1
|
Long L, Fei X, Chen L, Yao L, Lei X. Potential therapeutic targets of the JAK2/STAT3 signaling pathway in triple-negative breast cancer. Front Oncol 2024; 14:1381251. [PMID: 38699644 PMCID: PMC11063389 DOI: 10.3389/fonc.2024.1381251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Triple-negative breast cancer (TNBC) poses a significant clinical challenge due to its propensity for metastasis and poor prognosis. TNBC evades the body's immune system recognition and attack through various mechanisms, including the Janus Kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway. This pathway, characterized by heightened activity in numerous solid tumors, exhibits pronounced activation in specific TNBC subtypes. Consequently, targeting the JAK2/STAT3 signaling pathway emerges as a promising and precise therapeutic strategy for TNBC. The signal transduction cascade of the JAK2/STAT3 pathway predominantly involves receptor tyrosine kinases, the tyrosine kinase JAK2, and the transcription factor STAT3. Ongoing preclinical studies and clinical research are actively investigating this pathway as a potential therapeutic target for TNBC treatment. This article comprehensively reviews preclinical and clinical investigations into TNBC treatment by targeting the JAK2/STAT3 signaling pathway using small molecule compounds. The review explores the role of the JAK2/STAT3 pathway in TNBC therapeutics, evaluating the benefits and limitations of active inhibitors and proteolysis-targeting chimeras in TNBC treatment. The aim is to facilitate the development of novel small-molecule compounds that target TNBC effectively. Ultimately, this work seeks to contribute to enhancing therapeutic efficacy for patients with TNBC.
Collapse
Affiliation(s)
- Lin Long
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiangyu Fei
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Liucui Chen
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Liang Yao
- Department of Pharmacy, Central Hospital of Hengyang, Hengyang, China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
2
|
Parajuli KR, Jung Y, Taichman RS. Abscisic acid signaling through LANCL2 and PPARγ induces activation of p38MAPK resulting in dormancy of prostate cancer metastatic cells. Oncol Rep 2024; 51:39. [PMID: 38624012 PMCID: PMC10804438 DOI: 10.3892/or.2024.8698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/12/2023] [Indexed: 04/17/2024] Open
Abstract
Prostate cancer (PCa) is one the most common malignancies in men. The high incidence of bone metastasis years after primary therapy suggests that disseminated tumor cells must become dormant, but maintain their ability to proliferate in the bone marrow. Abscisic acid (ABA) is a stress response molecule best known for its regulation of seed germination, stomal opening, root shoot growth and other stress responses in plants. ABA is also synthesized by mammalian cells and has been linked to human disease. The aim of the present study was to examine the role of ABA in regulating tumor dormancy via signaling through lanthionine synthetase C‑like protein 2 (LANCL2) and peroxisome proliferator activated receptor γ (PPARγ) receptors. ABA signaling in human PCa cell lines was studied using targeted gene knockdown (KD), western blotting, quantitative PCR, cell proliferation, migration, invasion and soft agar assays, as well as co‑culture assays with bone marrow stromal cells. The data demonstrated that ABA signaling increased the expression of p21, p27 and p16, while inhibiting viability, migration, invasion and colony size in a reversable manner without toxicity. ABA also induced p38MAPK activation and NR2F1 signaling. Targeted gene KD of LANCL2 and PPARγ abrogated the cellular responses to ABA. Taken together, these data demonstrate that ABA may induce dormancy in PCa cell lines through LANCL2 and PPARγ signaling, and suggest novel targets to manage metastatic PCa growth.
