1
|
Wu Y, Jiang X, Yu Z, Xing Z, Ma Y, Qing H. Mechanisms of Anti-PD Therapy Resistance in Digestive System Neoplasms. Recent Pat Anticancer Drug Discov 2025; 20:1-25. [PMID: 38305306 DOI: 10.2174/0115748928269276231120103256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 02/03/2024]
Abstract
Digestive system neoplasms are highly heterogeneous and exhibit complex resistance mechanisms that render anti-programmed cell death protein (PD) therapies poorly effective. The tumor microenvironment (TME) plays a pivotal role in tumor development, apart from supplying energy for tumor proliferation and impeding the body's anti-tumor immune response, the TME actively facilitates tumor progression and immune escape via diverse pathways, which include the modulation of heritable gene expression alterations and the intricate interplay with the gut microbiota. In this review, we aim to elucidate the mechanisms underlying drug resistance in digestive tumors, focusing on immune-mediated resistance, microbial crosstalk, metabolism, and epigenetics. We will highlight the unique characteristics of each digestive tumor and emphasize the significance of the tumor immune microenvironment (TIME). Furthermore, we will discuss the current therapeutic strategies that hold promise for combination with cancer immune normalization therapies. This review aims to provide a thorough understanding of the resistance mechanisms in digestive tumors and offer insights into potential therapeutic interventions.
Collapse
Affiliation(s)
- Yuxia Wu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xiangyan Jiang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zeyuan Yu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zongrui Xing
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yong Ma
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Huiguo Qing
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024; 9:274. [PMID: 39420203 PMCID: PMC11491057 DOI: 10.1038/s41392-024-01979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment, particularly through immune checkpoint blockade (ICB), which has shown notable clinical benefits across various tumor types. Despite the transformative impact of ICB treatment in cancer therapy, only a minority of patients exhibit a positive response to it. In patients with solid tumors, those who respond well to ICB treatment typically demonstrate an active immune profile referred to as the "hot" (immune-inflamed) phenotype. On the other hand, non-responsive patients may exhibit a distinct "cold" (immune-desert) phenotype, differing from the features of "hot" tumors. Additionally, there is a more nuanced "excluded" immune phenotype, positioned between the "cold" and "hot" categories, known as the immune "excluded" type. Effective differentiation between "cold" and "hot" tumors, and understanding tumor intrinsic factors, immune characteristics, TME, and external factors are critical for predicting tumor response and treatment results. It is widely accepted that ICB therapy exerts a more profound effect on "hot" tumors, with limited efficacy against "cold" or "altered" tumors, necessitating combinations with other therapeutic modalities to enhance immune cell infiltration into tumor tissue and convert "cold" or "altered" tumors into "hot" ones. Therefore, aligning with the traits of "cold" and "hot" tumors, this review systematically delineates the respective immune characteristics, influencing factors, and extensively discusses varied treatment approaches and drug targets based on "cold" and "hot" tumors to assess clinical efficacy.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Youth League Committee, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Haoqi Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Zhang M, Sjöström M, Cui X, Foye A, Farh K, Shrestha R, Lundberg A, Dang HX, Li H, Febbo PG, Aggarwal R, Alumkal JJ, Small EJ, Maher CA, Feng FY, Quigley DA. Integrative analysis of ultra-deep RNA-seq reveals alternative promoter usage as a mechanism of activating oncogenic programmes during prostate cancer progression. Nat Cell Biol 2024; 26:1176-1186. [PMID: 38871824 PMCID: PMC11844022 DOI: 10.1038/s41556-024-01438-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/11/2024] [Indexed: 06/15/2024]
Abstract
Transcription factor (TF) proteins regulate gene activity by binding to regulatory regions, most importantly at gene promoters. Many genes have alternative promoters (APs) bound by distinct TFs. The role of differential TF activity at APs during tumour development is poorly understood. Here we show, using deep RNA sequencing in 274 biopsies of benign prostate tissue, localized prostate tumours and metastatic castration-resistant prostate cancer, that AP usage increases as tumours progress and APs are responsible for a disproportionate amount of tumour transcriptional activity. Expression of the androgen receptor (AR), the key driver of prostate tumour activity, is correlated with elevated AP usage. We identified AR, FOXA1 and MYC as potential drivers of AP activation. DNA methylation is a likely mechanism for AP activation during tumour progression and lineage plasticity. Our data suggest that prostate tumours activate APs to magnify the transcriptional impact of tumour drivers, including AR and MYC.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Radiation Oncology, University of California at San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | - Martin Sjöström
- Department of Radiation Oncology, University of California at San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | - Xiekui Cui
- Department of Radiation Oncology, University of California at San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California at San Francisco, San Francisco, CA, USA
| | - Adam Foye
- Department of Radiation Oncology, University of California at San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | | | - Raunak Shrestha
- Department of Radiation Oncology, University of California at San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | - Arian Lundberg
- Department of Radiation Oncology, University of California at San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | - Ha X Dang
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
- Department of Internal Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Bristol Myers Squibb, San Diego, CA, USA
| | - Haolong Li
- Department of Radiation Oncology, University of California at San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | | | - Rahul Aggarwal
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
- Division of Hematology and Oncology, Department of Medicine, University of California at San Francisco, San Francisco, CA, USA
| | - Joshi J Alumkal
- Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Eric J Small
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
- Division of Hematology and Oncology, Department of Medicine, University of California at San Francisco, San Francisco, CA, USA
| | - Christopher A Maher
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
- Department of Internal Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Felix Y Feng
- Department of Radiation Oncology, University of California at San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
- Division of Hematology and Oncology, Department of Medicine, University of California at San Francisco, San Francisco, CA, USA
- Department of Urology, University of California at San Francisco, San Francisco, CA, USA
| | - David A Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA.
- Department of Urology, University of California at San Francisco, San Francisco, CA, USA.
- Department of Epidemiology & Biostatistics, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
4
|
Peng G, Liu B, Zheng M, Zhang L, Li H, Liu M, Liang Y, Chen T, Luo X, Shi X, Ren J, Zheng Y. TSCRE: a comprehensive database for tumor-specific cis-regulatory elements. NAR Cancer 2024; 6:zcad063. [PMID: 38213995 PMCID: PMC10782923 DOI: 10.1093/narcan/zcad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/18/2023] [Accepted: 12/31/2023] [Indexed: 01/13/2024] Open
Abstract
Cis-regulatory elements (CREs) and super cis-regulatory elements (SCREs) are non-coding DNA regions which influence the transcription of nearby genes and play critical roles in development. Dysregulated CRE and SCRE activities have been reported to alter the expression of oncogenes and tumor suppressors, thereby regulating cancer hallmarks. To address the strong need for a comprehensive catalogue of dysregulated CREs and SCREs in human cancers, we present TSCRE (http://tscre.zsqylab.com/), an open resource providing tumor-specific and cell type-specific CREs and SCREs derived from the re-analysis of publicly available histone modification profiles. Currently, TSCRE contains 1 864 941 dysregulated CREs and 68 253 dysregulated SCREs identified from 1366 human patient samples spanning 17 different cancer types and 9 histone marks. Over 95% of these elements have been validated in public resources. TSCRE offers comprehensive annotations for each element, including associated genes, expression patterns, clinical prognosis, somatic mutations, transcript factor binding sites, cancer-type specificity, and drug response. Additionally, TSCRE integrates pathway and transcript factor enrichment analyses for each study, enabling in-depth functional and mechanistic investigations. Furthermore, TSCRE provides an interactive interface for users to explore any CRE and SCRE of interest. We believe TSCRE will be a highly valuable platform for the community to discover candidate cancer biomarkers.
Collapse
Affiliation(s)
- Guanjie Peng
- Clinical Big Data Research Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, P.R. China
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 510120, China
| | - Bingyuan Liu
- Clinical Big Data Research Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, P.R. China
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 510120, China
| | - Mohan Zheng
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China
| | - Luowanyue Zhang
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China
| | - Huiqin Li
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China
| | - Mengni Liu
- Clinical Big Data Research Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, P.R. China
| | - Yuan Liang
- Clinical Big Data Research Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, P.R. China
| | - Tianjian Chen
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China
| | - Xiaotong Luo
- Guangdong Institute of Gastroenterology, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510060, China
| | - Xianping Shi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 510120, China
| | - Jian Ren
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China
| | - Yueyuan Zheng
- Clinical Big Data Research Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, P.R. China
| |
Collapse
|
5
|
Li R, Wan D, Liang J, Liang H, Huang H, Li G. Pan-cancer analysis of promoter activity quantitative trait loci. NAR Cancer 2023; 5:zcad053. [PMID: 38023732 PMCID: PMC10644876 DOI: 10.1093/narcan/zcad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/29/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Altered promoter activity has been generally observed in diverse biological processes, including tumorigenesis. Accumulating evidence suggests that employing a quantitative trait locus mapping approach is effective in comprehending the genetic basis of promoter activity. By utilizing genotype data from The Cancer Genome Atlas and calculating corresponding promoter activity values using proActiv, we systematically evaluated the impact of genetic variants on promoter activity and identified >1.0 million promoter activity quantitative trait loci (paQTLs) as both cis- and trans-acting. Additionally, leveraging data from the genome-wide association study (GWAS) catalog, we discovered >1.3 million paQTLs that overlap with known GWAS linkage disequilibrium regions. Remarkably, ∼9324 paQTLs exhibited significant associations with patient prognosis. Moreover, investigating the impact of promoter activity on >1000 imputed antitumor therapy responses among pan-cancer patients revealed >43 000 million significant associations. Furthermore, ∼25 000 significant associations were identified between promoter activity and immune cell abundance. Finally, a user-friendly data portal, Pancan-paQTL (https://www.hbpding.com/PancanPaQTL/), was constructed for users to browse, search and download data of interest. Pancan-paQTL serves as a comprehensive multidimensional database, enabling functional and clinical investigations into genetic variants associated with promoter activity, drug responses and immune infiltration across multiple cancer types.
Collapse
Affiliation(s)
- Ran Li
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Dongyi Wan
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Junnan Liang
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Huifang Liang
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Haohao Huang
- Department of Neurosurgery, General Hospital of Central Theatre Command of People’s Liberation Army, Wuhan, Hubei, 430000, China
| | - Ganxun Li
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| |
Collapse
|
6
|
Rocha GIY, Gomes JEM, Leite ML, da Cunha NB, Costa FF. Epigenome-Driven Strategies for Personalized Cancer Immunotherapy. Cancer Manag Res 2023; 15:1351-1367. [PMID: 38058537 PMCID: PMC10697012 DOI: 10.2147/cmar.s272031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/19/2023] [Indexed: 12/08/2023] Open
Abstract
Fighting cancer remains one of the greatest challenges for science in the 21st century. Advances in immunotherapy against different types of cancer have greatly contributed to the treatment, remission, and cure of patients. In this context, knowledge of epigenetic phenomena, their relationship with tumor cells and how the immune system can be epigenetically modulated represent some of the greatest advances in the development of anticancer therapies. Epigenetics is a rapidly growing field that studies how environmental factors can affect gene expression without altering DNA sequence. Epigenomic changes include DNA methylation, histone modifications, and non-coding RNA regulation, which impact cellular function. Epigenetics has shown promise in developing cancer therapies, such as immunotherapy, which aims to stimulate the immune system to attack cancer cells. For example, PD-1 and PD-L1 are biomarkers that regulate the immune response to cancer cells and recent studies have shown that epigenetic modifications can affect their expression, potentially influencing the efficacy of immunotherapy. New therapies targeting epigenetic modifications, such as histone deacetylases and DNA methyltransferases, are being developed for cancer treatment, and some have shown promise in preclinical studies and clinical trials. With growing understanding of epigenetic regulation, we can expect more personalized and effective cancer immunotherapies in the future. This review highlights key advances in the use of epigenetic and epigenomic tools and modern immuno-oncology strategies to treat several types of tumors.
