1
|
Krawiec A, Pietrasik J, Pietrasik Z, Mikuła-Pietrasik J, Książek K. Unveiling the role of extracellular matrix elements and regulators in shaping ovarian cancer growth and metastasis. Cell Signal 2025; 132:111843. [PMID: 40318796 DOI: 10.1016/j.cellsig.2025.111843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/18/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Epithelial ovarian cancer (EOC) progression is determined by numerous intracellular interactions and the interplay between malignant cells, normal cells, and the tumor acellular microenvironment, formed largely by the extracellular matrix (ECM). The structure and biochemical functioning of various ECM components, along with the activity of agents that regulate ECM remodeling, impact the disease's expansion (adhesion, proliferation, invasion), spread, and response to therapy. It is important to note that the involvement of ECM components and their regulators in the progression of EOC is bidirectional and distinctly depends on a particular tissue context. In certain situations, certain components of the ECM enhance the activity of cancer cells, but in other scenarios, they suppress it. In this review, we summarize the newest knowledge regarding diverse aspects of ECM engagement in EOC pathophysiology and chemotherapy. Moreover, we delineate conditions that exacerbate the pro-cancerous properties of ECM, including diabetes-associated glycation, aging, and cellular senescence. We also explore methods to therapeutically alter the properties of the ECM, which could be beneficial in ovarian cancer prevention and treatment.
Collapse
Affiliation(s)
- Adrianna Krawiec
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str, 60-781 Poznań, Poland.
| | - Joanna Pietrasik
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str, 60-781 Poznań, Poland
| | - Zofia Pietrasik
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str, 60-781 Poznań, Poland
| | - Justyna Mikuła-Pietrasik
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str, 60-781 Poznań, Poland.
| | - Krzysztof Książek
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str, 60-781 Poznań, Poland.
| |
Collapse
|
2
|
Jeon Y, Bae H, Woo SW, Kim J, Yu D. Identifying functional roles and pathways of shared mutations in canine solid tumors by whole-genome sequencing. PLoS One 2025; 20:e0307792. [PMID: 40446009 PMCID: PMC12124556 DOI: 10.1371/journal.pone.0307792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 02/04/2025] [Indexed: 06/02/2025] Open
Abstract
Identifying genetic mutations contributing to solid tumors by altering the biological pathways related to tumor formation and development is essential for the development of targeted therapies. This study aimed to identify commonly mutated genes and altered pathways in canine solid tumors. Four dogs with different types of naturally occurring neoplasias (urothelial carcinoma, adenocarcinoma, rhabdomyosarcoma, and chondrosarcoma) were randomly selected and classified into carcinoma and sarcoma groups based on histopathological findings. Tumor tissues were analyzed using whole-genome sequencing, and significant variants shared within each tumor group were identified. Gene set enrichment analyses were conducted to compare the biological and functional pathways altered by the mutations in each carcinoma and sarcoma group. Forty-three and fifty-eight genes were identified in the carcinoma and sarcoma groups, respectively. Distinctions between the two tumor groups were noted for mutations related to tumor metastatic function. Mutations were identified in genes encoding cell adhesion molecules in the carcinoma group, whereas significant variations in extracellular matrix-related molecules were evident in the sarcoma group. This study revealed mutations and modified pathways associated with immune and tumor metastatic functions in canine carcinoma and sarcoma, indicating their significant relevance to the development and progression of each tumor group. Additionally, the distinctions indicated that different therapeutic approaches were required for each tumor group.
Collapse
Affiliation(s)
- YeSeul Jeon
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyeona Bae
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Seung-Wan Woo
- Division of Applied Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Jaemin Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - DoHyeon Yu
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
3
|
Vadibeler S, Clarke S, Phyu SM, Parkes EE. Interactions between cancer-associated fibroblasts and the extracellular matrix in oesophageal cancer. Matrix Biol 2025:S0945-053X(25)00049-6. [PMID: 40379112 DOI: 10.1016/j.matbio.2025.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/13/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025]
Abstract
Stromal components of the tumour microenvironment, such as cancer-associated fibroblasts (CAFs) and the extracellular matrix (ECM), are actively involved in tumorigenesis. CAFs and the ECM co-evolve with resultant molecular and mechanical pressure on tumour cells mediated by CAFs via the ECM. Meanwhile, ECM fibers determine CAF differentiation and activity, establishing a protumorigenic feed-forward loop. Oesophageal cancer carries a high morbidity and mortality, and curative surgical resection is only an option for a limited number of patients while early lymphatic spread and poor therapeutic responses are common. Although studies report marked heterogeneity in investigation of the stromal density of gastrointestinal cancers, it is generally accepted that oesophageal cancer is highly fibrotic, and stromal components like CAFs may outnumber cancer cells. Therefore, a comprehensive understanding of the reciprocal interaction between CAFs and the ECM in oesophageal cancer is essential to improving diagnostics and prognostication, as well as designing innovative anti-cancer strategies. Here, we summarise current understanding of oesophageal cancer from a stromal perspective. Then, we discuss that CAFs and the ECM in oesophageal cancer can independently and synergistically contribute to tumour progression and therapeutic resistance. We also summarise potential stromal targets that have been described in transcriptomic analyses, highlighting those validated in downstream experimental studies. Importantly, clinical translation of stromal-targeting strategies in oesophageal cancer is still in its infancy but holds significant promise for future therapeutic combinations.
