1
|
Buss LG, De Oliveira Pessoa D, Snider JM, Padi M, Martinez JA, Limesand KH. Metabolomics analysis of pathways underlying radiation-induced salivary gland dysfunction stages. PLoS One 2023; 18:e0294355. [PMID: 37983277 PMCID: PMC10659204 DOI: 10.1371/journal.pone.0294355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
Salivary gland hypofunction is an adverse side effect associated with radiotherapy for head and neck cancer patients. This study delineated metabolic changes at acute, intermediate, and chronic radiation damage response stages in mouse salivary glands following a single 5 Gy dose. Ultra-high performance liquid chromatography-mass spectrometry was performed on parotid salivary gland tissue collected at 3, 14, and 30 days following radiation (IR). Pathway enrichment analysis, network analysis based on metabolite structural similarity, and network analysis based on metabolite abundance correlations were used to incorporate both metabolite levels and structural annotation. The greatest number of enriched pathways are observed at 3 days and the lowest at 30 days following radiation. Amino acid metabolism pathways, glutathione metabolism, and central carbon metabolism in cancer are enriched at all radiation time points across different analytical methods. This study suggests that glutathione and central carbon metabolism in cancer may be important pathways in the unresolved effect of radiation treatment.
Collapse
Affiliation(s)
- Lauren G Buss
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ, United States of America
| | - Diogo De Oliveira Pessoa
- Biostatistics and Bioinformatics Shared Resource, Arizona Cancer Center, University of Arizona, Tucson, AZ, United States of America
| | - Justin M Snider
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ, United States of America
- University of Arizona Cancer Center, Tucson, AZ, United States of America
| | - Megha Padi
- Biostatistics and Bioinformatics Shared Resource, Arizona Cancer Center, University of Arizona, Tucson, AZ, United States of America
- University of Arizona Cancer Center, Tucson, AZ, United States of America
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, United States of America
| | - Jessica A Martinez
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ, United States of America
- University of Arizona Cancer Center, Tucson, AZ, United States of America
| | - Kirsten H Limesand
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ, United States of America
- University of Arizona Cancer Center, Tucson, AZ, United States of America
| |
Collapse
|
2
|
Hoskin AJ, Holt AK, Legge DN, Collard TJ, Williams AC, Vincent EE. Aspirin and the metabolic hallmark of cancer: novel therapeutic opportunities for colorectal cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:600-615. [PMID: 37720350 PMCID: PMC10501897 DOI: 10.37349/etat.2023.00155] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/08/2023] [Indexed: 09/19/2023] Open
Abstract
Aspirin is a well-known nonsteroidal anti-inflammatory drug (NSAID) that has a recognized role in cancer prevention as well as evidence to support its use as an adjuvant for cancer treatment. Importantly there has been an increasing number of studies contributing to the mechanistic understanding of aspirins' anti-tumour effects and these studies continue to inform the potential clinical use of aspirin for both the prevention and treatment of cancer. This review focuses on the emerging role of aspirin as a regulator of metabolic reprogramming, an essential "hallmark of cancer" required to support the increased demand for biosynthetic intermediates needed for sustained proliferation. Cancer cells frequently undergo metabolic rewiring driven by oncogenic pathways such as hypoxia-inducible factor (HIF), wingless-related integration site (Wnt), mammalian target of rapamycin (mTOR), and nuclear factor kappa light chain enhancer of activated B cells (NF-κB), which supports the increased proliferative rate as tumours develop and progress. Reviewed here, cellular metabolic reprogramming has been identified as a key mechanism of action of aspirin and include the regulation of key metabolic drivers, the regulation of enzymes involved in glycolysis and glutaminolysis, and altered nutrient utilisation upon aspirin exposure. Importantly, as aspirin treatment exposes metabolic vulnerabilities in tumour cells, there is an opportunity for the use of aspirin in combination with specific metabolic inhibitors in particular, glutaminase (GLS) inhibitors currently in clinical trials such as telaglenastat (CB-839) and IACS-6274 for the treatment of colorectal and potentially other cancers. The increasing evidence that aspirin impacts metabolism in cancer cells suggests that aspirin could provide a simple, relatively safe, and cost-effective way to target this important hallmark of cancer. Excitingly, this review highlights a potential new role for aspirin in improving the efficacy of a new generation of metabolic inhibitors currently undergoing clinical investigation.