Collapse
Affiliation(s)
| | | | - Michel Lopes Leite
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasília, DF, Brazil
- Department of Cell Biology, Institute of Biological Sciences, Campus Darcy Ribeiro, University of Brasilia (UnB), Brasília, DF, Brazil
| | - Nicolau B da Cunha
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasília, DF, Brazil
- Faculty of Agronomy and Veterinary Medicine (FAV), Campus Darcy Ribeiro, University of Brasilia (UnB), Brasília, DF, Brazil
- Graduate Program in Agronomy, Campus Darcy Ribeiro, University of Brasilia (UnB), Brasília, DF, Brazil
| | - Fabricio F Costa
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasília, DF, Brazil
- Cancer Biology and Epigenomics Program, Northwestern University’s Feinberg School of Medicine, Chicago, IL, USA
- Genomic Enterprise, San FranciscoCA, USA
| |
Collapse
|
7
|
Kim M, Jeong JY, Seo AN. Biomarkers for Predicting Response to Personalized Immunotherapy in Gastric Cancer. Diagnostics (Basel) 2023; 13:2782. [PMID: 37685320 PMCID: PMC10487043 DOI: 10.3390/diagnostics13172782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/21/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Despite advances in diagnostic imaging, surgical techniques, and systemic therapy, gastric cancer (GC) is the third leading cause of cancer-related death worldwide. Unfortunately, molecular heterogeneity and, consequently, acquired resistance in GC are the major causes of failure in the development of biomarker-guided targeted therapies. However, by showing promising survival benefits in some studies, the recent emergence of immunotherapy in GC has had a significant impact on treatment-selectable procedures. Immune checkpoint inhibitors (ICIs), widely indicated in the treatment of several malignancies, target inhibitory receptors on T lymphocytes, including the programmed cell death protein (PD-1)/programmed death-ligand 1 (PD-L1) axis and cytotoxic T-lymphocyte-associated protein 4 (CTLA4), and release effector T-cells from negative feedback signals. In this article, we review currently available predictive biomarkers (including PD-L1, microsatellite instability, Epstein-Barr virus, and tumor mutational burden) that affect the ICI treatment response, focusing on PD-L1 expression. We further briefly describe other potential biomarkers or mechanisms for predicting the response to ICIs in GC. This review may facilitate the expansion of the understanding of biomarkers for predicting the response to ICIs and help select the appropriate therapeutic approaches for patients with GC.
Collapse
Affiliation(s)
- Moonsik Kim
- Department of Pathology, School of Medicine, Kyungpook National University, 136-gil 90, Chilgokjungang-daero, Buk-gu, Daegu 41405, Republic of Korea; (M.K.); (J.Y.J.)
- Department of Pathology, Kyungpook National University Chilgok Hospital, 807 Hogukno, Buk-gu, Daegu 41404, Republic of Korea
| | - Ji Yun Jeong
- Department of Pathology, School of Medicine, Kyungpook National University, 136-gil 90, Chilgokjungang-daero, Buk-gu, Daegu 41405, Republic of Korea; (M.K.); (J.Y.J.)
- Department of Pathology, Kyungpook National University Chilgok Hospital, 807 Hogukno, Buk-gu, Daegu 41404, Republic of Korea
| | - An Na Seo
- Department of Pathology, School of Medicine, Kyungpook National University, 136-gil 90, Chilgokjungang-daero, Buk-gu, Daegu 41405, Republic of Korea; (M.K.); (J.Y.J.)
- Department of Pathology, Kyungpook National University Chilgok Hospital, 807 Hogukno, Buk-gu, Daegu 41404, Republic of Korea
| |
Collapse
|
8
|
Qiu R, Zhao S, Lu C, Xu Z, Shu E, Weng Q, Chen W, Fang S, Chen W, Zheng L, Zhao Z, Yang Y, Ji J. Proteomic analysis of DZIP3 interactome and its role in proliferation and metastasis in gastric cancer cells. Exp Cell Res 2023; 425:113525. [PMID: 36841324 DOI: 10.1016/j.yexcr.2023.113525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/02/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Gastric cancer is a serious malignant tumor in the world, accounting for the third cause of cancer death worldwide. The pathogenesis of gastric cancer is very complex, in which epigenetic inheritance plays an important role. In our study, we found that DZIP3 was significantly up-regulated in gastric cancer tissues as compared to adjacent normal tissue, which suggested it may be play a crucial part in gastric cancer. To clarify the mechanism of it, we further analyzed the interacting proteome and transcriptome of DZIP3. An association between DZIP3 and some epigenetic regulators, such as CUL4B complex, was verified. We also present the first proteomic characterization of the protein-protein interaction (PPI) network of DZIP3. Then, the transcriptome analysis of DZIP3 demonstrated that knockdown DZIP3 increased a cohort of genes, including SETD7 and ZBTB4, which have essential role in tumors. We also revealed that DZIP3 promotes proliferation and metastasis of gastric cancer cells. And the higher expression of DZIP3 is positively associated with the poor prognosis of several cancers. In summary, our study revealed a mechanistic role of DZIP3 in promoting proliferation and metastasis in gastric cancer, supporting the pursuit of DZIP3 as a potential target for gastric cancer therapy.
Collapse
Affiliation(s)
- Rongfang Qiu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Siyu Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Chenying Lu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Ziwei Xu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Enfen Shu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Qiaoyou Weng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Weiqian Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Shiji Fang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Weiyue Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Liyun Zheng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Yang Yang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China.
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China.
| |
Collapse
|
9
|
Ho SWT, Sheng T, Xing M, Ooi WF, Xu C, Sundar R, Huang KK, Li Z, Kumar V, Ramnarayanan K, Zhu F, Srivastava S, Isa ZFBA, Anene-Nzelu CG, Razavi-Mohseni M, Shigaki D, Ma H, Tan ALK, Ong X, Lee MH, Tay ST, Guo YA, Huang W, Li S, Beer MA, Foo RSY, Teh M, Skanderup AJ, Teh BT, Tan P. Regulatory enhancer profiling of mesenchymal-type gastric cancer reveals subtype-specific epigenomic landscapes and targetable vulnerabilities. Gut 2023; 72:226-241. [PMID: 35817555 DOI: 10.1136/gutjnl-2021-326483] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/03/2022] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Gastric cancer (GC) comprises multiple molecular subtypes. Recent studies have highlighted mesenchymal-subtype GC (Mes-GC) as a clinically aggressive subtype with few treatment options. Combining multiple studies, we derived and applied a consensus Mes-GC classifier to define the Mes-GC enhancer landscape revealing disease vulnerabilities. DESIGN Transcriptomic profiles of ~1000 primary GCs and cell lines were analysed to derive a consensus Mes-GC classifier. Clinical and genomic associations were performed across >1200 patients with GC. Genome-wide epigenomic profiles (H3K27ac, H3K4me1 and assay for transposase-accessible chromatin with sequencing (ATAC-seq)) of 49 primary GCs and GC cell lines were generated to identify Mes-GC-specific enhancer landscapes. Upstream regulators and downstream targets of Mes-GC enhancers were interrogated using chromatin immunoprecipitation followed by sequencing (ChIP-seq), RNA sequencing, CRISPR/Cas9 editing, functional assays and pharmacological inhibition. RESULTS We identified and validated a 993-gene cancer-cell intrinsic Mes-GC classifier applicable to retrospective cohorts or prospective single samples. Multicohort analysis of Mes-GCs confirmed associations with poor patient survival, therapy resistance and few targetable genomic alterations. Analysis of enhancer profiles revealed a distinctive Mes-GC epigenomic landscape, with TEAD1 as a master regulator of Mes-GC enhancers and Mes-GCs exhibiting preferential sensitivity to TEAD1 pharmacological inhibition. Analysis of Mes-GC super-enhancers also highlighted NUAK1 kinase as a downstream target, with synergistic effects observed between NUAK1 inhibition and cisplatin treatment. CONCLUSION Our results establish a consensus Mes-GC classifier applicable to multiple transcriptomic scenarios. Mes-GCs exhibit a distinct epigenomic landscape, and TEAD1 inhibition and combinatorial NUAK1 inhibition/cisplatin may represent potential targetable options.
Collapse
Affiliation(s)
- Shamaine Wei Ting Ho
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Taotao Sheng
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Department of Biochemistry, National University of Singapore, Singapore
| | - Manjie Xing
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Wen Fong Ooi
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Chang Xu
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Raghav Sundar
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, National University Hospital, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,The N.1 Institute for Health, National University of Singapore, Singapore.,Singapore Gastric Cancer Consortium, Singapore
| | - Kie Kyon Huang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Zhimei Li
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore
| | - Vikrant Kumar
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | | | - Feng Zhu
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Supriya Srivastava
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Chukwuemeka George Anene-Nzelu
- Cardiovascular Research Institute, National University Health System, Singapore.,Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore.,Montreal Heart Institute, Quebec, Quebec, Canada.,Department of Medicine, University of Montreal, Quebec, Quebec, Canada
| | - Milad Razavi-Mohseni
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Dustin Shigaki
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Haoran Ma
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Angie Lay Keng Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Xuewen Ong
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Ming Hui Lee
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Su Ting Tay
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Yu Amanda Guo
- Computational and Systems Biology, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Weitai Huang
- Computational and Systems Biology, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Shang Li
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Michael A Beer
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Roger Sik Yin Foo
- Cardiovascular Research Institute, National University Health System, Singapore.,Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Ming Teh
- Department of Pathology, National University of Singapore, Singapore
| | - Anders Jacobsen Skanderup
- Computational and Systems Biology, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Bin Tean Teh
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore.,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Patrick Tan
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore .,Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Singapore Gastric Cancer Consortium, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Cellular and Molecular Research, National Cancer Centre, Singapore.,SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore
| |
Collapse
|
10
|
Loe AKH, Zhu L, Kim TH. Chromatin and noncoding RNA-mediated mechanisms of gastric tumorigenesis. Exp Mol Med 2023; 55:22-31. [PMID: 36653445 PMCID: PMC9898530 DOI: 10.1038/s12276-023-00926-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/08/2022] [Accepted: 11/22/2022] [Indexed: 01/20/2023] Open
Abstract
Gastric cancer (GC) is one of the most common and deadly cancers in the world. It is a multifactorial disease highly influenced by environmental factors, which include radiation, smoking, diet, and infectious pathogens. Accumulating evidence suggests that epigenetic regulators are frequently altered in GC, playing critical roles in gastric tumorigenesis. Epigenetic regulation involves DNA methylation, histone modification, and noncoding RNAs. While it is known that environmental factors cause widespread alterations in DNA methylation, promoting carcinogenesis, the chromatin- and noncoding RNA-mediated mechanisms of gastric tumorigenesis are still poorly understood. In this review, we focus on discussing recent discoveries addressing the roles of histone modifiers and noncoding RNAs and the mechanisms of their interactions in gastric tumorigenesis. A better understanding of epigenetic regulation would likely facilitate the development of novel therapeutic approaches targeting specific epigenetic regulators in GC.
Collapse
Affiliation(s)
- Adrian Kwan Ho Loe
- grid.42327.300000 0004 0473 9646Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4 Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8 Canada
| | - Lexin Zhu
- grid.42327.300000 0004 0473 9646Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4 Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8 Canada
| | - Tae-Hee Kim
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
11
|
Dieseldorff Jones K, Putnam D, Williams J, Chen X. A Guide to MethylationToActivity: A Deep Learning Framework That Reveals Promoter Activity Landscapes from DNA Methylomes in Individual Tumors. Methods Mol Biol 2023; 2624:73-85. [PMID: 36723810 DOI: 10.1007/978-1-0716-2962-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Genome-wide DNA methylomes have contributed greatly to tumor detection and subclassification. However, interpreting the biological impact of the DNA methylome at the individual gene level remains a challenge. MethylationToActivity (M2A) is a pipeline that uses convolutional neural networks to infer H3K4me3 and H3K27ac enrichment from DNA methylomes and thus infer promoter activity. It was shown to be highly accurate and robust in revealing promoter activity landscapes in various pediatric and adult cancers. The following will present a user-friendly guide through the model pipeline.
