1
|
Rahman MM, Tollefsbol TO. Combinatorial phenethyl isothiocyanate and withaferin A targets multiple epigenetics pathways to inhibit MCF-7 and MDA-MB-231 human breast cancer cells. Cancer Cell Int 2024; 24:422. [PMID: 39707321 DOI: 10.1186/s12935-024-03619-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Epigenetic phytochemicals are considered as an efficacious and safe alternative to synthetic drugs in drug discovery. In this regard, combinatorial interventions enable simultaneously targeting various neoplastic pathways to eradicate multiple tumorigenic clones. Therefore, we evaluated the effects of the epigenetic-modifying compounds phenethyl isothiocyanate (PEITC) and withaferin A (WA) alone and in combination on cancer hallmarks and miRNome profiles of breast cancer (BC) cells in addition to their impact on multiple epigenetic regulatory pathways. METHODS We performed MTT assay, flow cytometry-based cell cycle analysis, apoptosis assay, stem cell population analysis, and mammosphere assay on MCF-7 and MDA-MB-231 BC cells to evaluate the effect of combinatorial PEITC and WA treatment on cancer hallmarks. To assess the epigenetic effects of the combinatorial PEITC and WA treatment, we conducted HDAC activity assay, DNMT activity assay, western blot analysis, siRNA-mediated gene knockdown, and RT-qPCR analysis. Additionally, we explored the effect of the PEITC + WA combination on miRNome profiles in MCF-7 and MDA-MB-231 BC cells through miRNA-seq analysis and miRNA Real-Time PCR assay. RESULTS Our results indicated a synergistic effect of PEITC and WA on inhibiting MCF-7 and MDA-MB-231 BC cells by triggering G2/M-phase arrest, apoptosis induction, tumor formation efficiency decrease, and stem cell population decline. Combinatorial PEITC and WA treatment significantly reduced global DNA methyltransferase (DNMT) and histone deacetylase (HDAC) activity in addition to decreasing multiple Class I HDACs and de novo DNMTs expression in MCF-7 and MDA-MB-231 cells. PEITC + WA combination targets histone acetylation and DNA methylation pathways since the expressional changes of cell cycle and apoptosis-related proteins due to PEITC + WA treatment closely mimic the alterations seen when HDAC8 and DNMT3B are silenced. Furthermore, treating these cells with PEITC and WA significantly alters the expression of several BC-associated miRNAs. CONCLUSION Overall, our investigation demonstrated that combined PEITC and WA is effective in inhibiting MCF-7 and MDA-MB-231 BC cells by impacting multiple epigenetic regulatory pathways.
Collapse
Affiliation(s)
- Mohammad Mijanur Rahman
- Department of Biology, University of Alabama at Birmingham, 3100 East Science Hall, 902 14th Street South, Birmingham, AL, 35294-1170, USA
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 3100 East Science Hall, 902 14th Street South, Birmingham, AL, 35294-1170, USA.
- Comprehensive Cancer Center, University of Alabama at Birmingham, 1802 6th Avenue South, Birmingham, AL, 35294, USA.
- Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL, USA.
- Nutrition Obesity Research Center, University of Alabama at Birmingham, 1675 University Blvd, Birmingham, AL, 35294, USA.
- Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA.
| |
Collapse
|
2
|
Wadhwa R, Wang J, Shefrin S, Zhang H, Sundar D, Kaul SC. Molecular Insights into the Anticancer Activity of Withaferin-A: The Inhibition of Survivin Signaling. Cancers (Basel) 2024; 16:3090. [PMID: 39272948 PMCID: PMC11394585 DOI: 10.3390/cancers16173090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Survivin, a member of the IAP family, functions as a homodimer and inhibits caspases, the key enzymes involved in apoptosis. Several Survivin inhibitors, including YM-155, Debio1143, EM1421, LQZ-7I, and TL32711, have emerged as potential anticancer drugs awaiting validation in clinical trials. Due to the high cost and adverse side effects of synthetic drugs, natural compounds with similar activity have also been in demand. In this study, we conducted molecular docking assays to evaluate the ability of Wi-A and Wi-N to block Survivin dimerization. We found that Wi-A, but not Wi-N, can bind to and prevent the homodimerization of Survivin, similar to YM-155. Therefore, we prepared a Wi-A-rich extract from Ashwagandha leaves (Wi-AREAL). Experimental analyses of human cervical carcinoma cells (HeLa and ME-180) treated with Wi-AREAL (0.05-0.1%) included assessments of viability, apoptosis, cell cycle, migration, invasion, and the expression levels (mRNA and protein) of molecular markers associated with these phenotypes. We found that Wi-AREAL led to growth arrest mediated by the upregulation of p21WAF1 and the downregulation of several proteins (CDK1, Cyclin B, pRb) involved in cell cycle progression. Furthermore, Wi-AREAL treatment activated apoptosis signaling, as evidenced by reduced PARP-1 and Bcl-2 levels, increased procaspase-3, and elevated Cytochrome C. Additionally, treating cells with a nontoxic low concentration (0.01%) of Wi-AREAL inhibited migration and invasion, as well as EMT (epithelial-mesenchymal transition) signaling. By combining computational and experimental approaches, we demonstrate the potential of Wi-A and Wi-AREAL as natural inhibitors of Survivin, which may be helpful in cancer treatment.