Collapse
Affiliation(s)
- Ashley J. Hoskin
- Department of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, BS8 1TW Bristol, UK
| | - Amy K. Holt
- Department of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, BS8 1TW Bristol, UK
| | - Danny N. Legge
- Department of Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, BS1 3NY Bristol, UK
| | - Tracey J. Collard
- Department of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, BS8 1TW Bristol, UK
| | - Ann C. Williams
- Department of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, BS8 1TW Bristol, UK
| | - Emma E. Vincent
- Department of Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, BS1 3NY Bristol, UK
- MRC Integrative Epidemiology Unit, Oakfield House, University of Bristol, BS8 2BN Bristol, UK
| |
Collapse
|
3
|
Tay SH, Santosa A, Goh ECH, Xu CX, Wu LH, Bigliardi-Qi M, Pakkiri LSS, Lee BTK, Drum CL, Bigliardi PL. Distinct transcriptomic and metabolomic profiles characterize NSAID-induced urticaria/angioedema patients undergoing aspirin desensitization. J Allergy Clin Immunol 2022; 150:1486-1497. [PMID: 35964779 DOI: 10.1016/j.jaci.2022.07.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/05/2022] [Accepted: 07/05/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND There is limited data on the mechanisms of aspirin desensitization in patients with nonsteroidal anti-inflammatory drug (NSAID)-induced urticaria/angioedema (NIUA). OBJECTIVES We sought to characterize the transcriptomic and metabolomic profiles of patients with NIUA undergoing aspirin desensitization. METHODS PBMCs and plasma were separated from the blood of patients with NIUA undergoing aspirin desensitization for coronary artery disease and NSAID-tolerant controls. RNA was isolated from PBMCs and subjected to messenger RNA (mRNA)- and long noncoding RNA (lncRNA)-sequencing. Plasma samples were analyzed using LC-MS/MS for metabolite shifts using a semitargeted metabolomics panel. RESULTS Eleven patients with NIUA and 10 healthy controls were recruited. The mRNA gene profiles of predesensitization versus postdesensitization and healthy control versus postdesensitization did not differ significantly. However, we identified 739 mRNAs and 888 lncRNAs as differentially expressed from preaspirin desensitization patients and controls. A 12-mRNA gene signature was trained using a machine learning algorithm to distinguish between controls, postdose, and predose samples. Ingenuity Pathway Analysis identified 5 canonical pathways that were significantly enriched in preaspirin desensitization samples. IL-22 was the most upregulated pathway. To investigate the potential regulatory roles of the differentially expressed lncRNA on the mRNAs, 9 lncRNAs and 12 mRNAs showed significantly correlated expression patterns in the IL-22 pathway. To validate the transcriptomics data, IL-22 was measured in the plasma samples of the subjects using ELISA. IL-22 was significantly higher in preaspirin desensitization patients compared with controls. In parallel, metabolomic analysis revealed stark differences in plasma profiles of preaspirin desensitization patients and healthy controls. In particular, 2-hydroxybenzoic acid (salicylic acid) was significantly lower in preaspirin desensitization patients compared with healthy controls. CONCLUSIONS This is the first study to combine both transcriptomic and metabolomic approaches in patients with NIUA, which contributes to a deeper understanding about the pathogenesis of NIUA and may potentially pave the way toward a molecular diagnosis of NSAID hypersensitivity.