Collapse
Affiliation(s)
| | - Daniel Putnam
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Justin Williams
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
12
|
Liu Y, Chen C, Wang X, Sun Y, Zhang J, Chen J, Shi Y. An Epigenetic Role of Mitochondria in Cancer. Cells 2022; 11:cells11162518. [PMID: 36010594 PMCID: PMC9406960 DOI: 10.3390/cells11162518] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are not only the main energy supplier but are also the cell metabolic center regulating multiple key metaborates that play pivotal roles in epigenetics regulation. These metabolites include acetyl-CoA, α-ketoglutarate (α-KG), S-adenosyl methionine (SAM), NAD+, and O-linked beta-N-acetylglucosamine (O-GlcNAc), which are the main substrates for DNA methylation and histone post-translation modifications, essential for gene transcriptional regulation and cell fate determination. Tumorigenesis is attributed to many factors, including gene mutations and tumor microenvironment. Mitochondria and epigenetics play essential roles in tumor initiation, evolution, metastasis, and recurrence. Targeting mitochondrial metabolism and epigenetics are promising therapeutic strategies for tumor treatment. In this review, we summarize the roles of mitochondria in key metabolites required for epigenetics modification and in cell fate regulation and discuss the current strategy in cancer therapies via targeting epigenetic modifiers and related enzymes in metabolic regulation. This review is an important contribution to the understanding of the current metabolic-epigenetic-tumorigenesis concept.
Collapse
Affiliation(s)
- Yu’e Liu
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Chao Chen
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Xinye Wang
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yihong Sun
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Juxiang Chen
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
- Correspondence: (J.C.); (Y.S.)
| | - Yufeng Shi
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai 200092, China
- Correspondence: (J.C.); (Y.S.)
| |
Collapse
|
13
|
Sundar R, Huang KK, Kumar V, Ramnarayanan K, Demircioglu D, Her Z, Ong X, Bin Adam Isa ZF, Xing M, Tan ALK, Tai DWM, Choo SP, Zhai W, Lim JQ, Das Thakur M, Molinero L, Cha E, Fasso M, Niger M, Pietrantonio F, Lee J, Jeyasekharan AD, Qamra A, Patnala R, Fabritius A, De Simone M, Yeong J, Ng CCY, Rha SY, Narita Y, Muro K, Guo YA, Skanderup AJ, So JBY, Yong WP, Chen Q, Göke J, Tan P. Epigenetic promoter alterations in GI tumour immune-editing and resistance to immune checkpoint inhibition. Gut 2022; 71:1277-1288. [PMID: 34433583 PMCID: PMC9185816 DOI: 10.1136/gutjnl-2021-324420] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Epigenomic alterations in cancer interact with the immune microenvironment to dictate tumour evolution and therapeutic response. We aimed to study the regulation of the tumour immune microenvironment through epigenetic alternate promoter use in gastric cancer and to expand our findings to other gastrointestinal tumours. DESIGN Alternate promoter burden (APB) was quantified using a novel bioinformatic algorithm (proActiv) to infer promoter activity from short-read RNA sequencing and samples categorised into APBhigh, APBint and APBlow. Single-cell RNA sequencing was performed to analyse the intratumour immune microenvironment. A humanised mouse cancer in vivo model was used to explore dynamic temporal interactions between tumour kinetics, alternate promoter usage and the human immune system. Multiple cohorts of gastrointestinal tumours treated with immunotherapy were assessed for correlation between APB and treatment outcomes. RESULTS APBhigh gastric cancer tumours expressed decreased levels of T-cell cytolytic activity and exhibited signatures of immune depletion. Single-cell RNAsequencing analysis confirmed distinct immunological populations and lower T-cell proportions in APBhigh tumours. Functional in vivo studies using 'humanised mice' harbouring an active human immune system revealed distinct temporal relationships between APB and tumour growth, with APBhigh tumours having almost no human T-cell infiltration. Analysis of immunotherapy-treated patients with GI cancer confirmed resistance of APBhigh tumours to immune checkpoint inhibition. APBhigh gastric cancer exhibited significantly poorer progression-free survival compared with APBlow (median 55 days vs 121 days, HR 0.40, 95% CI 0.18 to 0.93, p=0.032). CONCLUSION These findings demonstrate an association between alternate promoter use and the tumour microenvironment, leading to immune evasion and immunotherapy resistance.
Collapse
Affiliation(s)
- Raghav Sundar
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Hospital, Singapore .,Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,The N.1 Institute for Health, National University of Singapore, Singapore.,Singapore Gastric Cancer Consortium, Singapore
| | - Kie-Kyon Huang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Vikrant Kumar
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | | | - Deniz Demircioglu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Zhisheng Her
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Xuewen Ong
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Zul Fazreen Bin Adam Isa
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore,Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore,Diagnostic Development Hub (DxD), Agency for Science, Technology and Research, Singapore
| | - Manjie Xing
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore,Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore,Diagnostic Development Hub (DxD), Agency for Science, Technology and Research, Singapore
| | - Angie Lay-Keng Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | | | - Su Pin Choo
- Division of Medical Oncology, National Cancer Centre, Singapore,Curie Oncology, Singapore
| | - Weiwei Zhai
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Jia Qi Lim
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Meghna Das Thakur
- Department of Development Sciences, Genentech, San Francisco, California, USA
| | - Luciana Molinero
- Department of Development Sciences, Genentech, San Francisco, California, USA
| | - Edward Cha
- Department of Development Sciences, Genentech, San Francisco, California, USA
| | - Marcella Fasso
- Department of Development Sciences, Genentech, San Francisco, California, USA
| | - Monica Niger
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Anand D Jeyasekharan
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Hospital, Singapore,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Aditi Qamra
- Statistical Programming and Analytics, Roche Canada, Mississauga, Ontario, Canada,University Health Network, Toronto, Ontario, Canada
| | | | | | | | - Joe Yeong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Cedric Chuan Young Ng
- Laboratory of Cancer Epigenome, Department of Medical Sciences, National Cancer Centre, Singapore
| | - Sun Young Rha
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea,Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Yukiya Narita
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Kei Muro
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Yu Amanda Guo
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | | | - Jimmy Bok Yan So
- Singapore Gastric Cancer Consortium, Singapore,Department of Surgery, National University Hospital, Singapore,Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wei Peng Yong
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Hospital, Singapore,Singapore Gastric Cancer Consortium, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jonathan Göke
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Patrick Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore .,Singapore Gastric Cancer Consortium, Singapore.,Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore.,SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
14
|
Dobosz P, Stempor PA, Ramírez Moreno M, Bulgakova NA. Transcriptional and post-transcriptional regulation of checkpoint genes on the tumour side of the immunological synapse. Heredity (Edinb) 2022; 129:64-74. [PMID: 35459932 PMCID: PMC9273643 DOI: 10.1038/s41437-022-00533-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is a disease of the genome, therefore, its development has a clear Mendelian component, demonstrated by well-studied genes such as BRCA1 and BRCA2 in breast cancer risk. However, it is known that a single genetic variant is not enough for cancer to develop leading to the theory of multistage carcinogenesis. In many cases, it is a sequence of events, acquired somatic mutations, or simply polygenic components with strong epigenetic effects, such as in the case of brain tumours. The expression of many genes is the product of the complex interplay between several factors, including the organism's genotype (in most cases Mendelian-inherited), genetic instability, epigenetic factors (non-Mendelian-inherited) as well as the immune response of the host, to name just a few. In recent years the importance of the immune system has been elevated, especially in the light of the immune checkpoint genes discovery and the subsequent development of their inhibitors. As the expression of these genes normally suppresses self-immunoreactivity, their expression by tumour cells prevents the elimination of the tumour by the immune system. These discoveries led to the rapid growth of the field of immuno-oncology that offers new possibilities of long-lasting and effective treatment options. Here we discuss the recent advances in the understanding of the key mechanisms controlling the expression of immune checkpoint genes in tumour cells.
Collapse
Affiliation(s)
- Paula Dobosz
- Central Clinical Hospital of the Ministry of Interior Affairs and Administration in Warsaw, Warsaw, Poland
| | | | - Miguel Ramírez Moreno
- School of Biosciences and Bateson Centre, The University of Sheffield, Sheffield, UK
| | - Natalia A Bulgakova
- School of Biosciences and Bateson Centre, The University of Sheffield, Sheffield, UK.
| |
Collapse
|
15
|
Sundar R, Barr Kumarakulasinghe N, Huak Chan Y, Yoshida K, Yoshikawa T, Miyagi Y, Rino Y, Masuda M, Guan J, Sakamoto J, Tanaka S, Tan ALK, Hoppe MM, Jeyasekharan AD, Ng CCY, De Simone M, Grabsch HI, Lee J, Oshima T, Tsuburaya A, Tan P. Machine-learning model derived gene signature predictive of paclitaxel survival benefit in gastric cancer: results from the randomised phase III SAMIT trial. Gut 2022; 71:676-685. [PMID: 33980610 PMCID: PMC8921574 DOI: 10.1136/gutjnl-2021-324060] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To date, there are no predictive biomarkers to guide selection of patients with gastric cancer (GC) who benefit from paclitaxel. Stomach cancer Adjuvant Multi-Institutional group Trial (SAMIT) was a 2×2 factorial randomised phase III study in which patients with GC were randomised to Pac-S-1 (paclitaxel +S-1), Pac-UFT (paclitaxel +UFT), S-1 alone or UFT alone after curative surgery. DESIGN The primary objective of this study was to identify a gene signature that predicts survival benefit from paclitaxel chemotherapy in GC patients. SAMIT GC samples were profiled using a customised 476 gene NanoString panel. A random forest machine-learning model was applied on the NanoString profiles to develop a gene signature. An independent cohort of metastatic patients with GC treated with paclitaxel and ramucirumab (Pac-Ram) served as an external validation cohort. RESULTS From the SAMIT trial 499 samples were analysed in this study. From the Pac-S-1 training cohort, the random forest model generated a 19-gene signature assigning patients to two groups: Pac-Sensitive and Pac-Resistant. In the Pac-UFT validation cohort, Pac-Sensitive patients exhibited a significant improvement in disease free survival (DFS): 3-year DFS 66% vs 40% (HR 0.44, p=0.0029). There was no survival difference between Pac-Sensitive and Pac-Resistant in the UFT or S-1 alone arms, test of interaction p<0.001. In the external Pac-Ram validation cohort, the signature predicted benefit for Pac-Sensitive (median PFS 147 days vs 112 days, HR 0.48, p=0.022). CONCLUSION Using machine-learning techniques on one of the largest GC trials (SAMIT), we identify a gene signature representing the first predictive biomarker for paclitaxel benefit. TRIAL REGISTRATION NUMBER UMIN Clinical Trials Registry: C000000082 (SAMIT); ClinicalTrials.gov identifier, 02628951 (South Korean trial).