Collapse
Affiliation(s)
- Renu Wadhwa
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 4-1, Tsukuba 305-8565, Japan
| | - Jia Wang
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 4-1, Tsukuba 305-8565, Japan
| | - Seyad Shefrin
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110-016, India
| | - Huayue Zhang
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 4-1, Tsukuba 305-8565, Japan
| | - Durai Sundar
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110-016, India
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru 560-100, India
| | - Sunil C Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 4-1, Tsukuba 305-8565, Japan
| |
Collapse
|
3
|
Kołodziejska R, Tafelska-Kaczmarek A, Pawluk M, Sergot K, Pisarska L, Woźniak A, Pawluk H. Ashwagandha-Induced Programmed Cell Death in the Treatment of Breast Cancer. Curr Issues Mol Biol 2024; 46:7668-7685. [PMID: 39057095 PMCID: PMC11275341 DOI: 10.3390/cimb46070454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The aim of this review is to provide experimental evidence for the programmed-death activity of Ashwagandha (Withania somnifera) in the anti-cancer therapy of breast cancer. The literature search was conducted using online electronic databases (Google Scholar, PubMed, Scopus). Collection schedule data for the review article covered the years 2004-2024. Ashwagandha active substances, especially Withaferin A (WA), are the most promising anti-cancer compounds. WS exerts its effect on breast cancer cells by inducing programmed cell death, especially apoptosis, at the molecular level. Ashwagandha has been found to possess a potential for treating breast cancer, especially estrogen receptor/progesterone receptor (ER/PR)-positive and triple-negative breast cancer.
Collapse
Affiliation(s)
- Renata Kołodziejska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (M.P.); (L.P.); (H.P.)
| | - Agnieszka Tafelska-Kaczmarek
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland;
| | - Mateusz Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (M.P.); (L.P.); (H.P.)
| | - Krzysztof Sergot
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland;
| | - Lucyna Pisarska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (M.P.); (L.P.); (H.P.)
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (M.P.); (L.P.); (H.P.)
| | - Hanna Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (M.P.); (L.P.); (H.P.)
| |
Collapse
|
4
|
Rahman MM, Wu H, Tollefsbol TO. A novel combinatorial approach using sulforaphane- and withaferin A-rich extracts for prevention of estrogen receptor-negative breast cancer through epigenetic and gut microbial mechanisms. Sci Rep 2024; 14:12091. [PMID: 38802425 PMCID: PMC11130158 DOI: 10.1038/s41598-024-62084-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Estrogen receptor-negative [ER(-)] mammary cancer is the most aggressive type of breast cancer (BC) with higher rate of metastasis and recurrence. In recent years, dietary prevention of BC with epigenetically active phytochemicals has received increased attention due to its feasibility, effectiveness, and ease of implementation. In this regard, combinatorial phytochemical intervention enables more efficacious BC inhibition by simultaneously targeting multiple tumorigenic pathways. We, therefore, focused on investigation of the effect of sulforaphane (SFN)-rich broccoli sprouts (BSp) and withaferin A (WA)-rich Ashwagandha (Ash) combination on BC prevention in estrogen receptor-negative [ER(-)] mammary cancer using transgenic mice. Our results indicated that combinatorial BSp + Ash treatment significantly reduced tumor incidence and tumor growth (~ 75%) as well as delayed (~ 21%) tumor latency when compared to the control treatment and combinatorial BSp + Ash treatment was statistically more effective in suppressing BC compared to single BSp or Ash intervention. At the molecular level, the BSp and Ash combination upregulated tumor suppressors (p53, p57) along with apoptosis associated proteins (BAX, PUMA) and BAX:BCL-2 ratio. Furthermore, our result indicated an expressional decline of epigenetic machinery HDAC1 and DNMT3A in mammary tumor tissue because of combinatorial treatment. Interestingly, we have reported multiple synergistic interactions between BSp and Ash that have impacted both tumor phenotype and molecular expression due to combinatorial BSp and Ash treatment. Our RNA-seq analysis results also demonstrated a transcriptome-wide expressional reshuffling of genes associated with multiple cell-signaling pathways, transcription factor activity and epigenetic regulations due to combined BSp and Ash administration. In addition, we discovered an alteration of gut microbial composition change because of combinatorial treatment. Overall, combinatorial BSp and Ash supplementation can prevent ER(-) BC through enhanced tumor suppression, apoptosis induction and transcriptome-wide reshuffling of gene expression possibly influencing multiple cell signaling pathways, epigenetic regulation and reshaping gut microbiota.
Collapse
Affiliation(s)
- Mohammad Mijanur Rahman
- Department of Biology, University of Alabama at Birmingham, 902 14th Street South, Birmingham, AL, 35294, USA
| | - Huixin Wu
- Department of Biology, University of Alabama at Birmingham, 902 14th Street South, Birmingham, AL, 35294, USA
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205, USA
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 902 14th Street South, Birmingham, AL, 35294, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, 1824 6th Avenue South, Birmingham, AL, 35294, USA.
- Integrative Center for Aging Research, University of Alabama at Birmingham, 933 19th Street South, Birmingham, AL, 35294, USA.
- Nutrition Obesity Research Center, University of Alabama at Birmingham, 1675 University Blvd, Birmingham, AL, 35294, USA.
- Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA.
- University of Alabama at Birmingham, 3100 East Science Hall, 902 14th Street South, Birmingham, AL, USA.