Collapse
Affiliation(s)
- Subashan Vadibeler
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford; Department of Oncology, University of Oxford
| | - Shannique Clarke
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford; Department of Oncology, University of Oxford
| | - Su M Phyu
- Department of Oncology, University of Oxford
| | - Eileen E Parkes
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford; Department of Oncology, University of Oxford
| |
Collapse
|
4
|
Wang Y, Zhu N, Liu J, Chen F, Song Y, Ma Y, Yang Z, Wang D. Role of tumor microenvironment in ovarian cancer metastasis and clinical advancements. J Transl Med 2025; 23:539. [PMID: 40369674 PMCID: PMC12079989 DOI: 10.1186/s12967-025-06508-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/16/2025] [Indexed: 05/16/2025] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecological malignancy worldwide, characterized by heterogeneity at the molecular, cellular and anatomical levels. Most patients are diagnosed at an advanced stage, characterized by widespread peritoneal metastasis. Despite optimal cytoreductive surgery and platinum-based chemotherapy, peritoneal spread and recurrence of OC are common, resulting in poor prognoses. The overall survival of patients with OC has not substantially improved over the past few decades, highlighting the urgent necessity of new treatment options. Unlike the classical lymphatic and hematogenous metastasis observed in other malignancies, OC primarily metastasizes through widespread peritoneal seeding. Tumor cells (the "seeds") exhibit specific affinities for certain organ microenvironments (the "soil"), and metastatic foci can only form when there is compatibility between the "seeds" and "soil." Recent studies have highlighted the tumor microenvironment (TME) as a critical factor influencing the interactions between the "seeds" and "soil," with ascites and the local peritoneal microenvironment playing pivotal roles in the initiation and progression of OC. Prior to metastasis, the interplay among tumor cells, immunosuppressive cells, and stromal cells leads to the formation of an immunosuppressive pre-metastatic niche in specific sites. This includes characteristic alterations in tumor cells, recruitment and functional anomalies of immune cells, and dysregulation of stromal cell distribution and function. TME-mediated crosstalk between cancer and stromal cells drives tumor progression, therapy resistance, and metastasis. In this review, we summarize the current knowledge on the onset and metastatic progression of OC. We provide a comprehensive discussion of the characteristics and functions of TME related to OC metastasis, as well as its association with peritoneal spread. We also outline ongoing relevant clinical trials, aiming to offer new insights for identifying potential effective biomarkers and therapeutic targets in future clinical practice.
Collapse
Affiliation(s)
- Yang Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People's Republic of China
| | - Na Zhu
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People's Republic of China
| | - Jing Liu
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People's Republic of China
| | - Fang Chen
- Department of Gynecology, People's Hospital of Liaoning Province, Shenyang, Liaoning Province, 110016, People's Republic of China
| | - Yang Song
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang, Liaoning, 110004, People's Republic of China
| | - Yue Ma
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People's Republic of China.
| | - Zhuo Yang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People's Republic of China.
| | - Danbo Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People's Republic of China.
| |
Collapse
|
5
|
Abbaspour A, Martinez Cavazos AL, Patel R, Yang N, McGregor SM, Brooks EG, Masters KS, Kreeger PK. Collagen fiber density observed in metastatic ovarian cancer promotes tumor cell adhesion. Acta Biomater 2025:S1742-7061(25)00360-5. [PMID: 40374134 DOI: 10.1016/j.actbio.2025.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 05/06/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
Collagen type I, a key structural component of the extracellular matrix (ECM), is frequently altered in cancer, with altered fiber organization at the primary tumor site linked to metastasis and poor patient outcomes. Here, we demonstrate that collagen fibers are also altered in metastatic sites such as the omentum of patients with high-grade serous ovarian cancer (HGSOC). Specifically, we observed a significant increase in fiber density, alignment, and width. To determine if the increase in fiber density supports metastasis, we used a semi-interpenetrating methacrylated gelatin (gelMA) network in combination with increasing fibrillar collagen. Cancer cells had significantly increased adhesion as collagen fiber density increased. To determine the responsible mechanisms, we used orthogonal systems to examine 1) the different adhesion peptides exposed in collagen (GFOGER) and gelatin (RGD), and 2) the physical structure of fibers. Cells had minimal response to GFOGER, either alone or in combination with RGD, suggesting that increased adhesion did not result from this collagen-specific interaction. Cell adhesion was significantly higher on electrospun PCL-gelatin fibers compared to flat PCL-gelatin substrates, suggesting that increased cell adhesion resulted from fiber structure. We next investigated the cellular mechanisms involved in increased adhesion on gelMA/coll and found that actin polymerization, but not myosin II contractility, was needed. We further demonstrated that cells on fibrous gels had more robust actin polymerization, and that this resulted in greater adhesion strength. Combined, these results suggest that the increase in collagen fibers with tumor metastasis will support the development of additional metastases. STATEMENT OF SIGNIFICANCE: This work advances the evaluation of the matrisome of the omentum, the most common metastatic site in advanced ovarian cancer by characterizing how collagen fibers change with disease progression. To examine the effect of collagen fibers on metastasis, we utilized a suite of in vitro biomaterials to identify a novel role for collagen fibers in supporting cell adhesion through increased actin dynamics during nascent adhesion formation, which results in increased adhesion strength at later times.
Collapse
Affiliation(s)
- Ali Abbaspour
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ana L Martinez Cavazos
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Roshan Patel
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ning Yang
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 5037, Madison, WI 53705, USA
| | - Stephanie M McGregor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 5037, Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA
| | - Erin G Brooks
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 5037, Madison, WI 53705, USA
| | - Kristyn S Masters
- Department of Bioengineering, University of Colorado-Denver, 13001 E 17th Pl Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Pamela K Kreeger
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 5037, Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA.
| |
Collapse
|
6
|
Li W, Wu Y, Zhang Y, Gao W, Li X, Luo H, Lu M, Liu Z, Luo A. Halofuginone Disrupted Collagen Deposition via mTOR-eIF2α-ATF4 Axis to Enhance Chemosensitivity in Ovarian Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416523. [PMID: 40126173 PMCID: PMC12097005 DOI: 10.1002/advs.202416523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/14/2025] [Indexed: 03/25/2025]
Abstract
The interplay between cancer-associated fibroblasts (CAFs) and extracellular matrix (ECM) mediates progress, metastasis, and therapy resistance. However, strategy of targeting ECM remodeling to enhance chemosensitivity in ovarian cancer remains elusive. Here, a 22-gene matrisome signature predicts chemotherapy response and survival in ovarian cancer. The dense, collagen-rich ECM secreted by CAFs harbors more M2 tumor-associated macrophages (TAMs) than the looser ECM based on single cell RNA-seq (scRNA-seq) of ovarian cancer, suggesting the promising approach of targeting collagen to remodel ECM. An integrated analysis identifies collagen type I alpha 1 chain (COL1A1) as a major component of the ECM that contributes to chemoresistance and poor prognosis, highlighting its potential as a therapeutic target. Halofuginone (HF), a clinically active derivative of febrifugine, is identified as a COL1A1-targeting natural compound by screening the Encyclopedia of Traditional Chinese Medicine (ETCM). Mechanistically, HF inhibits COL1A1 production via the mTOR-eIF2α-ATF4 axis in CAFs. Notably, HF disrupts collagen deposition and promotes CD8+ T cell infiltration, partially via M2-M1 macrophage polarization to enhance chemosensitivity. Overall, the findings suggest that HF combined with chemotherapy is a promising and effective treatment for ovarian cancer.