Collapse
Affiliation(s)
- Raghav Sundar
- Department of Haematology-Oncology, National University Cancer Institute Singapore, National University Hospital, Singapore,Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore,The N.1 Institute for Health, National University of Singapore, Singapore
| | | | - Yiong Huak Chan
- Biostatistics Unit, Yong Loo Lin School of Medicine, National University Singapore, Singapore
| | - Kazuhiro Yoshida
- Department of Surgical Oncology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takaki Yoshikawa
- Department of Gastric Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Yohei Miyagi
- Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Yasushi Rino
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Munetaka Masuda
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Jia Guan
- Department of Clinical Biostatistics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Shiro Tanaka
- Department of Clinical Biostatistics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Angie Lay-Keng Tan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - Michal Marek Hoppe
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Anand D. Jeyasekharan
- Department of Haematology-Oncology, National University Cancer Institute Singapore, National University Hospital, Singapore,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Cedric Chuan Young Ng
- Laboratory of Cancer Epigenome, Department of Medical Sciences, National Cancer Centre Singapore, Singapore
| | | | - Heike I. Grabsch
- Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands,Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Jeeyun Lee
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Gangnam-gu, Republic of Korea
| | - Takashi Oshima
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | | | - Patrick Tan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore .,Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Genome Institute of Singapore, Singapore.,SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
16
|
Abstract
Gastric cancer (GC) is a leading contributor to global cancer incidence and mortality. Pioneering genomic studies, focusing largely on primary GCs, revealed driver alterations in genes such as ERBB2, FGFR2, TP53 and ARID1A as well as multiple molecular subtypes. However, clinical efforts targeting these alterations have produced variable results, hampered by complex co-alteration patterns in molecular profiles and intra-patient genomic heterogeneity. In this Review, we highlight foundational and translational advances in dissecting the genomic cartography of GC, including non-coding variants, epigenomic aberrations and transcriptomic alterations, and describe how these alterations interplay with environmental influences, germline factors and the tumour microenvironment. Mapping of these alterations over the GC life cycle in normal gastric tissues, metaplasia, primary carcinoma and distant metastasis will improve our understanding of biological mechanisms driving GC development and promoting cancer hallmarks. On the translational front, integrative genomic approaches are identifying diverse mechanisms of GC therapy resistance and emerging preclinical targets, enabled by technologies such as single-cell sequencing and liquid biopsies. Validating these insights will require specifically designed GC cohorts, converging multi-modal genomic data with longitudinal data on therapeutic challenges and patient outcomes. Genomic findings from these studies will facilitate 'next-generation' clinical initiatives in GC precision oncology and prevention.
Collapse
Affiliation(s)
- Khay Guan Yeoh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Gastroenterology and Hepatology, National University Health System, Singapore, Singapore
- Singapore Gastric Cancer Consortium, Singapore, Singapore
| | - Patrick Tan
- Singapore Gastric Cancer Consortium, Singapore, Singapore.
- Cancer and Stem Cell Biology, Duke-NUS Medical School Singapore, Singapore, Singapore.
- Genome Institute of Singapore, Singapore, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
17
|
Dong Y, Liu X, Jiang B, Wei S, Xiang B, Liao R, Wang Q, He X. A Genome-Wide Investigation of Effects of Aberrant DNA Methylation on the Usage of Alternative Promoters in Hepatocellular Carcinoma. Front Oncol 2022; 11:780266. [PMID: 35111672 PMCID: PMC8803206 DOI: 10.3389/fonc.2021.780266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The alternative usage of promoters provides a way to regulate gene expression, has a significant influence on the transcriptome, and contributes to the cellular transformation of cancer. However, the function of alternative promoters (APs) in hepatocellular carcinoma (HCC) has not been systematically studied yet. In addition, the potential mechanism of regulation to the usage of APs remains unclear. DNA methylation, one of the most aberrant epigenetic modifications in cancers, is known to regulate transcriptional activity. Whether DNA methylation regulates the usage of APs needs to be explored. Here, we aim to investigate the effects of DNA methylation on usage of APs in HCC. METHODS Promoter activities were calculated based on RNA-seq data. Functional enrichment analysis was implemented to conduct GO terms. Correlation tests were used to detect the correlation between promoter activity and methylation status. The LASSO regression model was used to generate a diagnostic model. Kaplan-Meier analysis was used to compare the overall survival between high and low methylation groups. RNA-seq and whole-genome bisulfite sequencing (WGBS) in HCC samples were performed to validate the correlation of promoter activity and methylation. RESULTS We identified 855 APs in total, which could be well used to distinguish cancer from normal samples. The correlation of promoter activity and DNA methylation in APs was observed, and the APs with negative correlation were defined as methylation-regulated APs (mrAPs). Six mrAPs were identified to generate a diagnostic model with good performance (AUC = 0.97). Notably, the majority of mrAPs had CpG sites that could be used to predict clinical outcomes by methylation status. Finally, we verified 85.6% of promoter activity variation and 92.3% of methylation changes in our paired RNA-seq and WGBS samples, respectively. The negative correlation between promoter activity and methylation status was further confirmed in our HCC samples. CONCLUSION The aberrant methylation status plays a critical role in the precision usage of APs in HCC, which sheds light on the mechanism of cancer development and provides a new insight into cancer screening and treatment.
Collapse
Affiliation(s)
- Yuting Dong
- Department of Physiology, School of Basic Medical Science, Huazhong University of Science and Technology, Wuhan, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaozhao Liu
- Department of Physiology, School of Basic Medical Science, Huazhong University of Science and Technology, Wuhan, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Bijun Jiang
- Department of Physiology, School of Basic Medical Science, Huazhong University of Science and Technology, Wuhan, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Siting Wei
- Department of Physiology, School of Basic Medical Science, Huazhong University of Science and Technology, Wuhan, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Bangde Xiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ruichu Liao
- Department of Physiology, School of Basic Medical Science, Huazhong University of Science and Technology, Wuhan, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuyan Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi, Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Ximiao He
- Department of Physiology, School of Basic Medical Science, Huazhong University of Science and Technology, Wuhan, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Li M, Kaili D, Shi L. Biomarkers for response to immune checkpoint inhibitors in gastrointestinal cancers. World J Gastrointest Oncol 2022; 14:19-37. [PMID: 35116101 PMCID: PMC8790411 DOI: 10.4251/wjgo.v14.i1.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/08/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal (GI) cancers account for a large proportion of cancer deaths worldwide and pose a major public health challenge. Immunotherapy is considered to be one of the prominent and successful approaches in cancer treatment in recent years. Among them, immune checkpoint inhibitor (ICI) therapy, has received widespread attention, and many clinical findings support the feasibility of ICIs, with sustained responses and significantly prolonged lifespan observed in a wide range of tumors. However, patients treated with ICIs have not fully benefited, and therefore, the identification and development of biomarkers for predicting ICI treatment response have received further attention and exploration. From tumor genome to molecular interactions in the tumor microenvironment, and further expanding to circulating biomarkers and patient characteristics, the exploration of biomarkers is evolving with high-throughput sequencing as well as bioinformatics. More large-scale prospective and specific studies are needed to explore biomarkers in GI cancers. In this review, we summarize the known biomarkers used in ICI therapy for GI tumors. In addition, some ICI biomarkers applied to other tumors are included to provide insights and further validation for GI tumors. Moreover, we present single-cell analysis and machine learning approaches that have emerged in recent years. Although there are no clear applications yet, it can be expected that these techniques will play an important role in the application of biomarker prediction.
Collapse
Affiliation(s)
- Meng Li
- School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Denis Kaili
- Department of Surgery, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, United States
| | - Lei Shi
- School of Life Sciences, Chongqing University, Chongqing 400044, China
| |
Collapse
|
19
|
Ye B, Fan D, Xiong W, Li M, Yuan J, Jiang Q, Zhao Y, Lin J, Liu J, Lv Y, Wang X, Li Z, Su J, Qiao Y. Oncogenic enhancers drive esophageal squamous cell carcinogenesis and metastasis. Nat Commun 2021; 12:4457. [PMID: 34294701 PMCID: PMC8298514 DOI: 10.1038/s41467-021-24813-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 07/01/2021] [Indexed: 01/27/2023] Open
Abstract
The role of cis-elements and their aberrations remains unclear in esophageal squamous cell carcinoma (ESCC, further abbreviated EC). Here we survey 28 H3K27ac-marked active enhancer profiles and 50 transcriptomes in primary EC, metastatic lymph node cancer (LNC), and adjacent normal (Nor) esophageal tissues. Thousands of gained or lost enhancers and hundreds of altered putative super-enhancers are identified in EC and LNC samples respectively relative to Nor, with a large number of common gained or lost enhancers. Moreover, these differential enhancers contribute to the transcriptomic aberrations in ECs and LNCs. We also reveal putative driver onco-transcription factors, depletion of which diminishes cell proliferation and migration. The administration of chemical inhibitors to suppress the predicted targets of gained super-enhances reveals HSP90AA1 and PDE4B as potential therapeutic targets for ESCC. Thus, our epigenomic profiling reveals a compendium of reprogrammed cis-regulatory elements during ESCC carcinogenesis and metastasis for uncovering promising targets for cancer treatment.
Collapse
Affiliation(s)
- Bo Ye
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Dandan Fan
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Weiwei Xiong
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Min Li
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jian Yuan
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qi Jiang
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yuting Zhao
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
- Guangzhou University & Zhongshan People's Hospital Joint Biomedical Institute, Guangzhou, China
| | - Jianxiang Lin
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jie Liu
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yilv Lv
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Xiongjun Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Zhigang Li
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China.
| | - Jianzhong Su
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.
| | - Yunbo Qiao
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China.
| |
Collapse
|
20
|
Integrative RNA-Seq and H3 Trimethylation ChIP-Seq Analysis of Human Lung Cancer Cells Isolated by Laser-Microdissection. Cancers (Basel) 2021; 13:cancers13071719. [PMID: 33916417 PMCID: PMC8038546 DOI: 10.3390/cancers13071719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Tissue heterogeneity is one of the major problems in cancer genomics. Thus, we developed and conducted an RNA-Seq and ChIP-Seq integrative analysis of clinical lung tissue samples with the isolation of specific cell populations using laser-microdissection microscopy (LMD). The transcriptomic profile was successfully captured and somatically altered regions marked by histone H3 lysine 4 trimethylation (H3K4me3) were identified in lung cancer. We also observed the differential expressions of cancer-related genes near the altered proximal H3K4me3 regions, while altered distal H3K4me3 regions were overlapped with enhancer activity annotations of cancer regulatory genes. Additionally, proximal tumor-gained promoters were associated with the core components of polycomb repressive complex 2. Our study demonstrates the practical workflow of using LMD on clinical samples for integrative analyses, which improves the overall understanding of genetic and epigenetic dysregulation of malignancy. Abstract Our previous integrative study in gastric cancer discovered cryptic promoter activation events that drive the expression of important developmental genes. However, it was unclear if such cancer-associated epigenetic changes occurred in cancer cells or other cell types in bulk tissue samples. An integrative analysis consisting of RNA-Seq and H3K4me3 ChIP-Seq was used. This workflow was applied to a set of matched normal lung tissues and non-small cell lung cancer (NSCLC) tissues, for which the stroma and tumor cell parts could be isolated by laser-microdissection microscopy (LMD). RNA-Seq analysis showed subtype-specific differential expressed genes and enriched pathways in NSCLC. ChIP-Seq analysis results suggested that the proximal altered H3K4me3 regions were located at differentially expressed genes involved in cancer-related pathways, while altered distal H3K4me3 regions were annotated with enhancer activity of cancer regulatory genes. Interestingly, integration with ENCODE data revealed that proximal tumor-gained promoters were associated with EZH2 and SUZ12 occupancies, which are the core components of polycomb repressive complex 2 (PRC2). This study used LMD on clinical samples for an integrative analysis to overcome the tissue heterogeneity problem in cancer research. The results also contribute to the overall understanding of genetic and epigenetic dysregulation of lung malignancy.
Collapse
|
21
|
Gunasinghe SD, Peres NG, Goyette J, Gaus K. Biomechanics of T Cell Dysfunctions in Chronic Diseases. Front Immunol 2021; 12:600829. [PMID: 33717081 PMCID: PMC7948521 DOI: 10.3389/fimmu.2021.600829] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding the mechanisms behind T cell dysfunctions during chronic diseases is critical in developing effective immunotherapies. As demonstrated by several animal models and human studies, T cell dysfunctions are induced during chronic diseases, spanning from infections to cancer. Although factors governing the onset and the extent of the functional impairment of T cells can differ during infections and cancer, most dysfunctional phenotypes share common phenotypic traits in their immune receptor and biophysical landscape. Through the latest developments in biophysical techniques applied to explore cell membrane and receptor-ligand dynamics, we are able to dissect and gain further insights into the driving mechanisms behind T cell dysfunctions. These insights may prove useful in developing immunotherapies aimed at reinvigorating our immune system to fight off infections and malignancies more effectively. The recent success with checkpoint inhibitors in treating cancer opens new avenues to develop more effective, targeted immunotherapies. Here, we highlight the studies focused on the transformation of the biophysical landscape during infections and cancer, and how T cell biomechanics shaped the immunopathology associated with chronic diseases.