| |
Collapse
|
5
|
Vemuri V, Kratholm N, Nagarajan D, Cathey D, Abdelbaset-Ismail A, Tan Y, Straughn A, Cai L, Huang J, Kakar SS. Withaferin A as a Potential Therapeutic Target for the Treatment of Angiotensin II-Induced Cardiac Cachexia. Cells 2024; 13:783. [PMID: 38727319 PMCID: PMC11083229 DOI: 10.3390/cells13090783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
In our previous studies, we showed that the generation of ovarian tumors in NSG mice (immune-compromised) resulted in the induction of muscle and cardiac cachexia, and treatment with withaferin A (WFA; a steroidal lactone) attenuated both muscle and cardiac cachexia. However, our studies could not address if these restorations by WFA were mediated by its anti-tumorigenic properties that might, in turn, reduce the tumor burden or WFA's direct, inherent anti-cachectic properties. To address this important issue, in our present study, we used a cachectic model induced by the continuous infusion of Ang II by implanting osmotic pumps in immunocompetent C57BL/6 mice. The continuous infusion of Ang II resulted in the loss of the normal functions of the left ventricle (LV) (both systolic and diastolic), including a significant reduction in fractional shortening, an increase in heart weight and LV wall thickness, and the development of cardiac hypertrophy. The infusion of Ang II also resulted in the development of cardiac fibrosis, and significant increases in the expression levels of genes (ANP, BNP, and MHCβ) associated with cardiac hypertrophy and the chemical staining of the collagen abundance as an indication of fibrosis. In addition, Ang II caused a significant increase in expression levels of inflammatory cytokines (IL-6, IL-17, MIP-2, and IFNγ), NLRP3 inflammasomes, AT1 receptor, and a decrease in AT2 receptor. Treatment with WFA rescued the LV functions and heart hypertrophy and fibrosis. Our results demonstrated, for the first time, that, while WFA has anti-tumorigenic properties, it also ameliorates the cardiac dysfunction induced by Ang II, suggesting that it could be an anticachectic agent that induces direct effects on cardiac muscles.
Collapse
Affiliation(s)
- Vasa Vemuri
- Department of Physiology, University of Louisville, Louisville, KY 40202, USA; (V.V.); (N.K.); (D.N.)
| | - Nicholas Kratholm
- Department of Physiology, University of Louisville, Louisville, KY 40202, USA; (V.V.); (N.K.); (D.N.)
| | - Darini Nagarajan
- Department of Physiology, University of Louisville, Louisville, KY 40202, USA; (V.V.); (N.K.); (D.N.)
| | - Dakotah Cathey
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; (D.C.); (Y.T.); (L.C.); (J.H.)
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA;
- Department of Anesthesiology and Perioperative Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Ahmed Abdelbaset-Ismail
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA;
| | - Yi Tan
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; (D.C.); (Y.T.); (L.C.); (J.H.)
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA;
| | - Alex Straughn
- Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA;
| | - Lu Cai
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; (D.C.); (Y.T.); (L.C.); (J.H.)
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA;
| | - Jiapeng Huang
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; (D.C.); (Y.T.); (L.C.); (J.H.)
- Department of Anesthesiology and Perioperative Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Sham S. Kakar
- Department of Physiology, University of Louisville, Louisville, KY 40202, USA; (V.V.); (N.K.); (D.N.)
- Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA;
| |
Collapse
|
6
|
Shuaib M, Chaudhri S, Kumar S. Withaferin A alters the expression of microRNAs 146a-5p and 34a-5p and associated hub genes in MDA-MB-231 cells. Biomol Concepts 2024; 15:bmc-2022-0045. [PMID: 38525814 DOI: 10.1515/bmc-2022-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/29/2024] [Indexed: 03/26/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly metastatic subtype of breast cancer. Due to the absence of obvious therapeutic targets, microRNAs (miRNAs) provide possible hope to treat TNBC. Withaferin A (WA), a steroidal lactone, possesses potential anticancer activity with lesser side effects. The present study identifies hub genes (CDKN3, TRAF6, CCND1, JAK1, MET, AXIN2, JAG1, VEGFA, BRCA1, E2F3, WNT1, CDK6, KRAS, MYB, MYCN, TGFβR2, NOTCH1, SIRT1, MYCN, NOTCH2, WNT3A) from the list of predicted targets of the differentially expressed miRNAs (DEMs) in WA-treated MDA-MB-231 cells using in silico protein-protein interaction network analysis. CCND1, CDK6, and TRAF6 hub genes were predicted as targets of miR-34a-5p and miR-146a-5p, respectively. The study found the lower expression of miR-34a-5p and miR-146a-5p in MDA-MB-231 cells, and further, it was observed that WA treatment effectively restored the lost expression of miR-34a-5p and miR-146a-5p in MDA-MB-231 cells. An anti-correlation expression pattern was found among the miR-34a-5p and miR-146a-5p and the respective target hub genes in WA-treated TNBC cells. In conclusion, WA might exert anti-cancer effect in TNBC cells by inducing miR-34a-5p and miR-146a-5p expressions and decreasing CCND1, CDK6, and TARF6 target hub genes in TNBC cells.
Collapse
Affiliation(s)
- Mohd Shuaib
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Smriti Chaudhri
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Shashank Kumar
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, 151401, Punjab, India
| |
Collapse
|
7
|
Abeesh P, Bouvet P, Guruvayoorappan C. AS1411 aptamer tagged PEGylated liposomes as a smart nanocarrier for tumor-specific delivery of Withaferin A for mitigating pulmonary metastasis. BIOMATERIALS ADVANCES 2023; 154:213661. [PMID: 37879185 DOI: 10.1016/j.bioadv.2023.213661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/17/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
Metastasis is the most challenging health problem contributing to about 90 % of cancer-related deaths worldwide. Metastatic tumors are highly aggressive and resistant to the most available therapeutic options. Hence, innovative therapeutic approaches are required to target metastatic tumors selectively. In this study, we prepared AS1411 functionalized Withaferin A loaded PEGylated nanoliposomes (ALW) and investigated its therapeutic effect in B16F10 induced in pulmonary metastasis mice models. The prepared formulations' size and morphological properties were evaluated using dynamic light scattering system and Transmission electron microscope. ALW had spherical-shaped nanosized particles with a size of 118 nm and an encapsulation efficacy of 82.5 %. TEM analysis data indicated that ALW has excellent dispersibility and uniform spherical nano-size particles. ALW inhibited cell viability, and induced cell apoptosis of B16F10. In vivo, the pulmonary metastasis study in C57BL/6 mice revealed that the ALW significantly (p < 0.01) improved the encapsulated WA anti-metastatic activity and survival rate compared to WA or LW treated groups. ALW significantly (p < 0.01) downregulated the levels of IL-6, TNF-α, and IL-1β and significantly reduced the lung collagen hydroxyproline, hexosamine, and uronic acid content in metastatic tumor bearing animals compared to WA or LW. Gene expression levels of MMPs and NF-κB were downregulated in ALW treated metastatic pulmonary tumor-bearing mice. These findings demonstrate that the AS1411 functionalized Withaferin A loaded PEGylated nanoliposomes could be a promising nanoliposomal formulation for targeting metastatic tumors.