Collapse
Affiliation(s)
- Wenxin Li
- State Key Lab of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical College17 Nanli Panjiayuan, Chaoyang DistrictBeijing100021China
| | - Yenan Wu
- State Key Lab of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical College17 Nanli Panjiayuan, Chaoyang DistrictBeijing100021China
| | - Yanan Zhang
- Department of Obstetrics and GynecologyPeking University Third Hospital38 Xueyuan Rd, Haidian DistrictBeijing100191China
| | - Wenyan Gao
- State Key Lab of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical College17 Nanli Panjiayuan, Chaoyang DistrictBeijing100021China
| | - Xin Li
- State Key Lab of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical College17 Nanli Panjiayuan, Chaoyang DistrictBeijing100021China
| | - Haixia Luo
- Department of Gynecological OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical College17 Nanli Panjiayuan, Chaoyang DistrictBeijing100021China
| | - Mengmeng Lu
- State Key Lab of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical College17 Nanli Panjiayuan, Chaoyang DistrictBeijing100021China
| | - Zhihua Liu
- State Key Lab of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical College17 Nanli Panjiayuan, Chaoyang DistrictBeijing100021China
| | - Aiping Luo
- State Key Lab of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical College17 Nanli Panjiayuan, Chaoyang DistrictBeijing100021China
| |
Collapse
|
7
|
Hachey JS, Viray TD, Matasci M, Ravazza D, Neri D, Lewis JS. Targeting Extra Domain A of Fibronectin to Improve Noninvasive Detection of Triple-Negative Breast Cancer. J Nucl Med 2025:jnumed.124.268859. [PMID: 40246542 DOI: 10.2967/jnumed.124.268859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/20/2025] [Indexed: 04/19/2025] Open
Abstract
Triple-negative breast cancer (TNBC) lags behind other breast cancer types in targeted therapeutic and diagnostic imaging agent development, largely due to high disease heterogeneity. Noninvasive imaging is essential for diagnosing and staging TNBC and predicting and measuring treatment response. This study targeted a conserved disease-specific extracellular matrix protein domain (the extra domain A of fibronectin [EDA-FN]), with a monoclonal antibody (F8) to overcome tumor cell marker heterogeneity and develop an imaging agent to detect multiple TNBC subtypes and improve diagnostic capacity. Methods: [89Zr]Zr-desferrioxamine [DFO]-F8 was synthesized and evaluated in vitro and in vivo for EDA-FN binding capacity to detect TNBC by PET/CT in several preclinical xenograft models. Results: [89Zr]Zr-DFO-F8 exhibited specific, blockable EDA-FN binding activity in vitro. In vivo experiments demonstrated high tumor uptake in preclinical TNBC xenograft models. [89Zr]Zr-DFO-F8 detected EDA-FN in subcutaneous and orthotopic TNBC xenografts and accumulated in aggressive disease concordantly with EDA-FN expression. Conclusion: EDA-FN imaging with [89Zr]Zr-DFO-F8 exhibits powerful tumor delineation in preclinical tumor delineation across TNBC molecular subtypes in vivo.
Collapse
Affiliation(s)
- Justin S Hachey
- Department of Pharmacology, Weill Cornell Graduate School of Medical Sciences, New York, New York
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Tara D Viray
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | - Dario Neri
- Philogen S.p.A, Siena, Italy
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zurich, Switzerland; and
| | - Jason S Lewis
- Department of Pharmacology, Weill Cornell Graduate School of Medical Sciences, New York, New York;
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
8
|
Sapudom J, Alatoom A, Tipay PS, Teo JC. Matrix stiffening from collagen fibril density and alignment modulates YAP-mediated T-cell immune suppression. Biomaterials 2025; 315:122900. [PMID: 39461060 DOI: 10.1016/j.biomaterials.2024.122900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/16/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
T-cells are essential components of the immune system, adapting their behavior in response to the mechanical environments they encounter within the body. In pathological conditions like cancer, the extracellular matrix (ECM) often becomes stiffer due to increased density and alignment of collagen fibrils, which can have a significant impact on T-cell function. In this study, we explored how these ECM properties-density and fibrillar alignment-affect T-cell behavior using three-dimensional (3D) collagen matrices that mimic these conditions. Our results show that increased matrix stiffness, whether due to higher density or alignment, significantly suppresses T-cell activation, reduces cytokine production, and limits proliferation, largely through enhanced YAP signaling. Individually, matrix alignment appears to lower actin levels in activated T-cells and changes migration behavior in both resting and activated T-cells, an effect not observed in matrices with randomly oriented fibrils. Notably, inhibiting YAP signaling was able to restore T-cell activation and improve immune responses, suggesting a potential strategy to boost the effectiveness of immunotherapy in stiff ECM environments. Overall, this study provides new insights into how ECM characteristics influence T-cell function, offering potential avenues for overcoming ECM-induced immunosuppression in diseases such as cancer.
Collapse
Affiliation(s)
- Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Aseel Alatoom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates; Department of Biomedical and Mechanical Engineering, Tandon School of Engineering, New York University, USA
| | | | - Jeremy Cm Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates; Department of Biomedical and Mechanical Engineering, Tandon School of Engineering, New York University, USA.
| |
Collapse
|
9
|
Deng M, Yang R, Jiang J, Zhang J, He J, Miao J. The silent spread: exploring diverse metastatic pathways in high-grade serous ovarian cancer. Front Med (Lausanne) 2025; 12:1539024. [PMID: 40109727 PMCID: PMC11919666 DOI: 10.3389/fmed.2025.1539024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/19/2025] [Indexed: 03/22/2025] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is a highly aggressive and deadly gynecological cancer, with metastasis being a key factor in its poor prognosis. Historically, HGSOC was thought to spread primarily through the peritoneal cavity, but recent research has revealed additional routes of metastasis, including the blood and lymphatic systems. This review discusses the complex processes of HGSOC metastasis, focusing on peritoneal immune suppression, stromal reprogramming, and the role of circulating tumor cells in blood-based spread. We also explore the clinical significance of lymphatic metastasis, particularly its impact on patient outcomes. Gaining insight into molecular and genetic drivers, such as BRCA mutations and interactions within the immune microenvironment, is essential for developing targeted treatments. Future studies should aim to enhance experimental models, identify early detection markers, and investigate novel therapeutic approaches to effectively address HGSOC metastasis and improve patient survival.