Collapse
Affiliation(s)
- Keshab Raj Parajuli
- Department of Periodontology, University of Alabama at Birmingham School of Dentistry, Birmingham, AL 35294, USA
| | - Younghun Jung
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Russell S. Taichman
- Department of Periodontology, University of Alabama at Birmingham School of Dentistry, Birmingham, AL 35294, USA
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Malvi P, Chava S, Cai G, Hu K, Zhu LJ, Edwards YJK, Green MR, Gupta R, Wajapeyee N. HOXC6 drives a therapeutically targetable pancreatic cancer growth and metastasis pathway by regulating MSK1 and PPP2R2B. Cell Rep Med 2023; 4:101285. [PMID: 37951219 PMCID: PMC10694669 DOI: 10.1016/j.xcrm.2023.101285] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 11/13/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers, which lacks effective therapies. Here, we demonstrate that the transcription factor, homeobox C6 (HOXC6), is overexpressed in most PDACs, and its inhibition blocks PDAC tumor growth and metastasis. HOXC6 transcriptionally activates tumor-promoting kinase MSK1 and suppresses tumor-inhibitory protein PPP2R2B in PDAC. HOXC6-induced PPP2R2B suppression causes mammalian target of rapamycin (mTOR) pathway activation, which facilitates PDAC growth. Also, MSK1 upregulation by HOXC6 is necessary for PDAC growth because of its ability to suppress apoptosis via its substrate DDX17. Combinatorial pharmacological inhibition of MSK1 and mTOR potently suppressed PDAC tumor growth and metastasis in PDAC mouse models. PDAC cells with acquired resistance to MSK1/mTOR-inhibitors displayed activated insulin-like growth factor 1 receptor (IGF1R) signaling and were successfully eradicated by IGF1R inhibitor. Furthermore, MEK inhibitor trametinib enhanced the efficacy of dual MSK1 and mTOR inhibition. Collectively, these results identify therapeutic vulnerabilities of PDAC and an approach to overcome acquired drug resistance to prolong therapeutic benefit.
Collapse
Affiliation(s)
- Parmanand Malvi
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Suresh Chava
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Guoping Cai
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Kai Hu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yvonne J K Edwards
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Michael R Green
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Romi Gupta
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Narendra Wajapeyee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
4
|
Cong B, Liu X, Chen J, Li H, Fan X. Effect of microRNA-663b on migration, invasion and epithelial‑mesenchymal transition of oral squamous cell carcinoma cells. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2022; 40:386-393. [PMID: 38596953 PMCID: PMC9396422 DOI: 10.7518/hxkq.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/10/2022] [Indexed: 04/11/2024]
Abstract
OBJECTIVES To explore the effect of microRNA-663b (miR-6636) on migration, invasion and epithelial-mesenchymal transition (EMT) of oral squamous cell carcinoma cells (OSCC). METHODS Use R Studio of gene expression omnibus (GEO) database to analyze expressions of miR-663b in the OSCC and adjacent normal tissues. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of miR-663b in tissues and cells. The transfection efficiency of HN30 cells with miR-663b knockout plasmid was detected. Transwell assay was used to detect the effect of the migration and invasion ability. Bioinformatics method was used to predict the targeted mRNA that may bind to miR-663b and double luciferase assay was used to verify the binding. Western blot assay was used to detect the expression of EMT-related markers. RESULTS The expression of miR-663b was up-regulated in OSCC tissues and higher in HN30, CAL27 and SCC-9 cells than in HOEC cells (P<0.05). Knockout of miR-663b could inhibit migration and invasion of HN30 cells (P<0.05) and inhibit the occurrence of EMT. Bioinformatics prediction software predicts that SH3BP2 was the target gene of miR-663b, and patients with low SH3BP2 expression had a poor prognosis (P<0.05). MiR-663b could bind to SHBP2 (P<0.05). The expression of SH3BP2 was increased and the occurrence of EMT was inhibited in HN30 cells with miR-663b knocked out. CONCLUSIONS Knockout of miR-663b can inhibit the migration, invasion and EMT of OSCC by targeting SH3BP2.