Collapse
Affiliation(s)
- Prathapan Abeesh
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College post, Thiruvananthapuram 695011, Kerala, India (Recognized Research Centre, University of Kerala)
| | - Phillipe Bouvet
- Centre de Recherche en Cancerologie de Lyon, Universite de Lyon 1, Inserm U1052, CNRS UMR5286 Centre Leon Berard, CEDEX 08, F-69373 Lyon, France; Ecole Normale Superieur de Lyon, Universite de Lyon 1, F-69007 Lyon, France
| | - Chandrasekaran Guruvayoorappan
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College post, Thiruvananthapuram 695011, Kerala, India (Recognized Research Centre, University of Kerala).
| |
Collapse
|
8
|
Hahm ER, Kim SH, Singh SV. Withaferin A inhibits breast cancer-induced osteoclast differentiation. Mol Carcinog 2023; 62:1051-1061. [PMID: 37067392 PMCID: PMC10330236 DOI: 10.1002/mc.23545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/27/2023] [Accepted: 04/06/2023] [Indexed: 04/18/2023]
Abstract
Bone is the most prone to metastatic spread of breast cancer cells for each subtype of the disease. Bone metastasis-related complications including severe pain and pathological fractures affect patients' quality of life. Current treatment options including surgery, radiation, and bone-targeted therapies (e.g., bisphosphonates) are costly or have serious adverse effects such as renal toxicity and osteonecrosis of the jaws. Therefore, a safe, inexpensive, and efficacious agent for prevention of breast cancer bone metastasis is urgently needed. Our previously published RNA sequencing analysis revealed that many genes implicated in bone remodeling and breast cancer bone metastasis were significantly downregulated by treatment with withaferin A (WA), which is a promising cancer chemopreventive agent derived from a medicinal plant (Withania somnifera). The present study investigated whether WA inhibits breast cancer induction of osteoclast differentiation. At plasma achievable doses, WA treatment inhibited osteoclast differentiation (osteoclastogenesis) induced by three different subtypes of breast cancer cells (MCF-7, SK-BR-3, and MDA-MB-231). WA and the root extract of W. somnifera were equally effective for inhibition of breast cancer induction of osteoclast differentiation. This inhibition was accompanied by suppression of interleukin (IL)-6, IL-8, and receptor activator of nuclear factor-κB ligand, which are pivotal osteoclastogenic cytokines. The expression of runt-related transcription factor 2, nuclear factor-κB, and SOX9 transcription factors, which positively regulate osteoclastogenesis, was decreased in WA-treated breast cancer cells as revealed by confocal microscopy and/or immunoblotting. Taken together, these data suggest that WA could be a promising agent for prevention of breast cancer-induced bone metastasis.
Collapse
Affiliation(s)
- Eun-Ryeong Hahm
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Su-Hyeong Kim
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Shivendra V. Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
9
|
Singh KB, Hahm ER, Kim SH, Singh SV. Withaferin A Inhibits Fatty Acid Synthesis in Rat Mammary Tumors. Cancer Prev Res (Phila) 2023; 16:5-16. [PMID: 36251722 PMCID: PMC9812931 DOI: 10.1158/1940-6207.capr-22-0193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/29/2022] [Accepted: 10/13/2022] [Indexed: 01/07/2023]
Abstract
Withaferin A (WA), which is a small molecule derived from a medicinal plant (Withania somnifera), inhibits growth of human breast cancer xenografts and mammary tumor development in rodent models without any toxicity. However, the mechanism underlying inhibition of mammary cancer development by WA administration is not fully understood. Herein, we demonstrate that the fatty acid synthesis pathway is a novel target of WA in mammary tumors. Treatment of MCF-7 and MDA-MB-231 cells with WA resulted in suppression of fatty acid metabolizing enzymes, including ATP-citrate lyase (ACLY), acetyl-CoA carboxylase 1 (ACC1), fatty acid synthase (FASN), and carnitine palmitoyltransferase 1A (CPT1A). Expression of FASN and CPT1A was significantly higher in N-methyl-N-nitrosourea-induced mammary tumors in rats when compared with normal mammary tissues. WA-mediated inhibition of mammary tumor development in rats was associated with a statistically significant decrease in expression of ACC1 and FASN and suppression of plasma and/or mammary tumor levels of total free fatty acids and phospholipids. WA administration also resulted in a significant increase in percentage of natural killer cells in the spleen. The protein level of sterol regulatory element binding protein 1 (SREBP1) was decreased in MDA-MB-231 cells after WA treatment. Overexpression of SREBP1 in MDA-MB-231 cells conferred partial but significant protection against WA-mediated downregulation of ACLY and ACC1. In conclusion, circulating and/or mammary tumor levels of fatty acid synthesis enzymes and total free fatty acids may serve as biomarkers of WA efficacy in future clinical trials. PREVENTION RELEVANCE The present study shows that breast cancer prevention by WA in rats is associated with suppression of fatty acid synthesis.