Collapse
Affiliation(s)
- Sen Hee Tay
- Division of Rheumatology, Department of Medicine, National University Hospital, Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Amelia Santosa
- Division of Rheumatology, Department of Medicine, National University Hospital, Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Eugene Chen Howe Goh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chun Xiang Xu
- Department of Nursing, National University Hospital, Singapore, Singapore
| | - Lik Hang Wu
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Mei Bigliardi-Qi
- Department of Dermatology and Stem Cell Institute, University of Minnesota, Minneapolis, Minn
| | | | - Bernett Teck Kwong Lee
- Centre for Biomedical Informatics, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Chester Lee Drum
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Cardiology, National University Heart Center, National University Hospital, Singapore, Singapore
| | | |
Collapse
|
4
|
Barry EL, Fedirko V, Jin Y, Lui K, Mott LA, Peacock JL, Passarelli MN, Baron JA, Jones DP. Plasma Metabolomics Analysis of Aspirin Treatment and Risk of Colorectal Adenomas. Cancer Prev Res (Phila) 2022; 15:521-531. [PMID: 35653338 PMCID: PMC9357068 DOI: 10.1158/1940-6207.capr-21-0555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/10/2022] [Accepted: 05/26/2022] [Indexed: 02/03/2023]
Abstract
Despite substantial observational and experimental evidence that aspirin use can provide protection against the development of colorectal neoplasia, our understanding of the molecular mechanisms involved is inadequate and limits our ability to use this drug effectively and safely for chemoprevention. We employed an untargeted plasma metabolomics approach using liquid chromatography with high-resolution mass spectroscopy to explore novel metabolites that may contribute to the chemopreventive effects of aspirin. Associations between levels of metabolic features in plasma and aspirin treatment were investigated among 523 participants in a randomized placebo-controlled clinical trial of two doses of aspirin (81 or 325 mg/day) and were linked to risk of colorectal adenoma occurrence over 3 years of follow-up. Metabolic pathways that were altered with aspirin treatment included linoleate and glycerophospholipid metabolism for the 81-mg dose and carnitine shuttle for both doses. Metabolites whose levels increased with 81 mg/day aspirin treatment and were also associated with decreased risk of adenomas during follow-up included certain forms of lysophosphatidylcholine and lysophosphatidylethanolamine as well as trihydroxyoctadecenoic acid, which is a derivative of linoleic acid and is upstream of cyclooxygenase inhibition by aspirin in the linoleate and arachidonic acid metabolism pathways. In conclusion, our findings regarding lysophospholipids and metabolites in the linoleate metabolism pathway may provide novel insights into the chemopreventive effects of aspirin in the colorectum, although they should be considered hypothesis-generating at this time. PREVENTION RELEVANCE This research used metabolomics, an innovative discovery-based approach, to identify molecular changes in human blood that may help to explain how aspirin use reduces the risk of colorectal neoplasia in some individuals. Ultimately, this work could have important implications for optimizing aspirin use in the prevention of colorectal cancer.