Collapse
Affiliation(s)
- Biqiao Cong
- Dept.of Stomatology, Affiliated Hospital of Weifang Medical University, Weifang 261000, China
- School of Stomatology, Weifang Medical University, Weifang 261053, China
| | - Xiaoping Liu
- Dept.of Stomatology, Affiliated Hospital of Weifang Medical University, Weifang 261000, China
| | - Jiawen Chen
- Dept.of Stomatology, Affiliated Hospital of Weifang Medical University, Weifang 261000, China
| | - Hongli Li
- Medicine Research Center, Weifang Medical University, Weifang 261053, China
| | - Xin Fan
- Dept.of Stomatology, Affiliated Hospital of Weifang Medical University, Weifang 261000, China
- Medicine Research Center, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
5
|
Wang Q, Qian L, Tao M, Liu J, Qi FZ. Knockdown of DEAD-box RNA helicase 52 (DDX52) suppresses the proliferation of melanoma cells in vitro and of nude mouse xenografts by targeting c-Myc. Bioengineered 2021; 12:3539-3549. [PMID: 34233596 PMCID: PMC8806535 DOI: 10.1080/21655979.2021.1950283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The ATP-dependent protein DEAD-box RNA helicase 52 (DDX52) is an important regulator in RNA biology and has been implicated in the development of prostate and lung cancer. However, its biological functions and clinical importance in malignant melanoma (MM) are still unclear. Understanding the potential mechanism underlying the regulation of MM progression by DDX52 might lead to novel therapeutic strategies. The aim of the present study was to investigate the role of DDX52 in the regulation of MM progression and its clinical relevance. DDX52 expression in normal and MM tissues was evaluated by GEO analysis and immunohistochemistry. The effects of DDX52 on cell growth were evaluated in MM cells with downregulated DDX52 expression. In this study, we found that DDX52 was markedly overexpressed in MM tissues compared with nontumor tissues and was associated with shorter overall survival in patients; therefore, DDX52 might be a prognostic marker in MM. Downregulation of DDX52 expression in the MM cell lines A2058 and MV3 markedly inhibited cell proliferation and colony formation. Additionally, knockdown of DDX52 in MM cells caused significant regression of established tumors in nude mice and delayed the onset time. Moreover, downregulation of DDX52 markedly suppressed c-Myc mRNA and protein expression, and an RNA immunoprecipitation assay confirmed the association between DDX52 and c-Myc. Restoration of c-Myc expression partly rescued the effects of DDX52 deficiency in MM cells. In conclusion, our study found that DDX52 mediated oncogenesis by promoting the transcriptional activity of c-Myc and could be a therapeutic target in MM.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Leqi Qian
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengyuan Tao
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiaqi Liu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fa-Zhi Qi
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Gupta R, Malvi P, Parajuli KR, Janostiak R, Bugide S, Cai G, Zhu LJ, Green MR, Wajapeyee N. KLF7 promotes pancreatic cancer growth and metastasis by up-regulating ISG expression and maintaining Golgi complex integrity. Proc Natl Acad Sci U S A 2020; 117:12341-12351. [PMID: 32430335 PMCID: PMC7275752 DOI: 10.1073/pnas.2005156117] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with a dismal prognosis. Currently, there is no effective therapy for PDAC, and a detailed molecular and functional evaluation of PDACs is needed to identify and develop better therapeutic strategies. Here we show that the transcription factor Krüppel-like factor 7 (KLF7) is overexpressed in PDACs, and that inhibition of KLF7 blocks PDAC tumor growth and metastasis in cell culture and in mice. KLF7 expression in PDACs can be up-regulated due to activation of a MAP kinase pathway or inactivation of the tumor suppressor p53, two alterations that occur in a large majority of PDACs. ShRNA-mediated knockdown of KLF7 inhibits the expression of IFN-stimulated genes (ISGs), which are necessary for KLF7-mediated PDAC tumor growth and metastasis. KLF7 knockdown also results in the down-regulation of Discs Large MAGUK Scaffold Protein 3 (DLG3), resulting in Golgi complex fragmentation, and reduced protein glycosylation, leading to reduced secretion of cancer-promoting growth factors, such as chemokines. Genetic or pharmacologic activation of Golgi complex fragmentation blocks PDAC growth and metastasis similar to KLF7 inhibition. Our results demonstrate a therapeutically amenable, KLF7-driven pathway that promotes PDAC growth and metastasis by activating ISGs and maintaining Golgi complex integrity.