Collapse
Affiliation(s)
- Sachith D Gunasinghe
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Newton G Peres
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Jesse Goyette
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
22
|
Davies R, Liu L, Taotao S, Tuano N, Chaturvedi R, Huang KK, Itman C, Mandoli A, Qamra A, Hu C, Powell D, Daly RJ, Tan P, Rosenbluh J. CRISPRi enables isoform-specific loss-of-function screens and identification of gastric cancer-specific isoform dependencies. Genome Biol 2021; 22:47. [PMID: 33499898 PMCID: PMC7836456 DOI: 10.1186/s13059-021-02266-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 01/07/2021] [Indexed: 12/26/2022] Open
Abstract
Introduction Genes contain multiple promoters that can drive the expression of various transcript isoforms. Although transcript isoforms from the same gene could have diverse and non-overlapping functions, current loss-of-function methodologies are not able to differentiate between isoform-specific phenotypes. Results Here, we show that CRISPR interference (CRISPRi) can be adopted for targeting specific promoters within a gene, enabling isoform-specific loss-of-function genetic screens. We use this strategy to test functional dependencies of 820 transcript isoforms that are gained in gastric cancer (GC). We identify a subset of GC-gained transcript isoform dependencies, and of these, we validate CIT kinase as a novel GC dependency. We further show that some genes express isoforms with opposite functions. Specifically, we find that the tumour suppressor ZFHX3 expresses an isoform that has a paradoxical oncogenic role that correlates with poor patient outcome. Conclusions Our work finds isoform-specific phenotypes that would not be identified using current loss-of-function approaches that are not designed to target specific transcript isoforms. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-021-02266-6.
Collapse
Affiliation(s)
- Rebecca Davies
- Cancer Research Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Ling Liu
- Cancer Research Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Sheng Taotao
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.,Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore, 138672, Singapore.,SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore, 169856, Singapore.,Cellular and Molecular Research, National Cancer Centre, Singapore, 169610, Singapore.,Singapore Gastric Cancer Consortium, Singapore, 119074, Singapore
| | - Natasha Tuano
- Cancer Research Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Richa Chaturvedi
- Cancer Research Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Kie Kyon Huang
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.,Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore, 138672, Singapore.,SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore, 169856, Singapore.,Cellular and Molecular Research, National Cancer Centre, Singapore, 169610, Singapore.,Singapore Gastric Cancer Consortium, Singapore, 119074, Singapore
| | - Catherine Itman
- Functional Genomics Platform, Monash University, Clayton, VIC, 3800, Australia
| | - Amit Mandoli
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Aditi Qamra
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.,Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore, 138672, Singapore.,SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore, 169856, Singapore.,Cellular and Molecular Research, National Cancer Centre, Singapore, 169610, Singapore.,Singapore Gastric Cancer Consortium, Singapore, 119074, Singapore
| | - Changyuan Hu
- Cancer Research Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - David Powell
- Monash Bioinformatics Platform, Monash University, Clayton, VIC, 3800, Australia
| | - Roger J Daly
- Cancer Research Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Patrick Tan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore. .,Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore. .,Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore, 138672, Singapore. .,SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore, 169856, Singapore. .,Cellular and Molecular Research, National Cancer Centre, Singapore, 169610, Singapore. .,Singapore Gastric Cancer Consortium, Singapore, 119074, Singapore.
| | - Joseph Rosenbluh
- Cancer Research Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia. .,Functional Genomics Platform, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
23
|
Huang KK, Huang J, Wu JKL, Lee M, Tay ST, Kumar V, Ramnarayanan K, Padmanabhan N, Xu C, Tan ALK, Chan C, Kappei D, Göke J, Tan P. Long-read transcriptome sequencing reveals abundant promoter diversity in distinct molecular subtypes of gastric cancer. Genome Biol 2021; 22:44. [PMID: 33482911 PMCID: PMC7821541 DOI: 10.1186/s13059-021-02261-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Deregulated gene expression is a hallmark of cancer; however, most studies to date have analyzed short-read RNA sequencing data with inherent limitations. Here, we combine PacBio long-read isoform sequencing (Iso-Seq) and Illumina paired-end short-read RNA sequencing to comprehensively survey the transcriptome of gastric cancer (GC), a leading cause of global cancer mortality. RESULTS We performed full-length transcriptome analysis across 10 GC cell lines covering four major GC molecular subtypes (chromosomal unstable, Epstein-Barr positive, genome stable and microsatellite unstable). We identify 60,239 non-redundant full-length transcripts, of which > 66% are novel compared to current transcriptome databases. Novel isoforms are more likely to be cell line and subtype specific, expressed at lower levels with larger number of exons, with longer isoform/coding sequence lengths. Most novel isoforms utilize an alternate first exon, and compared to other alternative splicing categories, are expressed at higher levels and exhibit higher variability. Collectively, we observe alternate promoter usage in 25% of detected genes, with the majority (84.2%) of known/novel promoter pairs exhibiting potential changes in their coding sequences. Mapping these alternate promoters to TCGA GC samples, we identify several cancer-associated isoforms, including novel variants of oncogenes. Tumor-specific transcript isoforms tend to alter protein coding sequences to a larger extent than other isoforms. Analysis of outcome data suggests that novel isoforms may impart additional prognostic information. CONCLUSIONS Our results provide a rich resource of full-length transcriptome data for deeper studies of GC and other gastrointestinal malignancies.
Collapse
Affiliation(s)
- Kie Kyon Huang
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857 Singapore
| | - Jiawen Huang
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857 Singapore
| | - Jeanie Kar Leng Wu
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857 Singapore
| | - Minghui Lee
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857 Singapore
| | - Su Ting Tay
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857 Singapore
| | - Vikrant Kumar
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857 Singapore
| | - Kalpana Ramnarayanan
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857 Singapore
| | - Nisha Padmanabhan
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857 Singapore
| | - Chang Xu
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857 Singapore
| | - Angie Lay Keng Tan
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857 Singapore
| | - Charlene Chan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599 Singapore
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599 Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596 Singapore
| | - Jonathan Göke
- Genome Institute of Singapore, Singapore, 138672 Singapore
| | - Patrick Tan
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857 Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599 Singapore
- Genome Institute of Singapore, Singapore, 138672 Singapore
- SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore, 169609 Singapore
| |
Collapse
|
24
|
Williams J, Xu B, Putnam D, Thrasher A, Li C, Yang J, Chen X. MethylationToActivity: a deep-learning framework that reveals promoter activity landscapes from DNA methylomes in individual tumors. Genome Biol 2021; 22:24. [PMID: 33461601 PMCID: PMC7814737 DOI: 10.1186/s13059-020-02220-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022] Open
Abstract
Although genome-wide DNA methylomes have demonstrated their clinical value as reliable biomarkers for tumor detection, subtyping, and classification, their direct biological impacts at the individual gene level remain elusive. Here we present MethylationToActivity (M2A), a machine learning framework that uses convolutional neural networks to infer promoter activities based on H3K4me3 and H3K27ac enrichment, from DNA methylation patterns for individual genes. Using publicly available datasets in real-world test scenarios, we demonstrate that M2A is highly accurate and robust in revealing promoter activity landscapes in various pediatric and adult cancers, including both solid and hematologic malignant neoplasms.
Collapse
Affiliation(s)
- Justin Williams
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1135, Memphis, TN, 38105, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel Putnam
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1135, Memphis, TN, 38105, USA
| | - Andrew Thrasher
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1135, Memphis, TN, 38105, USA
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jun Yang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1135, Memphis, TN, 38105, USA.
| |
Collapse
|
25
|
Mpakali A, Stratikos E. The Role of Antigen Processing and Presentation in Cancer and the Efficacy of Immune Checkpoint Inhibitor Immunotherapy. Cancers (Basel) 2021; 13:E134. [PMID: 33406696 PMCID: PMC7796214 DOI: 10.3390/cancers13010134] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023] Open
Abstract
Recent clinical successes of cancer immunotherapy using immune checkpoint inhibitors (ICIs) are rapidly changing the landscape of cancer treatment. Regardless of initial impressive clinical results though, the therapeutic benefit of ICIs appears to be limited to a subset of patients and tumor types. Recent analyses have revealed that the potency of ICI therapies depends on the efficient presentation of tumor-specific antigens by cancer cells and professional antigen presenting cells. Here, we review current knowledge on the role of antigen presentation in cancer. We focus on intracellular antigen processing and presentation by Major Histocompatibility class I (MHCI) molecules and how it can affect cancer immune evasion. Finally, we discuss the pharmacological tractability of manipulating intracellular antigen processing as a complementary approach to enhance tumor immunogenicity and the effectiveness of ICI immunotherapy.
Collapse
Affiliation(s)
- Anastasia Mpakali
- National Centre for Scientific Research Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Efstratios Stratikos
- National Centre for Scientific Research Demokritos, Agia Paraskevi, 15341 Athens, Greece
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15784 Athens, Greece
| |
Collapse
|
26
|
Lee DY. Cancer Epigenomics and Beyond: Advancing the Precision Oncology Paradigm. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2020; 3:147-156. [PMID: 35665374 PMCID: PMC9165444 DOI: 10.36401/jipo-20-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/14/2020] [Indexed: 06/15/2023]
Abstract
How cancers are characterized and treated has evolved over the past few decades. Major advances in genomics tools and techniques have revealed interlinked regulatory pathways of cancers with unprecedented detail. Early discoveries led to success with rationally targeted small molecules and more recently with immunomodulatory agents, setting the stage for precision oncology. However, drug resistance to every agent has thus far proven intractable, sending us back to fill the gaps in our rudimentary knowledge of tumor biology. Epigenetics is emerging as a fundamental process in every hallmark of cancer. Large-scale interrogation of the cancer epigenome continues to reveal new mechanisms of astounding complexity. In this review, I present selected experimental and clinical examples that have shaped our understanding of cancer at the molecular level. Translation of our collective erudition into revolutionary diagnostic and treatment strategies will advance the precision oncology paradigm.
Collapse
Affiliation(s)
- Daniel Y. Lee
- InSilico Genomics, Inc., Houston, TX, USA
- Department of Radiology, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
27
|
Kang N, Eccleston M, Clermont PL, Latarani M, Male DK, Wang Y, Crea F. EZH2 inhibition: a promising strategy to prevent cancer immune editing. Epigenomics 2020; 12:1457-1476. [PMID: 32938196 PMCID: PMC7607396 DOI: 10.2217/epi-2020-0186] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
Immunotherapies are revolutionizing the clinical management of a wide range of cancers. However, intrinsic or acquired unresponsiveness to immunotherapies does occur due to the dynamic cancer immunoediting which ultimately leads to immune escape. The evolutionarily conserved histone modifier enhancer of zeste 2 (EZH2) is aberrantly overexpressed in a number of human cancers. Accumulating studies indicate that EZH2 is a main driver of cancer cells' immunoediting and mediate immune escape through downregulating immune recognition and activation, upregulating immune checkpoints and creating an immunosuppressive tumor microenvironment. In this review, we overviewed the roles of EZH2 in cancer immunoediting, the preclinical and clinical studies of current pharmacologic EZH2 inhibitors and the prospects for EZH2 inhibitor and immunotherapy combination for cancer treatment.