Collapse
Affiliation(s)
- Mengqi Deng
- Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Ruiye Yang
- Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Junyi Jiang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Jinxu Zhang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Junqi He
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Jinwei Miao
- Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Liao EC, Law CH, Chen HY, Wei YS, Tsai YT, Lin LH, Lin MW, Wang YS, Chou HC, Chan HL. PPIA enhances cell growth and metastasis through CD147 in oral cancer. Arch Biochem Biophys 2025; 765:110328. [PMID: 39921142 DOI: 10.1016/j.abb.2025.110328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Oral cancer is a malignant tumor, and the associated death rate has significantly increased over the past few decades. Secreted fractions are involved in various physiological processes, and their analysis has become a promising approach for discovering diagnostic and prognostic biomarkers for cancer detection and monitoring metastasis. Therefore, the discovery of potential prognostic, diagnostic, and therapeutic biomarkers for oral cancer metastasis is beneficial for developing effective strategies in oral cancer therapy. In this study, we used secretomic analysis to identify the secreted proteins involved in oral cancer. One of the identified proteins, peptidylprolyl isomerase A (PPIA), was selected for further investigation. We used RNA interference to investigate the effect of PPIA secretion on invasion and migration of OC3-I5 cells. Our results showed that reducing the expression and secretion of PPIA significantly decreased invasion and migration of OC3-I5 cells. Next, we used recombinant PPIA to investigate its direct effect on OC3 cell metastasis. The results revealed that proliferation, migration, and invasion of OC3 cells were significantly increased by treatment with the recombinant PPIA. Immunohistochemical analyses revealed higher PPIA expression in tumor tissues compared to normal tissues. Concisely, PPIA activated the ERK1/2 and p38 MAPK signaling pathways and enhanced cell proliferation and metastasis through CD147. In summary, PPIA may prove to be a novel target for oral cancer therapy as well as a prognostic marker.
Collapse
Affiliation(s)
- En-Chi Liao
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ching-Hsuan Law
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsin-Yi Chen
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Shan Wei
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Ting Tsai
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Li-Hsun Lin
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Meng-Wei Lin
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Shiuan Wang
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsiu-Chuan Chou
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| | - Hong-Lin Chan
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan; Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
11
|
Maiques O, Sallan MC, Laddach R, Pandya P, Varela A, Crosas-Molist E, Barcelo J, Courbot O, Liu Y, Graziani V, Arafat Y, Sewell J, Rodriguez-Hernandez I, Fanshawe B, Jung-Garcia Y, Imbert PR, Grasset EM, Albrengues J, Santacana M, Macià A, Tarragona J, Matias-Guiu X, Marti RM, Tsoka S, Gaggioli C, Orgaz JL, Fruhwirth GO, Wallberg F, Betteridge K, Reyes-Aldasoro CC, Haider S, Braun A, Karagiannis SN, Elosegui-Artola A, Sanz-Moreno V. Matrix mechano-sensing at the invasive front induces a cytoskeletal and transcriptional memory supporting metastasis. Nat Commun 2025; 16:1394. [PMID: 39952917 PMCID: PMC11829002 DOI: 10.1038/s41467-025-56299-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/13/2025] [Indexed: 02/17/2025] Open
Abstract
The extracellular matrix (ECM) controls tumour dissemination. We characterise ECM organization in human and mouse tumours, identifying three regions: tumour body, proximal invasive front and distal invasive front. Invasive areas show increased matrix density, fibre thickness, length, and alignment, with unique radial fibre orientation at the distal invasive front correlating with amoeboid invasive features. Using patient samples and murine models, we find that metastases recapitulate ECM features of the primary tumour. Ex vivo culture of murine cancer cells isolated from the different tumour regions reveals a spatial cytoskeletal and transcriptional memory. Several in vitro models recapitulate the in vivo ECM organisation showing that increased matrix induces 3D confinement supporting Rho-ROCK-Myosin II activity, while radial orientation enhances directional invasion. Spatial transcriptomics identifies a mechano-inflammatory program associated with worse prognosis across multiple tumour types. These findings provide mechanistic insights into how ECM organization shapes local invasion and distant metastasis.
Collapse
Affiliation(s)
- Oscar Maiques
- Cytoskeleton and metastasis Team, The Breast Cancer Now Toby Robins Research Centre Division of Breast Cancer Research, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
- Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Marta C Sallan
- Cytoskeleton and metastasis Team, The Breast Cancer Now Toby Robins Research Centre Division of Breast Cancer Research, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Roman Laddach
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, SE1 9RT, London, UK
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, Bush House, London, WC2B 4BG, UK
| | - Pahini Pandya
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Adrian Varela
- Cytoskeleton and metastasis Team, The Breast Cancer Now Toby Robins Research Centre Division of Breast Cancer Research, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Eva Crosas-Molist
- Cytoskeleton and metastasis Team, The Breast Cancer Now Toby Robins Research Centre Division of Breast Cancer Research, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Jaume Barcelo
- Cytoskeleton and metastasis Team, The Breast Cancer Now Toby Robins Research Centre Division of Breast Cancer Research, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Olivia Courbot
- Cell and Tissue Mechanobiology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Yanbo Liu
- Cytoskeleton and metastasis Team, The Breast Cancer Now Toby Robins Research Centre Division of Breast Cancer Research, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK
| | - Vittoria Graziani
- Cytoskeleton and metastasis Team, The Breast Cancer Now Toby Robins Research Centre Division of Breast Cancer Research, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Youssef Arafat
- Department of Computer Science, City St George's, University of London, London, UK
| | - Joanne Sewell
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Irene Rodriguez-Hernandez
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Bruce Fanshawe
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, SE1 1UL, UK
| | - Yaiza Jung-Garcia
- Cytoskeleton and metastasis Team, The Breast Cancer Now Toby Robins Research Centre Division of Breast Cancer Research, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Paul Rc Imbert
- CMR Advanced Bio-imaging Facility, Centre for Microvascular Research, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Eloise M Grasset
- University Cote d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Jean Albrengues