Collapse
Affiliation(s)
- Romi Gupta
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Parmanand Malvi
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Keshab Raj Parajuli
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Radoslav Janostiak
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510
| | - Suresh Bugide
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Guoping Cai
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Michael R Green
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605;
| | - Narendra Wajapeyee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233;
| |
Collapse
|
7
|
Sato M. Phenotypic screening using large-scale genomic libraries to identify drug targets for the treatment of cancer. Oncol Lett 2020; 19:3617-3626. [PMID: 32391087 PMCID: PMC7204489 DOI: 10.3892/ol.2020.11512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
During malignant progression to overt cancer cells, normal cells accumulate multiple genetic and non-genetic changes, which result in the acquisition of various oncogenic properties, such as uncontrolled proliferation, drug resistance, invasiveness, anoikis-resistance, the ability to bypass oncogene-induced senescence and cancer stemness. To identify potential novel drug targets contributing to these malignant phenotypes, researchers have performed large-scale genomic screening using various in vitro and in vivo screening models and identified numerous promising cancer drug target genes. However, there are issues with these identified genes, such as low reproducibility between different datasets. In the present study, the recent advances in the functional screening for identification of cancer drug target genes are summarized, and current issues and future perspectives are discussed.
Collapse
Affiliation(s)
- Mitsuo Sato
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi 461-8673, Japan
| |
Collapse
|
8
|
Malvi P, Janostiak R, Nagarajan A, Cai G, Wajapeyee N. Loss of thymidine kinase 1 inhibits lung cancer growth and metastatic attributes by reducing GDF15 expression. PLoS Genet 2019; 15:e1008439. [PMID: 31589613 PMCID: PMC6797230 DOI: 10.1371/journal.pgen.1008439] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/17/2019] [Accepted: 09/19/2019] [Indexed: 12/25/2022] Open
Abstract
Metabolic alterations that are critical for cancer cell growth and metastasis are one of the key hallmarks of cancer. Here, we show that thymidine kinase 1 (TK1) is significantly overexpressed in tumor samples from lung adenocarcinoma (LUAD) patients relative to normal controls, and this TK1 overexpression is associated with significantly reduced overall survival and cancer recurrence. Genetic knockdown of TK1 with short hairpin RNAs (shRNAs) inhibits both the growth and metastatic attributes of LUAD cells in culture and in mice. We further show that transcriptional overexpression of TK1 in LUAD cells is driven, in part, by MAP kinase pathway in a transcription factor MAZ dependent manner. Using targeted and gene expression profiling-based approaches, we then show that loss of TK1 in LUAD cells results in reduced Rho GTPase activity and reduced expression of growth and differentiation factor 15 (GDF15). Furthermore, ectopic expression of GDF15 can partially rescue TK1 knockdown-induced LUAD growth and metastasis inhibition, confirming its important role as a downstream mediator of TK1 function in LUAD. Collectively, our findings demonstrate that TK1 facilitates LUAD tumor and metastatic growth and represents a target for LUAD therapy. Thymidine kinase 1 (TK1) is overexpressed and associated with poor prognosis in a number of different cancers. However, despite these data suggesting an important role for TK1 in cancer pathogenesis, no study thus far has analyzed the functional effect of TK1 inhibition on tumor growth and metastasis. In this study, we performed TK1 knockdown and found that this protein is necessary for lung adenocarcinoma (LUAD) tumor growth and metastasis. Notably, inhibition of another nucleotide kinase, deoxycytidine kinase (DCK), had no effect on LUAD tumor growth and metastatic attributes. We therefore performed experiments to determine if the TK1 mechanism of action in cancer is distinct from its previously reported role in DNA damage, DNA replication, and DNA repair. We found that TK1 can promote LUAD tumor growth and metastasis in a non-canonical manner by activating Rho GTPase activity and growth and differentiation factor 15 (GDF15) expression. Taken together, our data suggest that TK1 may represent a potential target for development of LUAD therapy, due to its critical role in maintaining lung tumor growth and metastasis.