Collapse
Affiliation(s)
- Krishna B. Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eun-Ryeong Hahm
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Su-Hyeong Kim
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shivendra V. Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania,UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
10
|
Shuaib M, Prajapati KS, Gupta S, Kumar S. Natural Steroidal Lactone Induces G1/S Phase Cell Cycle Arrest and Intrinsic Apoptotic Pathway by Up-Regulating Tumor Suppressive miRNA in Triple-Negative Breast Cancer Cells. Metabolites 2022; 13:metabo13010029. [PMID: 36676955 PMCID: PMC9863888 DOI: 10.3390/metabo13010029] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with minimal treatment options. In the present work, Withaferin A (WA), a natural steroidal lactone found in Withania somnifera (Solanaceae), was studied to deduce the miRNA expression modulation mediated anticancer mode of action in TNBC cells. Small RNA next generation sequencing (NGS) of WA (2 µM) and vehicle (0.1% DMSO)-treated MDA-MB-231 cells revealed a total of 413 differentially expressed miRNAs (DEMs) and demonstrated that WA potentially up-regulates the miR-181c-5p, miR-15a-5p, miR-500b-5p, miR-191-3p, and miR-34a-5p and down-regulates miR-1275, miR-326, miR-1908-5p, and miR-3940-3p among total DEMs. The NGS and qRT-PCR expression analysis revealed a significantly higher expression of miR-181c-5p among the top 10 DEMs. Predicted target genes of the DEMs showed enrichment in cancer-associated gene ontology terms and KEGG signaling pathways. Transient up-expression of mir-181c-5p showed a time-dependent decrease in MDA-MB-231 and MDA-MB-453 cell viability. Co-treatment of miR-181c-5p mimic and WA (at varying concentration) down-regulated cell cycle progression markers (CDK4 and Cyclin D1) at mRNA and protein levels. The treatment induced apoptosis in MDA-MB-231 cells by modulating the expression/activity of Bax, Bcl2, Caspase 3, Caspase 8, Caspase 3/7, and PARP at mRNA and protein levels. Confocal microscopy and Annexin PI assays revealed apoptotic induction in miRNA- and steroidal-lactone-treated MDA-MB-231 cells. Results indicate that the Withaferin A and miRNA mimic co-treatment strategy may be utilized as a newer therapeutic strategy to treat triple-negative breast cancer.
Collapse
Affiliation(s)
- Mohd Shuaib
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Guddha, Bathinda 151401, Punjab, India
| | - Kumari Sunita Prajapati
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Guddha, Bathinda 151401, Punjab, India
| | - Sanjay Gupta
- Department of Urology, Nutrition, Pharmacology and Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Shashank Kumar
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Guddha, Bathinda 151401, Punjab, India
- Correspondence:
| |
Collapse
|
11
|
Arnold JT. Integrating ayurvedic medicine into cancer research programs part 2: Ayurvedic herbs and research opportunities. J Ayurveda Integr Med 2022:100677. [DOI: 10.1016/j.jaim.2022.100677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
|
12
|
Wu S, Liao X, Zhu Z, Huang R, Chen M, Huang A, Zhang J, Wu Q, Wang J, Ding Y. Antioxidant and anti-inflammation effects of dietary phytochemicals: The Nrf2/NF-κB signalling pathway and upstream factors of Nrf2. PHYTOCHEMISTRY 2022; 204:113429. [PMID: 36096269 DOI: 10.1016/j.phytochem.2022.113429] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Oxidative stress (OS) is created by an imbalance between reactive oxygen species and antioxidant levels. OS promotes inflammation and is associated with many diseases, such as neurodegenerative disorders, diabetes, and cardiovascular disease. Nrf2 and NF-κB are critical in the cellular defence against OS and the regulators of inflammatory responses, respectively. Recent studies revealed that the Nrf2 signalling pathway interacts with the NF-κB signalling pathway in OS. More importantly, many natural compounds have long been recognized to ameliorate OS and inflammation via the Nrf2 and/or NF-κB signalling pathway. Thus, we briefly overview the potential crosstalk between Nrf2 and NF-κB and the upstream regulators of Nrf2 and review the literature on the antioxidant and anti-inflammatory effects of dietary phytochemicals (DPs) that can activate these defence systems. The aim is to provide evidence for the development of DPs into functional food for the regulation of the Nrf2/NF-κB signalling pathway by upstream regulators of Nrf2.
Collapse
Affiliation(s)
- Shujian Wu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, 510070, China; Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xiyu Liao
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, 510070, China; Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Zhenjun Zhu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Rui Huang
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, 510070, China; Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Mengfei Chen
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, 510070, China; Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Aohuan Huang
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, 510070, China; Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Jumei Zhang
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, 510070, China
| | - Qingping Wu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, 510070, China.
| | - Yu Ding
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
13
|
Lowe L, LaValley JW, Felsher DW. Tackling heterogeneity in treatment-resistant breast cancer using a broad-spectrum therapeutic approach. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:917-925. [PMID: 36627896 PMCID: PMC9771755 DOI: 10.20517/cdr.2022.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/29/2022] [Accepted: 08/02/2022] [Indexed: 06/17/2023]
Abstract
Tumor heterogeneity can contribute to the development of therapeutic resistance in cancer, including advanced breast cancers. The object of the Halifax project was to identify new treatments that would address mechanisms of therapeutic resistance through tumor heterogeneity by uncovering combinations of therapeutics that could target the hallmarks of cancer rather than focusing on individual gene products. A taskforce of 180 cancer researchers, used molecular profiling to highlight key targets responsible for each of the hallmarks of cancer and then find existing therapeutic agents that could be used to reach those targets with limited toxicity. In many cases, natural health products and re-purposed pharmaceuticals were identified as potential agents. Hence, by combining the molecular profiling of tumors with therapeutics that target the hallmark features of cancer, the heterogeneity of advanced-stage breast cancers can be addressed.