- University Cote d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Maria Santacana
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLleida, CIBERONC, Lleida, 25198, Spain
| | - Anna Macià
- Oncologic Pathology Group, IRBLleida, Departments of Experimental Medicine and Basic Medical Sciences, University of Lleida, Lleida, 25198, Spain
| | - Jordi Tarragona
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLleida, CIBERONC, Lleida, 25198, Spain
| | - Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLleida, CIBERONC, Lleida, 25198, Spain
- Oncologic Pathology Group, IRBLleida, Departments of Experimental Medicine and Basic Medical Sciences, University of Lleida, Lleida, 25198, Spain
- Department of Pathology, Hospital Universitari de Bellvitge University of Barcelona, IDIBELL, CIBERONC, L'Hospitalet-, Barcelona, 08907, Spain
| | - Rosa M Marti
- Department of Dermatology, Hospital Universitari Arnau de Vilanova, CIBERONC, University of Lleida, CIBERONC, IRB Lleida, Lleida, 25198, Spain
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, Bush House, London, WC2B 4BG, UK
| | - Cedric Gaggioli
- University Cote d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Jose L Orgaz
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAM, 28029, Madrid, Spain
| | - Gilbert O Fruhwirth
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, SE1 1UL, UK
| | - Fredrik Wallberg
- Quell Therapeutics, Translation & Innovation Hub, 84 Wood Ln, London, W12 0BZ, UK
- Light Microscopy Facility, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK
| | - Kai Betteridge
- Light Microscopy Facility, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK
| | - Constantino Carlos Reyes-Aldasoro
- Department of Computer Science, City St George's, University of London, London, UK
- Integrated Pathology Unit, Division of Molecular Pathology, The Institute of Cancer Research, Sutton, UK
| | - Syed Haider
- Breast Cancer Research Bioinformatics Group, Chester Beatty Laboratories, London, SW3 6JB, UK
| | - Andrejs Braun
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, SE1 9RT, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, SE1 9RT, UK
| | | | - Victoria Sanz-Moreno
- Cytoskeleton and metastasis Team, The Breast Cancer Now Toby Robins Research Centre Division of Breast Cancer Research, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK.
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK.
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
12
|
Gao T, Li J, Cheng T, Wang X, Wang M, Xu Z, Mu Y, He X, Xing J, Liu S. Ovarian cancer-derived TGF-β1 induces cancer-associated adipocytes formation by activating SMAD3/TRIB3 pathway to establish pre-metastatic niche. Cell Death Dis 2024; 15:930. [PMID: 39719444 DOI: 10.1038/s41419-024-07311-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 12/26/2024]
Abstract
Ovarian cancer (OC) is prone to adipose tissue metastasis. However, the underlying molecular mechanisms remain elusive. Here, we observed that omental adipocytes were induced into cancer-associated adipocytes (CAAs) by OC-derived TGF-β1 to establish a pre-metastatic niche (PMN) through collagen and fibronectin secretion. Mechanistically, OC-derived TGF-β1 binds to adipocyte membrane receptors and thus activates intracellular signaling by SMAD3 phosphorylation. The activation of TGF-β1/SMAD3 signaling pathway dedifferentiates adipocytes into CAAs by upregulating Tribbles homolog 3 (TRIB3), which suppresses the phosphorylation of CEBPβ. Additionally, CAAs secrete collagen I, collagen VI, and fibronectin to remodel the extracellular matrix and promote the adhesion of OC cells. Pharmacological inhibition of the TGF-β1/SMAD3 pathway significantly inhibits CAAs and PMN formation, thereby reducing the OC metastatic burden. Our findings indicate that the formation of CAAs and PMN in adipose tissues facilitates OC cell implantation and blocking the TGF-β1/SMAD3 signaling pathway could prevent OC omental metastasis.
Collapse
Affiliation(s)
- Tian Gao
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
- Department of Obstetrics and Gynaecology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jibin Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, 710032, China
| | - Tianyi Cheng
- Department of Obstetrics and Gynaecology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xingguo Wang
- Department of Obstetrics and Gynaecology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Mengqing Wang
- Department of Obstetrics and Gynaecology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhiyang Xu
- Department of Obstetrics and Gynaecology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yang Mu
- Department of Obstetrics and Gynaecology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xianli He
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.
| | - Jinliang Xing
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Shujuan Liu
- Department of Obstetrics and Gynaecology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
13
|
Song Z, Chen H, Wang X, Zhang Z, Li H, Zhao H, Liu Y, Han Q, Zhang J. Napabucasin-loaded PLGA nanoparticles trigger anti-HCC immune responses by metabolic reprogramming of tumor-associated macrophages. J Transl Med 2024; 22:1125. [PMID: 39707412 DOI: 10.1186/s12967-024-05917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND JAK/STAT3 is one of the critical signaling pathways involved in the occurrence and development of hepatocellular carcinoma (HCC). BBI608 (Napabucasin), as a novel small molecule inhibitor of STAT3, has shown previously excellent anti-HCC effects in vitro and in mouse models. However, low bioavailability, high cytotoxicity and other shortcomings limit its clinical application. In this study, PLGA was selected to prepare Napabucasin PLGA nanoparticles (NPs) by solvent evaporation method, overcoming these limitations and improving the passive targeting effect that nanoparticle mediated. Base on this, we systematically evaluated the anti-HCC effect of Napabucasin-PLGA NPs and explored the underlying mechanisms. METHODS Napabucasin-PLGA NPs were prepared by solvent evaporation method. CCK-8 assay, Annexin V/PI double staining, RT-qPCR, colony formation assay, and Western blotting were performed to evaluate the anti-HCC effect of Napabucasin-PLGA NPs in vitro. Proliferation assay and migration assay were used to detect the effects of Napabucasin-PLGA NPs-treated HCC-TAMs on tumor biological characteristics of HCC cells. Flow cytometry was used to detect anti-HCC immune responses induced by Napabucasin-PLGA NPs in vivo. RESULTS Our results demonstrated that Napabucasin-PLGA NPs could improve the bioavailability of Napabucasin and enhance Napabucasin-mediated the anti-HCC effects in vitro and in vivo with no significant drug toxicity. In addition to the direct inhibitory effects on the tumor biological characteristics of HCC cells, Napabucasin-PLGA NPs could promote the polarization of macrophages from tumor-promoting M2-type to anti-tumor M1-type, improving the tumor immune microenvironment and augmenting T cell-mediated anti-tumor responses. The underlining mechanisms showed Napabucasin-PLGA NPs suppressed the STAT3/FAO signaling axis in HCC-induced tumor-associated macrophages (TAMs). CONCLUSIONS These findings demonstrated Napabucasin-PLGA NPs is a potential therapeutic candidate for HCC, and provided a new theoretical and experimental basis for further development and clinical application of Napabucasin.