Collapse
Affiliation(s)
- Parmanand Malvi
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Radoslav Janostiak
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Arvindhan Nagarajan
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Guoping Cai
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Narendra Wajapeyee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
9
|
In vivo RNAi screening identifies Pafah1b3 as a target for combination therapy with TKIs in BCR-ABL1+ BCP-ALL. Blood Adv 2019; 2:1229-1242. [PMID: 29853524 DOI: 10.1182/bloodadvances.2017015610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/19/2018] [Indexed: 01/01/2023] Open
Abstract
Despite the addition of tyrosine kinase inhibitors (TKIs) to the treatment of patients with BCR-ABL1+ B-cell precursor acute lymphoblastic leukemia (BCR-ABL1+ BCP-ALL), relapse both with and without BCR-ABL1 mutations is a persistent clinical problem. To identify BCR-ABL1-independent genetic mediators of response to the TKI dasatinib, we performed in vivo and in vitro RNA interference (RNAi) screens in a transplantable syngeneic mouse model of BCR-ABL1+ BCP-ALL. By using a novel combination of a longitudinal screen design and independent component analysis of screening data, we identified hairpins that have distinct behavior in different therapeutic contexts as well as in the in vivo vs in vitro settings. In the set of genes whose loss sensitized BCR-ABL1+ BCP-ALL cells to dasatinib, we identified Pafah1b3, which regulates intracellular levels of platelet-activating factor (PAF), as an in vivo-specific mediator of therapeutic response. Pafah1b3 loss significantly sensitized leukemia cells to the multiple TKIs, indicating that inhibition of PAFAH1B3 in combination with TKI treatment may be an effective therapeutic strategy for BCR-ABL1+ BCP-ALL patients. PAF-induced cell death as well as surface levels of PAF receptor (PAFR) in our model are altered upon dasatinib treatment and depend on the local leukemia microenvironment; the response of Pafah1b3 KO vs overexpressing cells to dasatinib is also dependent on microenvironmental context. Antagonism of the PAFR partially reverses the observed sensitization to TKI treatment upon Pafah1b3 loss in vivo, suggesting that signaling via the PAF/PAFR pathway is at least partially responsible for this effect.