Collapse
Affiliation(s)
- Ning Kang
- Department of Experimental Therapeutics, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Mark Eccleston
- Belgian Volition SPRL, Parc Scientifique Créalys, Rue Phocas Lejeune 22, BE-5032 Isnes, Belgium
| | - Pier-Luc Clermont
- Faculty of Medicine, Université Laval, 1050, avenue de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Maryam Latarani
- Cancer Research Group, School of Life Health & Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - David Kingsley Male
- Cancer Research Group, School of Life Health & Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Yuzhuo Wang
- Department of Experimental Therapeutics, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
- Department of Urologic Sciences, The Vancouver Prostate Centre, The University of British Columbia, 2660 Oak St, Vancouver, BC, V6H 3Z6, Canada
| | - Francesco Crea
- Cancer Research Group, School of Life Health & Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| |
Collapse
|
28
|
Canale M, Casadei-Gardini A, Ulivi P, Arechederra M, Berasain C, Lollini PL, Fernández-Barrena MG, Avila MA. Epigenetic Mechanisms in Gastric Cancer: Potential New Therapeutic Opportunities. Int J Mol Sci 2020; 21:E5500. [PMID: 32752096 PMCID: PMC7432799 DOI: 10.3390/ijms21155500] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is one of the deadliest malignancies worldwide. Complex disease heterogeneity, late diagnosis, and suboptimal therapies result in the poor prognosis of patients. Besides genetic alterations and environmental factors, it has been demonstrated that alterations of the epigenetic machinery guide cancer onset and progression, representing a hallmark of gastric malignancies. Moreover, epigenetic mechanisms undergo an intricate crosstalk, and distinct epigenomic profiles can be shaped under different microenvironmental contexts. In this scenario, targeting epigenetic mechanisms could be an interesting therapeutic strategy to overcome gastric cancer heterogeneity, and the efforts conducted to date are delivering promising results. In this review, we summarize the key epigenetic events involved in gastric cancer development. We conclude with a discussion of new promising epigenetic strategies for gastric cancer treatment.
Collapse
Affiliation(s)
- Matteo Canale
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (M.C.); (P.U.)
| | - Andrea Casadei-Gardini
- Department of Oncology and Hematology, Division of Oncology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Paola Ulivi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (M.C.); (P.U.)
| | - Maria Arechederra
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.A.); (C.B.); (M.G.F.-B.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Carmen Berasain
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.A.); (C.B.); (M.G.F.-B.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy;
| | - Maite G. Fernández-Barrena
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.A.); (C.B.); (M.G.F.-B.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
| | - Matías A. Avila
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.A.); (C.B.); (M.G.F.-B.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
| |
Collapse
|
29
|
Villanueva L, Álvarez-Errico D, Esteller M. The Contribution of Epigenetics to Cancer Immunotherapy. Trends Immunol 2020; 41:676-691. [PMID: 32622854 DOI: 10.1016/j.it.2020.06.002] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/27/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022]
Abstract
Effective anticancer immunotherapy treatments constitute a qualitative leap in cancer management. Nonetheless, not all patients benefit from such therapies because they fail to achieve complete responses, suffer frequent relapses, or develop potentially life-threatening toxicities. Epigenomic signatures in immune and cancer cells appear to be accurate and promising predictors of patient outcomes with immunotherapy. In addition, combined treatments with epigenetic drugs can exploit the dynamic nature of epigenetic changes to potentially modulate responses to immunotherapy. Candidate epigenetic biomarkers may provide a rationale for patient stratification and precision medicine, thus maximizing the chances of treatment success while minimizing unwanted effects. We present a comprehensive up-to-date view of potential epigenetic biomarkers in immunotherapy and discuss their advantages over other indicators.
Collapse
Affiliation(s)
- Lorea Villanueva
- Josep Carreras Leukemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red Cancer (CIBERONC), Madrid, Spain
| | | | - Manel Esteller
- Josep Carreras Leukemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red Cancer (CIBERONC), Madrid, Spain; Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain; Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain.
| |
Collapse
|
30
|
Demircioğlu D, Cukuroglu E, Kindermans M, Nandi T, Calabrese C, Fonseca NA, Kahles A, Lehmann KV, Stegle O, Brazma A, Brooks AN, Rätsch G, Tan P, Göke J. A Pan-cancer Transcriptome Analysis Reveals Pervasive Regulation through Alternative Promoters. Cell 2020; 178:1465-1477.e17. [PMID: 31491388 DOI: 10.1016/j.cell.2019.08.018] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/13/2018] [Accepted: 08/07/2019] [Indexed: 02/08/2023]
Abstract
Most human protein-coding genes are regulated by multiple, distinct promoters, suggesting that the choice of promoter is as important as its level of transcriptional activity. However, while a global change in transcription is recognized as a defining feature of cancer, the contribution of alternative promoters still remains largely unexplored. Here, we infer active promoters using RNA-seq data from 18,468 cancer and normal samples, demonstrating that alternative promoters are a major contributor to context-specific regulation of transcription. We find that promoters are deregulated across tissues, cancer types, and patients, affecting known cancer genes and novel candidates. For genes with independently regulated promoters, we demonstrate that promoter activity provides a more accurate predictor of patient survival than gene expression. Our study suggests that a dynamic landscape of active promoters shapes the cancer transcriptome, opening new diagnostic avenues and opportunities to further explore the interplay of regulatory mechanisms with transcriptional aberrations in cancer.
Collapse
Affiliation(s)
- Deniz Demircioğlu
- Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore; School of Computing, National University of Singapore, Singapore 117417, Singapore
| | - Engin Cukuroglu
- Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Martin Kindermans
- Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Tannistha Nandi
- Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Claudia Calabrese
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK; Genome Biology Unit, EMBL, Heidelberg, 69117, Germany
| | - Nuno A Fonseca
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK; CIBIO/InBIO - Research Center in Biodiversity and Genetic Resources, Universidade do Porto, Vairão 4485-601, Portugal
| | - André Kahles
- Department of Computer Science, ETH Zurich, Zurich 8092, Switzerland; Department of Biology, ETH Zurich, Zurich 8093, Switzerland; Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; SIB Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland; Biomedical Informatics Research, University Hospital Zurich, Zurich 8091, Switzerland
| | - Kjong-Van Lehmann
- Department of Computer Science, ETH Zurich, Zurich 8092, Switzerland; Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; SIB Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland; Biomedical Informatics Research, University Hospital Zurich, Zurich 8091, Switzerland
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK; Genome Biology Unit, EMBL, Heidelberg, 69117, Germany; Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Alvis Brazma
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Angela N Brooks
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Gunnar Rätsch
- Department of Computer Science, ETH Zurich, Zurich 8092, Switzerland; Department of Biology, ETH Zurich, Zurich 8093, Switzerland; Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; SIB Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland; Biomedical Informatics Research, University Hospital Zurich, Zurich 8091, Switzerland; Weill Cornell Medical College, New York, NY 10065, USA
| | - Patrick Tan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore 138672, Singapore; SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore 169856, Singapore; Cellular and Molecular Research, National Cancer Centre, Singapore 169610, Singapore; Singapore Gastric Cancer Consortium, Singapore 119074, Singapore
| | - Jonathan Göke
- Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore; Cellular and Molecular Research, National Cancer Centre, Singapore 169610, Singapore.
| |
Collapse
|
31
|
Ooi WF, Nargund AM, Lim KJ, Zhang S, Xing M, Mandoli A, Lim JQ, Ho SWT, Guo Y, Yao X, Lin SJ, Nandi T, Xu C, Ong X, Lee M, Tan ALK, Lam YN, Teo JX, Kaneda A, White KP, Lim WK, Rozen SG, Teh BT, Li S, Skanderup AJ, Tan P. Integrated paired-end enhancer profiling and whole-genome sequencing reveals recurrent CCNE1 and IGF2 enhancer hijacking in primary gastric adenocarcinoma. Gut 2020; 69:1039-1052. [PMID: 31542774 DOI: 10.1136/gutjnl-2018-317612] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 08/22/2019] [Accepted: 09/01/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Genomic structural variations (SVs) causing rewiring of cis-regulatory elements remain largely unexplored in gastric cancer (GC). To identify SVs affecting enhancer elements in GC (enhancer-based SVs), we integrated epigenomic enhancer profiles revealed by paired-end H3K27ac ChIP-sequencing from primary GCs with tumour whole-genome sequencing (WGS) data (PeNChIP-seq/WGS). DESIGN We applied PeNChIP-seq to 11 primary GCs and matched normal tissues combined with WGS profiles of >200 GCs. Epigenome profiles were analysed alongside matched RNA-seq data to identify tumour-associated enhancer-based SVs with altered cancer transcription. Functional validation of candidate enhancer-based SVs was performed using CRISPR/Cas9 genome editing, chromosome conformation capture assays (4C-seq, Capture-C) and Hi-C analysis of primary GCs. RESULTS PeNChIP-seq/WGS revealed ~150 enhancer-based SVs in GC. The majority (63%) of SVs linked to target gene deregulation were associated with increased tumour expression. Enhancer-based SVs targeting CCNE1, a key driver of therapy resistance, occurred in 8% of patients frequently juxtaposing diverse distal enhancers to CCNE1 proximal regions. CCNE1-rearranged GCs were associated with high CCNE1 expression, disrupted CCNE1 topologically associating domain (TAD) boundaries, and novel TAD interactions in CCNE1-rearranged primary tumours. We also observed IGF2 enhancer-based SVs, previously noted in colorectal cancer, highlighting a common non-coding genetic driver alteration in gastric and colorectal malignancies. CONCLUSION Integrated paired-end NanoChIP-seq and WGS of gastric tumours reveals tumour-associated regulatory SV in regions associated with both simple and complex genomic rearrangements. Genomic rearrangements may thus exploit enhancer-hijacking as a common mechanism to drive oncogene expression in GC.
Collapse
Affiliation(s)
- Wen Fong Ooi
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore
| | - Amrita M Nargund
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Kevin Junliang Lim
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Centre for Computational Biology, Duke-NUS Medical School, Singapore
| | - Shenli Zhang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Manjie Xing
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore
| | - Amit Mandoli
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Jing Quan Lim
- Lymphoma Genomic Translational Laboratory, National Cancer Centre Singapore, Singapore
| | - Shamaine Wei Ting Ho
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Yu Guo
- Computational and Systems Biology, Genome Institute of Singapore, Singapore
| | - Xiaosai Yao
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore
| | - Suling Joyce Lin
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore
| | - Tannistha Nandi
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore
| | - Chang Xu
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Xuewen Ong
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Minghui Lee
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Angie Lay-Keng Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Yue Ning Lam
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore
| | - Jing Xian Teo
- SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre, Singapore
| | - Atsushi Kaneda
- Department of Molecular Oncology, Chiba University, Chiba, Japan
| | - Kevin P White
- Institute for Genomics and Systems Biology, University of Chicago and Argonne National Laboratory, Chicago, Illinois, USA.,Tempus Labs, Chicago, Illinois, USA
| | - Weng Khong Lim
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre, Singapore
| | - Steven G Rozen
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Centre for Computational Biology, Duke-NUS Medical School, Singapore.,SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre, Singapore
| | - Bin Tean Teh
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore.,SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre, Singapore.,Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore
| | - Shang Li
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Anders J Skanderup
- Computational and Systems Biology, Genome Institute of Singapore, Singapore
| | - Patrick Tan
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore .,Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore.,SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre, Singapore
| |
Collapse
|
32
|
Sundar R, Smyth EC, Peng S, Yeong JPS, Tan P. Predictive Biomarkers of Immune Checkpoint Inhibition in Gastroesophageal Cancers. Front Oncol 2020; 10:763. [PMID: 32500029 PMCID: PMC7243739 DOI: 10.3389/fonc.2020.00763] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/21/2020] [Indexed: 01/17/2023] Open
Abstract
Immune checkpoint inhibition has transformed cancer treatment. For gastroesophageal cancer, this class of drugs have demonstrated durable responses and survival benefit in a subgroup of patients, resulting in regulatory approval. However, several recent randomized phase III studies in gastroesophageal cancer have reported negative results, blunting initial enthusiasm. Identification and validation of predictive biomarkers with appropriate patient selection for benefit from immunotherapy is an area of intense research with novel concepts rapidly emerging. In this review we describe the latest immune checkpoint inhibitor trials which have been reported in gastroesophageal cancers with a focus on predictive biomarkers. We also explore novel biomarkers being developed to improve precision oncology for immunotherapy in gastroesophageal cancers.