Collapse
Affiliation(s)
- Zhenwei Song
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Hongfei Chen
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Xueyao Wang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Zhiyue Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Hui Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yang Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China.
| |
Collapse
|
14
|
Chap BS, Rayroux N, Grimm AJ, Ghisoni E, Dangaj Laniti D. Crosstalk of T cells within the ovarian cancer microenvironment. Trends Cancer 2024; 10:1116-1130. [PMID: 39341696 DOI: 10.1016/j.trecan.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024]
Abstract
Ovarian cancer (OC) represents ecosystems of highly diverse tumor microenvironments (TMEs). The presence of tumor-infiltrating lymphocytes (TILs) is linked to enhanced immune responses and long-term survival. In this review we present emerging evidence suggesting that cellular crosstalk tightly regulates the distribution of TILs within the TME, underscoring the need to better understand key cellular networks that promote or impede T cell infiltration in OC. We also capture the emergent methodologies and computational techniques that enable the dissection of cell-cell crosstalk. Finally, we present innovative ex vivo TME models that can be leveraged to map and perturb cellular communications to enhance T cell infiltration and immune reactivity.
Collapse
Affiliation(s)
- Bovannak S Chap
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland; Agora Cancer Research Center, Lausanne, Switzerland
| | - Nicolas Rayroux
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland; Agora Cancer Research Center, Lausanne, Switzerland
| | - Alizée J Grimm
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland; Agora Cancer Research Center, Lausanne, Switzerland
| | - Eleonora Ghisoni
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland; Agora Cancer Research Center, Lausanne, Switzerland
| | - Denarda Dangaj Laniti
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland; Agora Cancer Research Center, Lausanne, Switzerland.
| |
Collapse
|
15
|
Elorbany S, Berlato C, Carnevalli LS, Maniati E, Barry ST, Wang J, Manchanda R, Kzhyshkowska J, Balkwill F. Immunotherapy that improves response to chemotherapy in high-grade serous ovarian cancer. Nat Commun 2024; 15:10144. [PMID: 39578450 PMCID: PMC11584700 DOI: 10.1038/s41467-024-54295-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/01/2024] [Indexed: 11/24/2024] Open
Abstract
Single-cell RNA sequencing (scRNAseq) of tumour-infiltrating immune cells in high-grade serous ovarian cancer (HGSOC) omental biopsies reveals potential targets that could enhance response to neo-adjuvant chemotherapy (NACT). Analysis of 64,097 cells identifies NACT-induced overexpression of stabilin-1 (clever-1) on macrophages and FOXP3 in Tregs that is confirmed at the protein level. STAB1 inhibition in vitro induces anti-tumour macrophages. FOXP3 anti-sense oligonucleotide (FOXP3-ASO), repolarises Tregs to an effector T cell phenotype. ScRNAseq on 69,781 cells from an HGSOC syngeneic mouse model recapitulates the patients' data. Combining chemotherapy with anti-stabilin1 antibody and/or Foxp3-ASO significantly increases survival of mice with established peritoneal disease in two HGSOC syngeneic models and progression-free survival in a third model. Long-term survivors (300 days + ) are resistant to tumour rechallenge. Anti-stabilin1 antibody enriches the tumours with CXCL9+ macrophages and Foxp3-ASO increases TBET cell infiltration. Our results suggest that targeting these molecules in immune cells may improve chemotherapy response in patients.
Collapse
MESH Headings
- Female
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/immunology
- Ovarian Neoplasms/pathology
- Animals
- Humans
- Mice
- Forkhead Transcription Factors/metabolism
- Forkhead Transcription Factors/genetics
- Immunotherapy/methods
- Cell Line, Tumor
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/drug effects
- Cell Adhesion Molecules, Neuronal/metabolism
- Cell Adhesion Molecules, Neuronal/genetics
- Cell Adhesion Molecules, Neuronal/immunology
- Macrophages/immunology
- Macrophages/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/drug effects
- Cystadenocarcinoma, Serous/drug therapy
- Cystadenocarcinoma, Serous/immunology
- Cystadenocarcinoma, Serous/pathology
- Neoadjuvant Therapy/methods
- Chemokine CXCL9/metabolism
- Chemokine CXCL9/genetics
- Single-Cell Analysis
Collapse
Affiliation(s)
- Samar Elorbany
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK.
| | - Chiara Berlato
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | | | - Eleni Maniati
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - Simon T Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Jun Wang
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - Ranjit Manchanda
- Wolfson Institute of Population Health, Queen Mary University of London, London, UK
- Department of Gynaecological Oncology, Barts Health NHS Trust, London, UK
| | - Julia Kzhyshkowska
- Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany
| | - Frances Balkwill
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
| |
Collapse
|
16
|
Spear S, Le Saux O, Mirza HB, Iyer N, Tyson K, Grundland Freile F, Walton JB, Woodman C, Jarvis S, Ennis DP, Aguirre Hernandez C, Xu Y, Spiliopoulou P, Brenton JD, Costa-Pereira AP, Cook DP, Vanderhyden BC, Keun HC, Triantafyllou E, Arnold JN, McNeish IA. PTEN Loss Shapes Macrophage Dynamics in High-Grade Serous Ovarian Carcinoma. Cancer Res 2024; 84:3772-3787. [PMID: 39186679 PMCID: PMC7616669 DOI: 10.1158/0008-5472.can-23-3890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 07/11/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
High-grade serous ovarian carcinoma (HGSC) remains a disease with poor prognosis that is unresponsive to current immune checkpoint inhibitors. Although PI3K pathway alterations, such as PTEN loss, are common in HGSC, attempts to target this pathway have been unsuccessful. We hypothesized that aberrant PI3K pathway activation may alter the HGSC immune microenvironment and present a targeting opportunity. Single-cell RNA sequencing identified populations of resident macrophages specific to Pten-null omental tumors in murine models, which were confirmed by flow cytometry. These macrophages were derived from peritoneal fluid macrophages and exhibited a unique gene expression program, marked by high expression of the enzyme heme oxygenase-1 (HMOX1). Targeting resident peritoneal macrophages prevented the appearance of HMOX1hi macrophages and reduced tumor growth. In addition, direct inhibition of HMOX1 extended survival in vivo. RNA sequencing identified IL33 in Pten-null tumor cells as a likely candidate driver, leading to the appearance of HMOX1hi macrophages. Human HGSC tumors also contained HMOX1hi macrophages with a corresponding gene expression program. Moreover, the presence of these macrophages was correlated with activated tumoral PI3K/mTOR signaling and poor overall survival in patients with HGSC. In contrast, tumors with low numbers of HMOX1hi macrophages were marked by increased adaptive immune response gene expression. These data suggest targeting HMOX1hi macrophages as a potential therapeutic strategy for treating poor prognosis HGSC. Significance: Macrophages with elevated HMOX1 expression are enriched in PTEN-deficient high-grade serous ovarian carcinoma, promote tumor growth, and represent a potential therapeutic target.