Collapse
|
10
|
Dong M, Li T, Chen J. [Progress on the Study of Targeting FGFR in Squamous Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2018. [PMID: 29526179 PMCID: PMC5973013 DOI: 10.3779/j.issn.1009-3419.2018.02.05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
肺鳞状细胞癌(squamous-cell lung cancer, SqCLC)是非小细胞肺癌中一类独特的病理类型,患者多为高龄、发病隐匿、发现时常属晚期、常伴有心肺合并症、缺乏有效的靶向治疗药物等因素,相对于非鳞非小细胞肺癌,SqCLC的治疗面临着更大的挑战。近年针对肺癌的分子靶向药物迅速发展,我们发现,FGFR家族(FGFR1-4)基因改变存在于约12%的SqCLC中,是SqCLC中突变频率最高的酪氨酸激酶家族基因,同时许多靶向FGFR的小分子药物都在各类肿瘤中发挥了较好的治疗效果。目前,许多FGFR抑制治疗SqCLC的临床试验也都正在进行当中,可能为SqCLC治疗提供新的策略和方向。
Collapse
Affiliation(s)
- Ming Dong
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Tong Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jun Chen
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
11
|
Feng S, Shao L, Castro P, Coleman I, Nelson PS, Smith PD, Davies BR, Ittmann M. Combination treatment of prostate cancer with FGF receptor and AKT kinase inhibitors. Oncotarget 2018; 8:6179-6192. [PMID: 28008155 PMCID: PMC5351622 DOI: 10.18632/oncotarget.14049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/13/2016] [Indexed: 12/25/2022] Open
Abstract
Activation of the PI3K/AKT pathway occurs in the vast majority of advanced prostate cancers (PCas). Activation of fibroblast growth factor receptor (FGFR) signaling occurs in a wide variety of malignancies, including PCa. RNA-Seq of castration resistant PCa revealed expression of multiple FGFR signaling components compatible with FGFR signaling in all cases, with multiple FGF ligands expressed in 90% of cases. Immunohistochemistry confirmed FGFR signaling in the majority of xenografts and advanced PCas. AZD5363, an AKT kinase inhibitor and AZD4547, a FGFR kinase inhibitor are under active clinical development. We therefore sought to determine if these two drugs have additive effects in PCa models. The effect of both agents, singly and in combination was evaluated in a variety of PCa cell lines in vitro and in vivo. All cell lines tested responded to both drugs with decreased invasion, soft agar colony formation and growth in vivo, with additive effects seen with combination treatment. Activation of the FGFR, AKT, ERK and STAT3 pathways was examined in treated cells. AZD5363 inhibited AKT signaling and increased FGFR1 signaling, which partially compensated for decreased AKT kinase activity. While AZD4547 could effectively block the ERK pathway, combination treatment was needed to completely block STAT3 activation. Thus combination treatment with AKT and FGFR kinase inhibitors have additive effects on malignant phenotypes in vitro and in vivo by inhibiting multiple signaling pathways and mitigating the compensatory upregulation of FGFR signaling induced by AKT kinase inhibition. Our studies suggest that co-targeting these pathways may be efficacious in advanced PCa.
Collapse
Affiliation(s)
- Shu Feng
- Department of Pathology and Immunology, Baylor College of Medicine and Michael E. DeBakey Department of Veterans Affairs Medical Center Baylor College of Medicine, Houston, 77030, TX, USA
| | - Longjiang Shao
- Department of Pathology and Immunology, Baylor College of Medicine and Michael E. DeBakey Department of Veterans Affairs Medical Center Baylor College of Medicine, Houston, 77030, TX, USA
| | - Patricia Castro
- Department of Pathology and Immunology, Baylor College of Medicine and Michael E. DeBakey Department of Veterans Affairs Medical Center Baylor College of Medicine, Houston, 77030, TX, USA
| | - Ilsa Coleman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Paul D Smith
- Oncology iMED, AstraZeneca, Alderley Park, Macclesfield, UK
| | - Barry R Davies
- Oncology iMED, AstraZeneca, Alderley Park, Macclesfield, UK
| | - Michael Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine and Michael E. DeBakey Department of Veterans Affairs Medical Center Baylor College of Medicine, Houston, 77030, TX, USA
| |
Collapse
|
12
|
Zhou C, Chen T, Xie Z, Qin Y, Ou Y, Zhang J, Li S, Chen R, Zhong N. RACK1 forms a complex with FGFR1 and PKM2, and stimulates the growth and migration of squamous lung cancer cells. Mol Carcinog 2017; 56:2391-2399. [PMID: 28418088 DOI: 10.1002/mc.22663] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 03/19/2017] [Accepted: 04/13/2017] [Indexed: 12/31/2022]
Abstract
Phosphorylation of Pyruvate Kinase M2 (PKM2) on Tyr105 by fibroblast growth factor receptor 1 (FGFR1) has been shown to promote its nuclear localization as well as cell growth in lung cancer. Better understanding the regulation of this process would benefit the clinical treatment for lung cancer. Here, it has been found that the adaptor protein receptor for activated PKC kinase (RACK1) formed a complex with FGFR1 and PKM2, and activated the FGFR1/PKM2 signaling. Knocking down the expression of RACK1 impaired the phosphorylation on Tyr105 of PKM2 and inhibited the growth and migration of lung cancer cells, while over-expression of RACK1 in lung cancer cells led to the resistance to Erdafitinib. Moreover, knocking down the expression of RACK1 impaired the tumorigenesis of lung cancer driven by LKB loss and mutated Ras (KrasG12D). Taken together, our study demonstrated the pivotal roles of RACK1 in FGFR1/PKM2 signaling, suggesting FGFR1/RACK1/PKM2 might be a therapeutic target for lung cancer treatment.