Collapse
Affiliation(s)
- Raghav Sundar
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| | - Elizabeth C. Smyth
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Siyu Peng
- University Medicine Cluster, National University Health System, Singapore, Singapore
| | - Joe P. S. Yeong
- Division of Pathology, Singapore General Hospital, Singapore, Singapore
- Institute of Molecular Cell Biology, Agency of Science, Technology and Research (ASTAR), Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Patrick Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore, Singapore
| |
Collapse
|
33
|
Sundar R, Huang KK, Qamra A, Kim KM, Kim ST, Kang WK, Tan ALK, Lee J, Tan P. Epigenomic promoter alterations predict for benefit from immune checkpoint inhibition in metastatic gastric cancer. Ann Oncol 2020; 30:424-430. [PMID: 30624548 PMCID: PMC6442650 DOI: 10.1093/annonc/mdy550] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Utilization of alternative transcription start sites through alterations in epigenetic promoter regions causes reduced expression of immunogenic N-terminal peptides, which may facilitate immune evasion in early gastric cancer. We hypothesized that tumors with high alternate promoter utilization would be resistant to immune checkpoint inhibition in metastatic gastric cancer. PATIENTS AND METHODS Two cohorts of patients with metastatic gastric cancer treated with immunotherapy were analyzed. The first cohort (N = 24) included patients treated with either nivolumab or pembrolizumab. Alternate promoter utilization was measured using the NanoString® (NanoString Technologies, Seattle, WA, USA) platform on archival tissue samples. The second cohort was a phase II clinical trial of patients uniformly treated with pembrolizumab (N = 37). Fresh tumor biopsies were obtained, and transcriptomic analysis was carried out on RNAseq data. Alternate promoter utilization was correlated to T-cell cytolytic activity, objective response rate and survival. RESULTS In the first cohort 8 of 24 (33%) tumors were identified to have high alternate promoter utilization (APhigh), and this was used to define the APhigh tertile of the second cohort (13 APhigh of 37). APhigh tumors exhibited decreased markers of T-cell cytolytic activity and lower response rates (8% versus 42%, P = 0.03). Median progression-free survival was lower in the APhigh group (55 versus 180 days, P = 0.0076). In multivariate analysis, alternative promoter utilization was an independent predictor of immunotherapy survival [hazard ratio 0.29, 95% confidence interval 0.099-0.85, P = 0.024). Analyzing tumoral evolution through paired pre-treatment and post-treatment biopsies, we observed consistent shifts in alternative promoter utilization rate associated with clinical response. CONCLUSION A substantial proportion of metastatic gastric cancers utilize alternate promoters as a mechanism of immune evasion, and these tumors may be resistant to anti-PD1 immune checkpoint inhibition. Alternate promoter utilization is thus a potential mechanism of resistance to immune checkpoint inhibition, and a novel predictive biomarker for immunotherapy. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT#02589496.
Collapse
Affiliation(s)
- R Sundar
- Department of Haematology-Oncology, National University Health System, Singapore; Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - K K Huang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - A Qamra
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - K-M Kim
- Department of Pathology and Translational Genomics
| | - S T Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - W K Kang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - A L K Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - J Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - P Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore; Biomedical Research Council, Agency for Science, Technology and Research, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore; SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore, Singapore.
| |
Collapse
|
34
|
Qi H, Yang Z, Dai C, Wang R, Ke X, Zhang S, Xiang X, Chen K, Li C, Luo J, Shao J, Shen J. STAT3 activates MSK1-mediated histone H3 phosphorylation to promote NFAT signaling in gastric carcinogenesis. Oncogenesis 2020; 9:15. [PMID: 32041943 PMCID: PMC7010763 DOI: 10.1038/s41389-020-0195-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/18/2019] [Accepted: 01/16/2020] [Indexed: 12/22/2022] Open
Abstract
Epigenetic abnormalities contribute significantly to the development and progression of gastric cancer. However, the underlying regulatory networks from oncogenic signaling pathway to epigenetic dysregulation remain largely unclear. Here we showed that STAT3 signaling, one of the critical links between inflammation and cancer, acted as a control pathway in gastric carcinogenesis. STAT3 aberrantly transactivates the epigenetic kinase mitogen- and stress-activated protein kinase 1 (MSK1), thereby phosphorylating histone H3 serine10 (H3S10) and STAT3 itself during carcinogen-induced gastric tumorigenesis. We further identified the calcium pathway transcription factor NFATc2 as a novel downstream target of the STAT3-MSK1 positive-regulating loop. STAT3 forms a functional complex with MSK1 at the promoter of NFATc2 to promote its transcription in a H3S10 phosphorylation-dependent way, thus affecting NFATc2-related inflammatory pathways in gastric carcinogenesis. Inhibiting the STAT3/MSK1/NFATc2 signaling axis significantly suppressed gastric cancer cell proliferation and xenograft tumor growth, which provides a potential novel approach for gastric carcinogenesis intervention by regulating aberrant epigenetic and transcriptional mechanisms.
Collapse
Affiliation(s)
- Hongyan Qi
- Department of Pathology and Pathophysiology, and Department of Radiation Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zhiyi Yang
- Department of Pathology and Pathophysiology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Chujun Dai
- Department of Pathology and Pathophysiology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Runan Wang
- Department of Pathology and Pathophysiology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xinxin Ke
- Department of Pathology and Pathophysiology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Shuilian Zhang
- Department of Pathology and Pathophysiology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xueping Xiang
- Department of Pathology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Kailin Chen
- Department of Pathology and Pathophysiology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Chen Li
- Institute of Genetics and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jindan Luo
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jimin Shao
- Department of Pathology and Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Jing Shen
- Department of Pathology and Pathophysiology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
35
|
Cavaliere A, Merz V, Casalino S, Zecchetto C, Simionato F, Salt HL, Contarelli S, Santoro R, Melisi D. Novel Biomarkers for Prediction of Response to Preoperative Systemic Therapies in Gastric Cancer. J Gastric Cancer 2019; 19:375-392. [PMID: 31897341 PMCID: PMC6928085 DOI: 10.5230/jgc.2019.19.e39] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/02/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022] Open
Abstract
Preoperative chemo- and radiotherapeutic strategies followed by surgery are currently a standard approach for treating locally advanced gastric and esophagogastric junction cancer in Western countries. However, in a large number of cases, the tumor is extremely resistant to these treatments and the patients are exposed to unnecessary toxicity and delayed surgical therapy. The current clinical trials evaluating the combination of preoperative systemic therapies with modern targeted and immunotherapeutic agents represent a unique opportunity for identifying predictive biomarkers of response to select patients that would benefit the most from these treatments. However, it is of utmost importance that these potential biomarkers are corroborated by extensive preclinical and translational research. The aim of this review article is to present the most promising biomarkers of response to classic chemotherapeutic, anti-HER2, antiangiogenic, and immunotherapeutic agents that can be potentially useful for personalized preoperative systemic therapies in gastric cancer patients.
Collapse
Affiliation(s)
- Alessandro Cavaliere
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Valeria Merz
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Simona Casalino
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Camilla Zecchetto
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Francesca Simionato
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Hayley Louise Salt
- Digestive Molecular Clinical Oncology Research Unit, Section of Medical Oncology, Department of Medicine, University of Verona, Verona, Italy
| | - Serena Contarelli
- Digestive Molecular Clinical Oncology Research Unit, Section of Medical Oncology, Department of Medicine, University of Verona, Verona, Italy
| | - Raffaela Santoro
- Digestive Molecular Clinical Oncology Research Unit, Section of Medical Oncology, Department of Medicine, University of Verona, Verona, Italy
| | - Davide Melisi
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
- Digestive Molecular Clinical Oncology Research Unit, Section of Medical Oncology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
36
|
Liu H, Xu T, Cheng Y, Jin MH, Chang MY, Shu Q, Allen EG, Jin P, Wang X. Altered 5-Hydroxymethylcytosine Landscape in Primary Gastric Adenocarcinoma. DNA Cell Biol 2019; 38:1460-1469. [DOI: 10.1089/dna.2019.4965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Hao Liu
- Department of Gastroenterological Surgery, The Second Hospital, Jilin University, Changchun, China
| | - Tianlei Xu
- Department of Mathematics and Computer Science, School of Medicine, Emory University, Atlanta, Georgia
| | - Ying Cheng
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, Georgia
| | - Michael H. Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, Georgia
| | - Margaret Y. Chang
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, Georgia
| | - Qiang Shu
- The Children's Hospital and Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Emily G. Allen
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, Georgia
| | - Peng Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, Georgia
| | - Xudong Wang
- Department of Gastroenterological Surgery, The Second Hospital, Jilin University, Changchun, China
| |
Collapse
|
37
|
Ho SWT, Tan P. Dissection of gastric cancer heterogeneity for precision oncology. Cancer Sci 2019; 110:3405-3414. [PMID: 31495054 PMCID: PMC6825006 DOI: 10.1111/cas.14191] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/21/2019] [Accepted: 09/02/2019] [Indexed: 12/15/2022] Open
Abstract
Gastric cancer (GC) remains the fifth most prevalent cancer worldwide and the third leading cause of global cancer mortality. Comprehensive ‐omic studies have unveiled a heterogeneous GC landscape, with considerable molecular diversity both between and within tumors. Given the complex nature of GC, a long‐sought goal includes effective identification of distinct patient subsets with prognostic and/or predictive outcomes to enable tailoring of specific treatments (“precision oncology”). In this review, we highlight various approaches to molecular classification in GC, covering recent genomic, transcriptomic, proteomic and epigenomic features. We pay special attention to the translational significance of classifier systems and examine potential confounding factors which deserve further investigation. In particular, we discuss recent advancements in our knowledge of intra‐subtype, intra‐patient and intra‐tumor heterogeneity, and the pivotal role of the tumor stromal microenvironment.
Collapse
Affiliation(s)
- Shamaine Wei Ting Ho
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Patrick Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore.,SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore.,Cellular and Molecular Research, National Cancer Centre, Singapore.,Singapore Gastric Cancer Consortium, Singapore
| |
Collapse
|
38
|
Fang Y, Zhang D, Hu T, Zhao H, Zhao X, Lou Z, He Y, Qin W, Xia J, Zhang X, Ye LC. KMT2A histone methyltransferase contributes to colorectal cancer development by promoting cathepsin Z transcriptional activation. Cancer Med 2019; 8:3544-3552. [PMID: 31090199 PMCID: PMC6601586 DOI: 10.1002/cam4.2226] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/19/2022] Open
Abstract
Accumulating evidence supports the notion that epigenetic modifiers are abnormal in carcinogenesis and have a fundamental role in cancer progression. Among these aberrant epigenetic modifiers, the function of histone methyltransferase KMT2A in somatic tumors is not well known. By analyzing KMT2A expression in patient tissues, we demonstrated that KMT2A was overexpressed in colorectal cancer tissues in comparison with adjacent normal tissues and its expression was positively correlated with cancer stages. In KMT2A-knockdown HCT116 and DLD1 cells, cell invasion and migration were consequently suppressed. In addition, KMT2A depletion effectively suppressed cancer metastasis in vivo. Mechanistically, cathepsin Z (CTSZ) was demonstrated to be an important downstream gene of KMT2A. Further studies showed that p65 could recruit KMT2A on the promoter region of the downstream gene CTSZ and knockdown of p65 could reduce the KMT2A on the promoter of CTSZ. Finally, our present study revealed that KMT2A epigenetically promotes cancer progression by targeting CTSZ, which has specific functions in cancer invasion and metastasis.