Collapse
Affiliation(s)
- Sarah Spear
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| | - Olivia Le Saux
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
- Centre Léon Bérard, Department of Medical Oncology, Lyon, France
| | - Hasan B. Mirza
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| | - Nayana Iyer
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| | - Katie Tyson
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| | - Fabio Grundland Freile
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| | - Josephine B. Walton
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Chloé Woodman
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| | - Sheba Jarvis
- Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Darren P. Ennis
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| | - Carmen Aguirre Hernandez
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| | - Yuewei Xu
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| | - Pavlina Spiliopoulou
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - James D. Brenton
- CRUK Cambridge Institute, University of Cambridge, United Kingdom
| | - Ana P. Costa-Pereira
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| | - David P. Cook
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | | | - Hector C. Keun
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| | - Evangelos Triantafyllou
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - James N. Arnold
- School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Iain A. McNeish
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| |
Collapse
|
17
|
Lee JY, Peng T. Convergent evolution of senescent fibroblasts in fibrosis and cancer with aging. Semin Cancer Biol 2024; 106-107:192-200. [PMID: 39433114 DOI: 10.1016/j.semcancer.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024]
Abstract
Aging is associated with stereotyped changes in the tissue microenvironment that increase susceptibility to diseases of the elderly, including organ fibrosis and cancer. From a tissue perspective, fibrosis and cancer can both be viewed as non-healing wounds with pathogenic activation of tissue repair pathways in the stroma. If fibrosis and cancer represent an example of the convergent evolution of maladaptive stromal responses in distinct pathologies, what are the analogous cell types that might emerge in both diseases that share similarities in identity and function? In this review, we explore how senescent fibroblasts form a nexus that connects the aging organ with both fibrosis and cancer. The advent of single cell sequencing, coupled with improved detection of cell types with senescent traits in vivo, have allowed us to identify senescent fibroblasts with similar identities in both fibrosis and cancer that share pro-fibrotic programs. In addition to their ability to reorganize the extracellular matrix in diseased states, these pro-fibrotic senescent fibroblasts can also promote epithelial reprogramming and immune rewiring, which drive disease progression in fibrosis and cancer. Finally, the identification of common pathogenic cell types in fibrosis and cancer also presents a therapeutic opportunity to target both diseases with a shared approach.
Collapse
Affiliation(s)
- Jin Young Lee
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Sleep, San Francisco, CA, USA
| | - Tien Peng
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Sleep, San Francisco, CA, USA; Bakar Aging Research Institute, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
18
|
Hong J, Jin HJ, Choi MR, Lim DWT, Park JE, Kim YS, Lim SB. Matrisomics: Beyond the extracellular matrix for unveiling tumor microenvironment. Biochim Biophys Acta Rev Cancer 2024; 1879:189178. [PMID: 39241895 DOI: 10.1016/j.bbcan.2024.189178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
The matrisome, a group of proteins constituting or interacting with the extracellular matrix (ECM), has garnered attention as a potent regulator of cancer progression. An increasing number of studies have focused on cancer matrisome utilizing diverse -omics approaches. Here, we present diverse patterns of matrisomal populations within cancer tissues, exploring recent -omics studies spanning different '-omics' levels (epigenomics, genomics, transcriptomics, and proteomics), as well as newly developed sequencing techniques such as single-cell RNA sequencing and spatial transcriptomics. Some matrisome genes showed uniform patterns of upregulated or downregulated expression across various cancers, while others displayed different expression patterns according to the cancer types. This matrisomal dysregulation in cancer was further examined according to their originating cell type and spatial location in the tumor tissue. Experimental studies were also collected to demonstrate the identified roles of matrisome genes during cancer progression. Interestingly, many studies on cancer matrisome have suggested matrisome genes as effective biomarkers in cancer research. Although the specific mechanisms and clinical applications of cancer matrisome have not yet been fully elucidated, recent techniques and analyses on cancer matrisomics have emphasized their biological importance in cancer progression and their clinical implications in deciding the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Jiwon Hong
- Department of Biochemistry & Molecular Biology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 16499, Republic of Korea
| | - Hyo Joon Jin
- Department of Biochemistry & Molecular Biology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Mi Ran Choi
- Department of Biochemistry & Molecular Biology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Darren Wan-Teck Lim
- Division of Medical Oncology, National Cancer Centre, Singapore 168583, Singapore
| | - Jong-Eun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-Ro, Yuseong-Gu, Daejeon 34141, Republic of Korea
| | - You-Sun Kim
- Department of Biochemistry & Molecular Biology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 16499, Republic of Korea
| | - Su Bin Lim
- Department of Biochemistry & Molecular Biology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
19
|
Deng Y, Zhang L, Dai C, Xu Y, Gan Q, Cheng J. SLAMF7 predicts prognosis and correlates with immune infiltration in serous ovarian carcinoma. J Gynecol Oncol 2024; 35:e79. [PMID: 38606823 PMCID: PMC11543254 DOI: 10.3802/jgo.2024.35.e79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/07/2024] [Accepted: 02/25/2024] [Indexed: 04/13/2024] Open
Abstract
OBJECTIVE Signaling lymphocytic activation molecule family members (SLAMFs) play a critical role in immune regulation of malignancies. This study aims to investigate the prognostic value and function of SLAMFs in ovarian cancer (OC). METHODS The expression analysis of SLAMFs was conducted based on The Cancer Genome Atlas Ovarian Cancer Collection (TCGA-OV) and Gene Expression Omnibus (GEO) databases. Immunohistochemistry (IHC) was further performed on tissue arrays (n=98) to determine the expression of SLAMF7. Kaplan-Meier plotter and multivariate Cox regression model were used to evaluate the correlation of SLAMF7 expression with survival outcomes of patients. The molecular function of SLAMF7 in OC was further investigated using Gene Set Enrichment Analysis (GSEA). RESULTS SLAMF7 mRNA expression were significantly upregulated in OC tumor tissue compared to normal tissue. IHC revealed that SLAMF7 expression was located in the interstitial parts of tumor tissue, and higher SLAMF7 expression was associated with favorable survival outcomes. GSEA demonstrated that SLAMF7 is involved immune-related pathways. Further analysis showed that SLAMF7 had a strong correlation with the T cell-specific biomarker (CD3) but not with the B cell (CD19, CD22, and CD23) and natural killer cell-specific biomarkers (CD85C, CD336, and CD337). Furthermore, IHC analysis confirmed that SLAMF7 was expressed in tumor-infiltrating T cells, and the IHC score of SLAMF7 was positively correlated with CD3 (r=0.85, p<0.001). CONCLUSION SLAMF7 is expressed in the interstitial components of clinical OC tissue, and higher SLAMF7 expression indicated a favorable prognosis for patients with OC. Additionally, SLAMF7 is involved in T-cell immune infiltration in OC.