Collapse
Affiliation(s)
- Chengzhi Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, Department of Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Tao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, Department of Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Zhanhong Xie
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, Department of Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Yinyin Qin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, Department of Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Yangming Ou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, Department of Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Jiexia Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, Department of Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Shiyue Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, Department of Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Rongchang Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, Department of Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, Department of Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
13
|
Kakumu T, Sato M, Goto D, Kato T, Yogo N, Hase T, Morise M, Fukui T, Yokoi K, Sekido Y, Girard L, Minna JD, Byers LA, Heymach JV, Coombes KR, Kondo M, Hasegawa Y. Identification of proteasomal catalytic subunit PSMA6 as a therapeutic target for lung cancer. Cancer Sci 2017; 108:732-743. [PMID: 28165654 PMCID: PMC5406588 DOI: 10.1111/cas.13185] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/21/2017] [Accepted: 01/30/2017] [Indexed: 12/12/2022] Open
Abstract
To identify potential therapeutic targets for lung cancer, we performed semi‐genome‐wide shRNA screening combined with the utilization of genome‐wide expression and copy number data. shRNA screening targeting 5043 genes in NCI‐H460 identified 51 genes as candidates. Pathway analysis revealed that the 51 genes were enriched for the five pathways, including ribosome, proteasome, RNA polymerase, pyrimidine metabolism and spliceosome pathways. We focused on the proteasome pathway that involved six candidate genes because its activation has been demonstrated in diverse human malignancies, including lung cancer. Microarray expression and array CGH data showed that PSMA6, a proteasomal subunit of a 20S catalytic core complex, was highly expressed in lung cancer cell lines, with recurrent gene amplifications in some cases. Therefore, we further examined the roles of PSMA6 in lung cancer. Silencing of PSMA6 induced apoptosis or G2/M cell cycle arrest in cancer cell lines but not in an immortalized normal lung cell line. These results suggested that PSMA6 serves as an attractive target with a high therapeutic index for lung cancer.
Collapse
Affiliation(s)
- Tomohiko Kakumu
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuo Sato
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daiki Goto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshio Kato
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoyuki Yogo
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsunari Hase
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Morise
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takayuki Fukui
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kohei Yokoi
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshitaka Sekido
- Department of Cancer Genetics, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Molecular Oncology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Luc Girard
- Hamon Center for Therapeutic Oncology Research and the Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research and the Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Lauren A Byers
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - John V Heymach
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Kevin R Coombes
- Department of Biomedical Informatics, Ohio State University, Columbus, Ohio, USA
| | - Masashi Kondo
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
14
|
Serine hydroxymethyl transferase 1 stimulates pro-oncogenic cytokine expression through sialic acid to promote ovarian cancer tumor growth and progression. Oncogene 2017; 36:4014-4024. [PMID: 28288142 PMCID: PMC5509519 DOI: 10.1038/onc.2017.37] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 12/12/2022]