Collapse
Affiliation(s)
- Leroy Lowe
- Getting to Know Cancer (NGO), Truro, Nova Scotia B2N 1X5, Canada
| | | | - Dean W. Felsher
- Division of Oncology, Departments of Medicine and Pathology, Stanford University, CA CCSR 1105, USA
| |
Collapse
|
14
|
Stewart JA, Bhagwat AS. A redox-sensitive iron-sulfur cluster in murine FAM72A controls its ability to degrade the nuclear form of uracil-DNA glycosylase. DNA Repair (Amst) 2022; 118:103381. [PMID: 35908367 PMCID: PMC10996437 DOI: 10.1016/j.dnarep.2022.103381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022]
Abstract
Murine FAM72A, mFAM72A, binds the nuclear form of uracil-DNA glycosylase, mUNG2, inhibits its activity and causes its degradation. In immunoprecipitation assays the human paralog, hFAM72A, binds hUNG2 and is a potential anti-cancer drug target because of its high expression in many cancers. Using purified mFAM72A, and mUNG2 proteins we show that mFAM72A binds mUNG2, and the N-terminal 25 amino acids of mUNG2 bind mFAM72A at a nanomolar dissociation constant. We also show that mFAM72A is present throughout the cells, and mUNG2 helps localize it to nuclei. Based on in silico models of mFAM72A-mUNG2 interactions, we constructed several mutants of mFAM72A and found that while they have reduced ability to deplete mUNG2, the mutations also destabilized the former protein. We confirmed that Withaferin A, a predicted lead molecule for the design of FAM72A inhibitors, binds mFAM72A with micromolar affinity but has little affinity to mUNG2. We identified two potential metal-binding sites in mFAM72A and show that one of the sites contains an Fe-S cluster. This redox-sensitive cluster is involved in the mFAM72A-mUNG2 interaction and modulates mFAM72A activity. Hydrogen peroxide treatment of cells increases mUNG2 depletion in a FAM72A-dependent fashion suggesting that mFAM72A activity is redox-sensitive.
Collapse
Affiliation(s)
- Jessica A Stewart
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - Ashok S Bhagwat
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA; Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
15
|
Prajapati KS, Shuaib M, Gupta S, Kumar S. Withaferin A mediated changes of miRNA expression in breast cancer-derived mammospheres. Mol Carcinog 2022; 61:876-889. [PMID: 35770722 DOI: 10.1002/mc.23440] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/23/2022] [Accepted: 06/09/2022] [Indexed: 02/05/2023]
Abstract
Breast cancer is a heterogeneous disease consisting of atypical cell populations that share stem cell-like characteristics associated with therapeutic resistance, disease relapse, and poor clinical outcome. MicroRNAs (miRNA), and small noncoding RNA, are pivotal in the regulation of self-renewal, stemness, and cellular differentiation. Withaferin A (WA), a steroidal lactone, is a major bioactive constituent of Withania somnifera (Solanaceae) known for its anticancer properties. In this study, the effect of WA on modulation of miRNA expression in breast cancer-derived mammosphere was assessed utilizing small RNA sequencing. Treatment with WA inhibited MCF-7 and T47D cells derived mammosphere formation with a significant decrease in CD44, EpCAM, Nanog, OCT4, and SOX2 as markers of self-renewal and stemness. Small RNA sequencing demonstrated a total of 395 differentially expressed miRNAs (DEMs) including 194 upregulated and 201 downregulated miRNAs in WA-treated MCF-7 mammospheres. Bioinformatics analysis utilizing the KEGG pathway, Gene Ontology enrichment, protein-protein, and miRNA-mRNA interaction network identified altered expression in a few hub genes viz. AKT1, PTEN, MYC, CCND1, VEGFA, NOTCH1, and IGFR1 associated with DEMs in WA-treated mammospheres. Further quantitative RT-PCR analysis validated the expression of DEMs including miR-549a-5p, miR-1247-5p, miR-124-5p, miR-137-5p, miR-34a-5p, miR-146a-5p, miR-99a-5p, miR-181a-5p, let-7c-5p, and let-7a-5p. In particular, let-7c-5p is designated as a tumor suppressor in breast cancer. An increase in miR-let-7c-5p expression was noted after WA treatment, with a simultaneous decrease in CCND1 and c-MYC at mRNA and protein levels. Taken together, our study demonstrated WA-mediated miRNA expression, in particular, upregulation of miR-let-7c-5p, leads to the inhibition of breast cancer cells derived mammospheres.
Collapse
Affiliation(s)
- Kumari Sunita Prajapati
- Department of Biochemistry, Molecular Signaling & Drug Discovery Laboratory, Central University of Punjab, Bathinda, Punjab, India
| | - Mohd Shuaib
- Department of Biochemistry, Molecular Signaling & Drug Discovery Laboratory, Central University of Punjab, Bathinda, Punjab, India
| | - Sanjay Gupta
- Department of Urology, Nutrition, Pharmacology and Pathology, The James and Eilleen Dicke Research Laboratory, Case Western Reserve University, Cleveland, Ohio, USA
| | - Shashank Kumar
- Department of Biochemistry, Molecular Signaling & Drug Discovery Laboratory, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
16
|
Tewari D, Chander V, Dhyani A, Sahu S, Gupta P, Patni P, Kalick LS, Bishayee A. Withania somnifera (L.) Dunal: Phytochemistry, structure-activity relationship, and anticancer potential. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153949. [PMID: 35151215 DOI: 10.1016/j.phymed.2022.153949] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/08/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Ayurveda is a highly recognized, well-documented, and well-accepted traditional medicine system. This system utilizes many natural products in various forms for therapeutic purposes. Thousands of plants mentioned in the Ayurvedic system are useful in disease mitigation and health preservation. One potential plant of the Ayurvedic system is "Ashwagandha" [Withania somnifera (L.) Dunal], commonly regarded as Indian Ginseng. It possesses various therapeutic activities, such as neuroprotective, hypoglycemic, hepatoprotective, antiarthritic, and anticancer effects. PURPOSE Here we present a comprehensive insight on the anticancer effects of W. somnifera and mechanistic attributes of its bioactive phytocompounds. This review also provides updated information on the clinical studies pertaining to cancer, safety evaluation and opportunities for chemical modifications of withanolides, a group of specialized phytochemicals of W. somnifera. METHODS The present study was performed in accordance with the guidelines of the Preferred Reporting Items for Systemic Reviews and Meta-Analysis. Various scientific databases, such as PubMed, Science Direct, Scopus, Google Scholar, were explored for related studies published up to May 2021. RESULTS An updated review on the anticancer potential and mechanisms of action of the major bioactive components of W. somnifera, including withanolides, withaferin A and withanone, is presented. Comprehensive information on clinical attributes of W. somnifera and its active components are presented with the structure-activity relationship (SAR) and toxicity evaluation. CONCLUSION The outcome of the work clearly indicates that W. somnifera has a significant potential for cancer therapy. The SAR revealed that various withanolides in general and withaferin A in particular have binding energies against various proteins and tremendous potential to serve as the lead for new chemical entities. Nevertheless, additional studies, particularly well-designed clinical trials are required before therapeutic application of withanolides for cancer treatment.