Collapse
Affiliation(s)
- Elizabeth L. Barry
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Veronika Fedirko
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX; Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Yutong Jin
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Ken Lui
- Department of Medicine, Emory University, Atlanta, GA
| | - Leila A. Mott
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Janet L. Peacock
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | | | - John A. Baron
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH
- Department of Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC
| | - Dean P. Jones
- Department of Medicine, Emory University, Atlanta, GA
| |
Collapse
|
5
|
Hurwitz LM, Shadyab AH, Tabung FK, Anderson GL, Saquib N, Wallace RB, Wild RA, Pfeiffer RM, Xu X, Trabert B. Analgesic Use and Circulating Estrogens, Androgens, and Their Metabolites in the Women's Health Initiative Observational Study. Cancer Prev Res (Phila) 2022; 15:173-183. [PMID: 34893532 PMCID: PMC8898279 DOI: 10.1158/1940-6207.capr-21-0264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/27/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022]
Abstract
Though studies have observed inverse associations between use of analgesics (aspirin, NSAIDs, and acetaminophen) and the risk of several cancers, the potential biological mechanisms underlying these associations are unclear. We investigated the relationship between analgesic use and serum concentrations of estrogens, androgens, and their metabolites among postmenopausal women to provide insights on whether analgesic use might influence endogenous hormone levels, which could in turn influence hormone-related cancer risk. The study included 1,860 postmenopausal women from two case-control studies nested within the Women's Health Initiative Observational Study. Analgesic use was reported at study baseline. Fifteen estrogens and estrogen metabolites and 12 androgens and androgen metabolites were quantified in baseline serum by LC/MS-MS. Linear regression with inverse probability weighting, stratified by menopausal hormone therapy (MHT) use, was used to estimate adjusted geometric mean concentrations of each hormone by analgesic use. Among women not currently using MHT (n = 951), low-dose aspirin (<100 mg) use was associated with a higher serum concentration of estrone, estradiol, and 2, 4, and 16 hydroxylated metabolites. Use of regular-dose aspirin (≥100 mg), non-aspirin NSAIDs, and acetaminophen was not associated with serum concentrations of estrogens, androgens, or their metabolites. This study highlights the importance of examining aspirin use by dose and suggests that low-dose aspirin may influence endogenous estrogen concentrations. PREVENTION RELEVANCE This study explores a potential pathway by which analgesic medications such as aspirin may prevent hormone-related cancers. The findings support a positive association between low-dose aspirin use and endogenous estrogens, indicating that further elucidation of the interplay between low-dose aspirin, estrogen concentrations, and cancer risk is needed.
Collapse
Affiliation(s)
- Lauren M. Hurwitz
- Division of Cancer Epidemiology and Genetics, National Cancer Institute
| | - Aladdin H. Shadyab
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA
| | - Fred K. Tabung
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine and Comprehensive Cancer Center
| | | | - Nazmus Saquib
- Research Unit, College of Medicine, Sulaiman AlRajhi University
| | - Robert B. Wallace
- Department of Epidemiology, University of Iowa College of Public Health
| | - Robert A. Wild
- Department of Obstetrics and Gynecology, University of Oklahoma College of Medicine
| | - Ruth M. Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute
| | - Xia Xu
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research
| | - Britton Trabert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute
| |
Collapse
|
6
|
Uptake Transporters of the SLC21, SLC22A, and SLC15A Families in Anticancer Therapy-Modulators of Cellular Entry or Pharmacokinetics? Cancers (Basel) 2020; 12:cancers12082263. [PMID: 32806706 PMCID: PMC7464370 DOI: 10.3390/cancers12082263] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022] Open
Abstract
Solute carrier transporters comprise a large family of uptake transporters involved in the transmembrane transport of a wide array of endogenous substrates such as hormones, nutrients, and metabolites as well as of clinically important drugs. Several cancer therapeutics, ranging from chemotherapeutics such as topoisomerase inhibitors, DNA-intercalating drugs, and microtubule binders to targeted therapeutics such as tyrosine kinase inhibitors are substrates of solute carrier (SLC) transporters. Given that SLC transporters are expressed both in organs pivotal to drug absorption, distribution, metabolism, and elimination and in tumors, these transporters constitute determinants of cellular drug accumulation influencing intracellular drug concentration required for efficacy of the cancer treatment in tumor cells. In this review, we explore the current understanding of members of three SLC families, namely SLC21 (organic anion transporting polypeptides, OATPs), SLC22A (organic cation transporters, OCTs; organic cation/carnitine transporters, OCTNs; and organic anion transporters OATs), and SLC15A (peptide transporters, PEPTs) in the etiology of cancer, in transport of chemotherapeutic drugs, and their influence on efficacy or toxicity of pharmacotherapy. We further explore the idea to exploit the function of SLC transporters to enhance cancer cell accumulation of chemotherapeutics, which would be expected to reduce toxic side effects in healthy tissue and to improve efficacy.
Collapse
|