Collapse
Affiliation(s)
- Yang Fang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Dan Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tingting Hu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongyan Zhao
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xuan Zhao
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhefeng Lou
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yongshan He
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenzheng Qin
- Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianfu Xia
- Department of General Surgery, Wenzhou Central Hospital, Wenzhou, China
| | - Xiaohua Zhang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Le-Chi Ye
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
39
|
Zeng X, Pan D, Wu H, Chen H, Yuan W, Zhou J, Shen Z, Chen S. Transcriptional activation of ANO1 promotes gastric cancer progression. Biochem Biophys Res Commun 2019; 512:131-136. [PMID: 30871776 DOI: 10.1016/j.bbrc.2019.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 02/06/2023]
Abstract
The prognosis of gastric cancer (GC) remains poor due to local invasion and distal metastasis. The GC-related molecular mechanisms underlying invasion and metastasis are not well understood. In this study, we investigated the functional role of ANO1 in GC progression. We found that ANO1 is overexpressed in GC tissues and correlated with GC tumor-node-metastasis stage. Knockdown of ANO1 significantly inhibited GC cell migration and invasion in vitro, and loss of ANO1 resulted in inhibition of tumor metastasis in vivo. Mechanistically, SP1 increased ANO1 transcription, recruited MLL1 to the ANO1 promoter region, facilitated H3K4 trimethylation, and subsequently promoted ANO1 expression. Together, our findings provide a mechanistic assessment of ANO1 overexpression, which represents a GC progression-related molecule and a potentially valuable target for future research.
Collapse
Affiliation(s)
- Xiaoqing Zeng
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Duyi Pan
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Hao Wu
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, School of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, PR China
| | - Hao Chen
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, 200032, PR China
| | - Wei Yuan
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Ji Zhou
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Zhenbin Shen
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, 200032, PR China.
| | - Shiyao Chen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China; Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China.
| |
Collapse
|
40
|
Gambardella V, Fleitas T, Cervantes A. Understanding mechanisms of primary resistance to checkpoint inhibitors will lead to precision immunotherapy of advanced gastric cancer. Ann Oncol 2019; 30:351-352. [PMID: 30657856 DOI: 10.1093/annonc/mdz008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- V Gambardella
- CIBERONC, Madrid; Department of Medical Oncology, Biomedical Research Institute Incliva, University of Valencia, Valencia, Spain
| | - T Fleitas
- CIBERONC, Madrid; Department of Medical Oncology, Biomedical Research Institute Incliva, University of Valencia, Valencia, Spain
| | - A Cervantes
- CIBERONC, Madrid; Department of Medical Oncology, Biomedical Research Institute Incliva, University of Valencia, Valencia, Spain.
| |
Collapse
|
41
|
Fluctuations of epigenetic regulations in human gastric Adenocarcinoma: How does it affect? Biomed Pharmacother 2019; 109:144-156. [DOI: 10.1016/j.biopha.2018.10.094] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022] Open
|
42
|
Chen L, Dong Y, Wang X, Hao G, Huang Y, Gutin B, Zhu H. Epigenome-Wide Association Study of Dietary Fiber Intake in African American Adolescents. Mol Nutr Food Res 2018; 62:e1800155. [PMID: 29644791 DOI: 10.1002/mnfr.201800155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/26/2018] [Indexed: 12/17/2022]
Abstract
SCOPE Low fiber intake is associated with increased risk for cardiovascular disease (CVD) and cancer. However, the underlying mechanisms are not well understood. Two hypotheses are tested: 1) dietary fiber would be associated with DNA methylation levels; 2) those DNA methylation changes would be associated with visceral adiposity and inflammation. Also the possibility that the associations between fiber and DNA methylation levels might be confounded with folic acid intake as sensitivity analysis are explored. METHODS AND RESULTS An epigenome-wide association study is conducted using Illumina 450K Bead-Chip on leukocyte DNA in 284 African American adolescents. Linear regression is performed to identify differentially methylated CpG sites associated with fiber. The methylation levels of 3 CpG sites (cg15200711, cg19462022, and cg07035602) in LPCAT1 and RASA3 genes are associated with fiber (false discovery rate [FDR] < 0.05) after adjustment for covariates including folic acid. The methylation levels of cg07035602 and cg19462022 are also associated with visceral adiposity and inflammation. CONCLUSIONS The data show that DNA methylation levels at LPCAT1 and RASA3 genes are associated with dietary fiber intake as well as with adiposity and inflammation. Future studies are warranted to determine whether epigenetic regulation may underlie the beneficial effects of fiber intake on adiposity and inflammation.
Collapse
Affiliation(s)
- Li Chen
- Georgia Prevention Institute, Department of Population Health Sciences, Medical College of Georgia, Augusta University, 1120 15th Street, HS-1640, Augusta, Georgia, USA
| | - Yanbin Dong
- Georgia Prevention Institute, Department of Population Health Sciences, Medical College of Georgia, Augusta University, 1120 15th Street, HS-1640, Augusta, Georgia, USA
| | - Xiaoling Wang
- Georgia Prevention Institute, Department of Population Health Sciences, Medical College of Georgia, Augusta University, 1120 15th Street, HS-1640, Augusta, Georgia, USA
| | - Guang Hao
- Georgia Prevention Institute, Department of Population Health Sciences, Medical College of Georgia, Augusta University, 1120 15th Street, HS-1640, Augusta, Georgia, USA
| | - Ying Huang
- Georgia Prevention Institute, Department of Population Health Sciences, Medical College of Georgia, Augusta University, 1120 15th Street, HS-1640, Augusta, Georgia, USA
| | - Bernard Gutin
- Georgia Prevention Institute, Department of Population Health Sciences, Medical College of Georgia, Augusta University, 1120 15th Street, HS-1640, Augusta, Georgia, USA
| | - Haidong Zhu
- Georgia Prevention Institute, Department of Population Health Sciences, Medical College of Georgia, Augusta University, 1120 15th Street, HS-1640, Augusta, Georgia, USA
| |
Collapse
|
43
|
Lin H, Fan X, He L, Zhou D. Methylation patterns of RASA3 associated with clinicopathological factors in hepatocellular carcinoma. J Cancer 2018; 9:2116-2122. [PMID: 29937930 PMCID: PMC6010675 DOI: 10.7150/jca.24567] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/31/2018] [Indexed: 12/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common tumor worldwide. The relationship between the gene methylation accumulation and HCC has been widely studied. In our study, we used the Sequenom EpiTYPER assay to investigate the methylation levels of the RASA3 in 164 HCC samples and paired adjacent non-cancerous tissues, and the association between methylation level and clinicopathological features. The methylation level of the RASA3 in HCC samples was found significantly lower than that in the adjacent non-cancerous tissues (P<0.0001). Moreover, the hypomethylation of RASA3 in HCC samples was connected with the presence of tumornecrosis (P=0.029) and alcohol intake (P=0.002). Furthermore, it was found that the expression of RASA3 was significantly decreased in tumor tissues (P=0.0053), which was also correlated with the methylation levels of RASA3 gene. Thus, RASA3 hypomethylation is a common feature in HCC, and may be a potential mechanism for HCC development, and serves as a useful biomarker for the early detection, especially in alcohol-associated HCCs.
Collapse
Affiliation(s)
- Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - LiFeng He
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Daizhan Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.,Present address: Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine; Institute of Medical Genetics, Tongji University, Shanghai, China
| |
Collapse
|
44
|
Mutation hotspots at CTCF binding sites coupled to chromosomal instability in gastrointestinal cancers. Nat Commun 2018; 9:1520. [PMID: 29670109 PMCID: PMC5906695 DOI: 10.1038/s41467-018-03828-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 03/15/2018] [Indexed: 01/06/2023] Open
Abstract
Tissue-specific driver mutations in non-coding genomic regions remain undefined for most cancer types. Here, we unbiasedly analyze 212 gastric cancer (GC) whole genomes to identify recurrently mutated non-coding regions in GC. Applying comprehensive statistical approaches to accurately model background mutational processes, we observe significant enrichment of non-coding indels (insertions/deletions) in three gastric lineage-specific genes. We further identify 34 mutation hotspots, of which 11 overlap CTCF binding sites (CBSs). These CBS hotspots remain significant even after controlling for a genome-wide elevated mutation rate at CBSs. In 3 out of 4 tested CBS hotspots, mutations are nominally associated with expression change of neighboring genes. CBS hotspot mutations are enriched in tumors showing chromosomal instability, co-occur with neighboring chromosomal aberrations, and are common in gastric (25%) and colorectal (19%) tumors but rare in other cancer types. Mutational disruption of specific CBSs may thus represent a tissue-specific mechanism of tumorigenesis conserved across gastrointestinal cancers. The impact of non-coding somatic mutations in gastric cancer is unknown. Here, using whole genome sequencing data from 212 gastric tumors, the authors identify recurring mutations at specific CTCF binding sites that are common across gastrointestinal cancers and associated with chromosomal instability.
Collapse
|
45
|
Ramón Y Cajal S, Capdevila C, Hernandez-Losa J, De Mattos-Arruda L, Ghosh A, Lorent J, Larsson O, Aasen T, Postovit LM, Topisirovic I. Cancer as an ecomolecular disease and a neoplastic consortium. Biochim Biophys Acta Rev Cancer 2017; 1868:484-499. [PMID: 28947238 DOI: 10.1016/j.bbcan.2017.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 12/26/2022]
Abstract
Current anticancer paradigms largely target driver mutations considered integral for cancer cell survival and tumor progression. Although initially successful, many of these strategies are unable to overcome the tremendous heterogeneity that characterizes advanced tumors, resulting in the emergence of resistant disease. Cancer is a rapidly evolving, multifactorial disease that accumulates numerous genetic and epigenetic alterations. This results in wide phenotypic and molecular heterogeneity within the tumor, the complexity of which is further amplified through specific interactions between cancer cells and the tumor microenvironment. In this context, cancer may be perceived as an "ecomolecular" disease that involves cooperation between several neoplastic clones and their interactions with immune cells, stromal fibroblasts, and other cell types present in the microenvironment. This collaboration is mediated by a variety of secreted factors. Cancer is therefore analogous to complex ecosystems such as microbial consortia. In the present article, we comment on the current paradigms and perspectives guiding the development of cancer diagnostics and therapeutics and the potential application of systems biology to untangle the complexity of neoplasia. In our opinion, conceptualization of neoplasia as an ecomolecular disease is warranted. Advances in knowledge pertinent to the complexity and dynamics of interactions within the cancer ecosystem are likely to improve understanding of tumor etiology, pathogenesis, and progression. This knowledge is anticipated to facilitate the design of new and more effective therapeutic approaches that target the tumor ecosystem in its entirety.
Collapse
Affiliation(s)
- Santiago Ramón Y Cajal
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Pathology Department, Vall d'Hebron Hospital, 08035 Barcelona, Spain; Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Spain.
| | - Claudia Capdevila
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Javier Hernandez-Losa
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Pathology Department, Vall d'Hebron Hospital, 08035 Barcelona, Spain; Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Spain
| | - Leticia De Mattos-Arruda
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Abhishek Ghosh
- Lady Davis Institute, JGH, SMBD, Gerald-Bronfman Department of Oncology, McGill University QC, Montreal H3T 1E2, Canada
| | - Julie Lorent
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, 171 65 Solna, Sweden
| | - Ola Larsson
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, 171 65 Solna, Sweden
| | - Trond Aasen
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Spain
| | - Lynne-Marie Postovit
- Cancer Research Institute of Northern Alberta Department of Oncology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Ivan Topisirovic
- Lady Davis Institute, JGH, SMBD, Gerald-Bronfman Department of Oncology, McGill University QC, Montreal H3T 1E2, Canada
| |
Collapse
|
46
|
Abstract
Gastric cancer is a deadly malignancy afflicting close to a million people worldwide. Patient survival is poor and largely due to late diagnosis and suboptimal therapies. Disease heterogeneity is a substantial obstacle, underscoring the need for precision treatment strategies. Studies have identified different subgroups of gastric cancer displaying not just genetic, but also distinct epigenetic hallmarks. Accumulating evidence suggests that epigenetic abnormalities in gastric cancer are not mere bystander events, but rather promote carcinogenesis through active mechanisms. Epigenetic aberrations, induced by pathogens such as Helicobacter pylori, are an early component of gastric carcinogenesis, probably preceding genetic abnormalities. This Review summarizes our current understanding of the gastric cancer epigenome, highlighting key advances in recent years in both tumours and pre-malignant lesions, made possible through targeted and genome-wide technologies. We focus on studies related to DNA methylation and histone modifications, linking these findings to potential therapeutic opportunities. Lessons learned from the gastric cancer epigenome might also prove relevant for other gastrointestinal cancers.
Collapse
|