis. Results Mukonal had an antiproliferative effect on CNE1 cells, with an IC50 of 9 μM and there were effects of toxicity on normal NP69 cells. Mukonal triggered ROS-mediated changes in mitochondrial membrane potential which was also accompanied by the discharge of cytochrome C in the CNE1 cells. Mukonal activated autophagy and apoptosis in CNE1 cells, which was also associated with upregulation of the autophagy-related proteins, LC3 II and beclin-1, as well as apoptosis-associated proteins, Bax, cleaved caspase-3 and -9. Mukonal treatment also resulted in CNE1 cells cycle arrest at G2/M. Conclusions Mukonal inhibited the growth of human CNE1 nasopharyngeal carcinoma cells in vitro.
Collapse
Affiliation(s)
- Yingyuan Guo
- Department of Otolaryngology, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Yanru Hao
- Department of Otolaryngology, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Guofang Guan
- Department of Otolaryngology, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Shuaishuai Ma
- Department of Otolaryngology, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Zhiling Zhu
- Department of Otolaryngology, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Fang Guo
- Department of Otolaryngology, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Jie Bai
- Department of Otolaryngology, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| |
Collapse
|
26
|
Liu Z, Huang P, Law S, Tian H, Leung W, Xu C. Preventive Effect of Curcumin Against Chemotherapy-Induced Side-Effects. Front Pharmacol 2018; 9:1374. [PMID: 30538634 PMCID: PMC6277549 DOI: 10.3389/fphar.2018.01374] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 11/08/2018] [Indexed: 12/29/2022] Open
Abstract
Cancer is still a severe threat to the health of people worldwide. Chemotherapy is one of main therapeutic approaches to combat cancer. However, chemotherapy only has a limited success with severe side effects, especially causing damage to normal tissues such as bone marrow, gastrointestine, heart, liver, renal, neuron, and auditory tissues, etc. The side-effects limit clinical outcome of chemotherapy and lower patients’ quality of life, and even make many patients discontinue the chemotherapy. Thus, there is a need to explore effective adjuvant strategies to prevent and reduce the chemotherapy-induced side effects. Naturally occurring products provide a rich source for exploring effective adjuvant agents to prevent and reduce the side effects in anticancer chemotherapy. Curcumin is an active compound from natural plant Curcuma longa L., which is widely used as a coloring and flavoring agent in food industry and a herbal medicine in Asian countries for thousands of years to treat vomiting, headache, diarrhea, etc. Modern pharmacological studies have revealed that curcumin has strong antioxidative, anti-microbial, anti-inflammatory and anticancer activities. Growing evidence shows that curcumin is able to prevent carcinogenesis, sensitize cancer cells to chemotherapy, and protect normal cells from chemotherapy-induced damages. In the present article, we review the preventive effect of curcumin against chemotherapy-induced myelosuppression, gastrointestinal toxicity, cardiotoxicity, hepatotoxicity, nephrotoxicity, neurotoxicity, ototoxicity, and genotoxicity, and discuss its action mechanisms.
Collapse
Affiliation(s)
- Zhijun Liu
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Pengyun Huang
- Faculty of Medicine, School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China
| | - Siukan Law
- Faculty of Medicine, School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China
| | - Haiyan Tian
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Wingnang Leung
- Division of Chinese Medicine, School of Professional and Continuing Education, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chuanshan Xu
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Faculty of Medicine, School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China
| |
Collapse
|