Abstract
High-grade serous (HGS) ovarian cancer accounts for 90% of all ovarian cancer-related deaths. However, factors that drive HGS ovarian cancer tumor growth have not been fully elucidated. In particular, comprehensive analysis of the metabolic requirements of ovarian cancer tumor growth has not been performed. By analyzing The Cancer Genome Atlas mRNA expression data for HGS ovarian cancer patient samples, we observed that six enzymes of the folic acid metabolic pathway were overexpressed in HGS ovarian cancer samples compared with normal ovary samples. Systematic knockdown of all six genes using short hairpin RNAs (shRNAs) and follow-up functional studies demonstrated that serine hydroxymethyl transferase 1 (SHMT1) was necessary for ovarian cancer tumor growth and cell migration in culture and tumor formation in mice. SHMT1 promoter analysis identified transcription factor Wilms tumor 1 (WT1) binding sites, and WT1 knockdown resulted in reduced SHMT1 transcription in ovarian cancer cells. Unbiased large-scale metabolomic analysis and transcriptome-wide mRNA expression profiling identified reduced levels of several metabolites of the amino sugar and nucleotide sugar metabolic pathways, including sialic acid N-acetylneuraminic acid (Neu5Ac), and downregulation of pro-oncogenic cytokines interleukin-6 and 8 (IL-6 and IL-8) as unexpected outcomes of SHMT1 loss. Overexpression of either IL-6 or IL-8 partially rescued SHMT1 loss-induced tumor growth inhibition and migration. Supplementation of culture medium with Neu5Ac stimulated expression of IL-6 and IL-8 and rescued the tumor growth and migratory phenotypes of ovarian cancer cells expressing SHMT1 shRNAs. In agreement with the ovarian tumor-promoting role of Neu5Ac, treatment with Neu5Ac-targeting glycomimetic P-3Fax-Neu5Ac blocked ovarian cancer growth and migration. Collectively, these results demonstrate that SHMT1 controls the expression of pro-oncogenic inflammatory cytokines by regulating sialic acid Neu5Ac to promote ovarian cancer tumor growth and migration. Thus, targeting of SHMT1 and Neu5Ac represents a precision therapy opportunity for effective HGS ovarian cancer treatment.
Collapse
|
15
|
Tiseo M, Gelsomino F, Alfieri R, Cavazzoni A, Bozzetti C, De Giorgi AM, Petronini PG, Ardizzoni A. FGFR as potential target in the treatment of squamous non small cell lung cancer. Cancer Treat Rev 2015; 41:527-39. [PMID: 25959741 DOI: 10.1016/j.ctrv.2015.04.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/12/2015] [Accepted: 04/25/2015] [Indexed: 12/31/2022]
Abstract
To date therapeutic options for squamous cell lung cancer patients remain scarce because no druggable targets have been identified so far. Aberrant signaling by FGFs (fibroblast growth factors) and FGFRs (fibroblast growth factors receptors) has been implicated in several human cancers and, particularly, in squamous non-small cell lung cancer (NSCLC). FGFR gene amplifications, somatic missense mutations, chromosomal translocations are the most frequent mechanisms able to induce aberrant activation of this pathway. Data from literature have established that the presence of an aberrant FGFR signaling has to be considered a possible negative prognostic factor but predictive of potential sensitivity to FGFR inhibitors. In the last years, clinical research efforts allowed to identify and evaluate promising FGFR inhibitors, such as monoclonal antibodies, ligand traps, non-selective or selective tyrosine kinase inhibitors. This review summarizes the current knowledge about FGFR alterations in NSCLC and the relative inhibitors in development, in particular in squamous NSCLC.
Collapse
Affiliation(s)
- Marcello Tiseo
- Division of Medical Oncology, University Hospital of Parma, Parma, Italy.
| | | | - Roberta Alfieri
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Andrea Cavazzoni
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Cecilia Bozzetti
- Division of Medical Oncology, University Hospital of Parma, Parma, Italy
| | | | | | - Andrea Ardizzoni
- Division of Medical Oncology, Sant'Orsola-Malpighi University Hospital, Bologna, Italy
| |
Collapse
|