Collapse
Affiliation(s)
- Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India.
| | - Vikas Chander
- Department of Pharmacy, Uttarakhand Technical University, Dehradun 248007, Uttarakhand, India
| | - Archana Dhyani
- Department of Pharmaceutics, School of Pharmacy, Graphic Era Hill University, Dehradun 248001, Uttarakhand, India
| | - Sanjeev Sahu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Pawan Gupta
- Shree SK Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, Gujarat, India
| | - Pooja Patni
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Lindsay S Kalick
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
17
|
Hyperthermia Treatment as a Promising Anti-Cancer Strategy: Therapeutic Targets, Perspective Mechanisms and Synergistic Combinations in Experimental Approaches. Antioxidants (Basel) 2022; 11:antiox11040625. [PMID: 35453310 PMCID: PMC9030926 DOI: 10.3390/antiox11040625] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023] Open
Abstract
Despite recent developments in diagnosis and treatment options, cancer remains one of the most critical threats to health. Several anti-cancer therapies have been identified, but further research is needed to provide more treatment options that are safe and effective for cancer. Hyperthermia (HT) is a promising treatment strategy for cancer because of its safety and cost-effectiveness. This review summarizes studies on the anti-cancer effects of HT and the detailed mechanisms. In addition, combination therapies with anti-cancer drugs or natural products that can effectively overcome the limitations of HT are reviewed because HT may trigger protective events, such as an increase of heat shock proteins (HSPs). In the 115 reports included, the mechanisms related to apoptosis, cell cycle, reactive oxygen species, mitochondrial membrane potential, DNA damage, transcription factors and HSPs were considered important. This review shows that HT is an effective inducer of apoptosis. Moreover, the limitations of HT may be overcome using combined therapy with anti-cancer drugs or natural products. Therefore, appropriate combinations of such agents with HT will exert maximal effects to treat cancer.
Collapse
|
18
|
Abstract
Covering: March 2010 to December 2020. Previous review: Nat. Prod. Rep., 2011, 28, 705This review summarizes the latest progress and perspectives on the structural classification, biological activities and mechanisms, metabolism and pharmacokinetic investigations, biosynthesis, chemical synthesis and structural modifications, as well as future research directions of the promising natural withanolides. The literature from March 2010 to December 2020 is reviewed, and 287 references are cited.
Collapse
Affiliation(s)
- Gui-Yang Xia
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China. .,Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Shi-Jie Cao
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.
| | - Li-Xia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Feng Qiu
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.
| |
Collapse
|
19
|
Siraj MA, Islam MA, Al Fahad MA, Kheya HR, Xiao J, Simal-Gandara J. Cancer Chemopreventive Role of Dietary Terpenoids by Modulating Keap1-Nrf2-ARE Signaling System—A Comprehensive Update. APPLIED SCIENCES 2021; 11:10806. [DOI: 10.3390/app112210806] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
ROS, RNS, and carcinogenic metabolites generate excessive oxidative stress, which changes the basal cellular status and leads to epigenetic modification, genomic instability, and initiation of cancer. Epigenetic modification may inhibit tumor-suppressor genes and activate oncogenes, enabling cells to have cancer promoting properties. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that in humans is encoded by the NFE2L2 gene, and is activated in response to cellular stress. It can regulate redox homoeostasis by expressing several cytoprotective enzymes, including NADPH quinine oxidoreductase, heme oxygenase-1, UDP-glucuronosyltransferase, glutathione peroxidase, glutathione-S-transferase, etc. There is accumulating evidence supporting the idea that dietary nutraceuticals derived from commonly used fruits, vegetables, and spices have the ability to produce cancer chemopreventive activity by inducing Nrf2-mediated detoxifying enzymes. In this review, we discuss the importance of these nutraceuticals in cancer chemoprevention and summarize the role of dietary terpenoids in this respect. This approach was taken to accumulate the mechanistic function of these terpenoids to develop a comprehensive understanding of their direct and indirect roles in modulating the Keap1-Nrf2-ARE signaling system.
Collapse
Affiliation(s)
- Md Afjalus Siraj
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720, USA
| | - Md. Arman Islam
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Md. Abdullah Al Fahad
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Habiba Rahman Kheya
- Department of Sociology, Faculty of Social Sciences, University of Dhaka, Dhaka 1000, Bangladesh
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo—Ourense Campus, E32004 Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo—Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
20
|
A Perspective on Withania somnifera Modulating Antitumor Immunity in Targeting Prostate Cancer. J Immunol Res 2021; 2021:9483433. [PMID: 34485538 PMCID: PMC8413038 DOI: 10.1155/2021/9483433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/07/2021] [Indexed: 01/07/2023] Open
Abstract
Medicinal plants serve as a lead source of bioactive compounds and have been an integral part of day-to-day life in treating various disease conditions since ancient times. Withaferin A (WFA), a bioactive ingredient of Withania somnifera, has been used for health and medicinal purposes for its adaptogenic, anti-inflammatory, and anticancer properties long before the published literature came into existence. Nearly 25% of pharmaceutical drugs are derived from medicinal plants, classified as dietary supplements. The bioactive compounds in these supplements may serve as chemotherapeutic substances competent to inhibit or reverse the process of carcinogenesis. The role of WFA is appreciated to polarize tumor-suppressive Th1-type immune response inducing natural killer cell activity and may provide an opportunity to manipulate the tumor microenvironment at an early stage to inhibit tumor progression. This article signifies the cumulative information about the role of WFA in modulating antitumor immunity and its potential in targeting prostate cancer.
Collapse
|
21
|
Kim SH, Singh KB, Hahm ER, Singh SV. The Role of Forkhead Box Q1 Transcription Factor in Anticancer Effects of Withaferin A in Breast Cancer. Cancer Prev Res (Phila) 2021; 14:421-432. [PMID: 33509807 DOI: 10.1158/1940-6207.capr-20-0590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/15/2020] [Accepted: 01/15/2021] [Indexed: 11/16/2022]
Abstract
Elimination of both rapidly dividing epithelial mammary cancer cells as well as breast cancer stem-like cells (bCSC) is essential for maximizing antitumor response. Withaferin A (WA), a small molecule derived from a medicinal plant (Withania somnifera), is highly effective in reducing burden and/or incidence of breast cancer in vivo in various preclinical models. We have shown previously that suppression of breast cancer incidence by WA administration in a rat model is associated with a decrease in self-renewal of bCSC but the underlying mechanism is still elusive. This study investigated the role of forkhead box Q1 (FoxQ1) transcription factor in antitumor responses to WA. Exposure of MDA-MB-231 and SUM159 cells to WA resulted in downregulation of protein and mRNA levels of FoxQ1 as well as inhibition of its transcriptional activity. FoxQ1 overexpression in SUM159 and MCF-7 cells resulted in a marked protection against WA-mediated inhibition of bCSC as judged by flow cytometric analysis of CD49fhigh population and mammosphere assay. RNA-sequencing analysis revealed upregulation of many bCSC-associated genes by FoxQ1 overexpression in SUM159 cells, including IL8 whose expression was decreased by WA treatment in SUM159 and MCF-7 cells. FoxQ1 was recruited to the promoter of IL8 that was inhibited significantly by WA treatment. On the other hand, WA-mediated inhibition of cell proliferation or migration was not affected by FoxQ1 overexpression. The FoxQ1 overexpression partially attenuated WA-mediated G2-M phase cell cycle arrest in SUM159 cells only. These results indicate that FoxQ1 is a target of WA for inhibition of bCSC fraction. PREVENTION RELEVANCE: Withaferin A (WA) is highly effective in reducing burden and/or incidence of breast cancer in various preclinical models. However, the mechanism underlying breast cancer prevention by WA is not fully understood. This study shows a role for FoxQ1 in antitumor response to WA.
Collapse
Affiliation(s)
- Su-Hyeong Kim
- Department of Pharmacology & Chemical Biology, Pittsburgh, Pennsylvania
| | - Krishna B Singh
- Department of Pharmacology & Chemical Biology, Pittsburgh, Pennsylvania
| | - Eun-Ryeong Hahm
- Department of Pharmacology & Chemical Biology, Pittsburgh, Pennsylvania
| | - Shivendra V Singh
- Department of Pharmacology & Chemical Biology, Pittsburgh, Pennsylvania. .,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
22
|
Hahm ER, Kim SH, Singh KB, Singh SV. RNA-seq reveals novel cancer-selective and disease subtype-independent mechanistic targets of withaferin A in human breast cancer cells. Mol Carcinog 2020; 60:3-14. [PMID: 33150660 DOI: 10.1002/mc.23266] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/24/2022]
Abstract
Withaferin A (WA) exhibits cancer chemopreventive efficacy in preclinical models representative of two different subtypes of breast cancer. However, the mechanism(s) underlying breast cancer chemoprevention by WA is not fully elucidated. We performed RNA-seq analyses using a non-tumorigenic mammary epithelial cell line (MCF-10A) and human breast cancer cells (BCC) belonging to the luminal-type (MCF-7), HER2-enriched (SK-BR-3), and basal-like subtype (MDA-MB-231) to identify novel cancer-selective mechanistic targets of WA. The WA-regulated transcriptome was strikingly different between MCF-10A versus BCC. The Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed downregulation of genes associated with cellular senescence in WA-treated BCC. Consequently, the number of senescence-associated β-galactosidase positive cells was decreased significantly in WA-treated BCC but not in the MCF-10A cells. WA treatment caused upregulation of senescence marker p21 more robustly in BCC than in MCF-10A. Breast cancer prevention by WA in rats was also associated with upregulation of p21 protein expression. The Reactome pathway analyses indicated upregulation of genes associated with cellular response to stress/external stimuli in WA-treated BCC but not in MCF-10A. Two proteins represented in these pathways (HSPA6 and NRF2) were further investigated. While HSPA6 was dispensable for WA-mediated apoptosis and autophagy or inhibition of cell migration, the NRF2 knockout cells were more resistant to apoptosis resulting from WA treatment than control cells. Finally, expression of some glycolysis-related proteins was decreased by WA treatment both in vitro and in vivo. In summary, this study provides novel insights into cancer-selective pathways affected by WA that may contribute to its chemopreventive efficacy in breast cancer.
Collapse
Affiliation(s)
- Eun-Ryeong Hahm
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Su-Hyeong Kim
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Krishna B Singh
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shivendra V Singh
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|