Collapse
MESH Headings
- Humans
- Female
- Signaling Lymphocytic Activation Molecule Family/genetics
- Signaling Lymphocytic Activation Molecule Family/metabolism
- Ovarian Neoplasms/immunology
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/mortality
- Prognosis
- Lymphocytes, Tumor-Infiltrating/immunology
- Middle Aged
- Cystadenocarcinoma, Serous/immunology
- Cystadenocarcinoma, Serous/pathology
- Cystadenocarcinoma, Serous/genetics
- Cystadenocarcinoma, Serous/mortality
- Cystadenocarcinoma, Serous/metabolism
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/analysis
- Up-Regulation
- Aged
- Gene Expression Regulation, Neoplastic
- Kaplan-Meier Estimate
- Adult
- Immunohistochemistry
Collapse
Affiliation(s)
- Yalong Deng
- Department of Gynecology and Obstetrics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lu Zhang
- Department of Gynecology and Obstetrics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Changyuan Dai
- Department of Gynecology and Obstetrics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yan Xu
- Department of Pathology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qiyu Gan
- Department of Gynecology and Obstetrics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jingxin Cheng
- Department of Gynecology and Obstetrics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Gynecology and Obstetrics, Shanghai East Hospital Ji'an Hospital, Jiangxi, China.
| |
Collapse
|
20
|
Krenz B, Lee J, Kannan T, Eilers M. Immune evasion: An imperative and consequence of MYC deregulation. Mol Oncol 2024; 18:2338-2355. [PMID: 38957016 PMCID: PMC11459038 DOI: 10.1002/1878-0261.13695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/08/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024] Open
Abstract
MYC has been implicated in the pathogenesis of a wide range of human tumors and has been described for many years as a transcription factor that regulates genes with pleiotropic functions to promote tumorigenic growth. However, despite extensive efforts to identify specific target genes of MYC that alone could be responsible for promoting tumorigenesis, the field is yet to reach a consensus whether this is the crucial function of MYC. Recent work shifts the view on MYC's function from being a gene-specific transcription factor to an essential stress resilience factor. In highly proliferating cells, MYC preserves cell integrity by promoting DNA repair at core promoters, protecting stalled replication forks, and/or preventing transcription-replication conflicts. Furthermore, an increasing body of evidence demonstrates that MYC not only promotes tumorigenesis by driving cell-autonomous growth, but also enables tumors to evade the host's immune system. In this review, we summarize our current understanding of how MYC impairs antitumor immunity and why this function is evolutionarily hard-wired to the biology of the MYC protein family. We show why the cell-autonomous and immune evasive functions of MYC are mutually dependent and discuss ways to target MYC proteins in cancer therapy.
Collapse
Affiliation(s)
- Bastian Krenz
- Department of Biochemistry and Molecular BiologyTheodor Boveri Institute, Biocenter, University of WürzburgWürzburgGermany
- Mildred Scheel Early Career CenterWürzburgGermany
| | - Jongkuen Lee
- Department of Biochemistry and Molecular BiologyTheodor Boveri Institute, Biocenter, University of WürzburgWürzburgGermany
| | - Toshitha Kannan
- Department of Biochemistry and Molecular BiologyTheodor Boveri Institute, Biocenter, University of WürzburgWürzburgGermany
| | - Martin Eilers
- Department of Biochemistry and Molecular BiologyTheodor Boveri Institute, Biocenter, University of WürzburgWürzburgGermany
- Comprehensive Cancer Center MainfrankenWürzburgGermany
| |
Collapse
|
21
|
Liu S, Jiang R, Wang X, Zhang Q, Li S, Sun X, Feng Y, Du F, Zheng P, Tian Y, Li Z, Liu S. Comprehensive identification of a disulfidptosis-associated long non-coding RNA signature to predict the prognosis and treatment options in ovarian cancer. Front Endocrinol (Lausanne) 2024; 15:1434705. [PMID: 39345881 PMCID: PMC11427372 DOI: 10.3389/fendo.2024.1434705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/29/2024] [Indexed: 10/01/2024] Open
Abstract
Purpose Distinguished from cuproptosis and ferroptosis, disulfidptosis has been described as a newly discovered form of non-programmed cell death tightly associated with glucose metabolism. However, the prognostic profile of disulfidptosis-related lncRNAs (DRLRs) in ovarian cancer (OC) and their biological mechanisms need to be further elucidated. Materials and methods First, we downloaded the profiles of RNA transcriptome, clinical information for OC patients from the TCGA database. Generated from Cox regression analysis, prognostic lncRNAs were utilized to identify the risk signature by least absolute shrinkage and selection operator analysis. Then, we explored the intimate correlations between disulfidptosis and lncRNAs. What's more, we performed a series of systemic analyses to assess the robustness of the model and unravel its relationship with the immune microenvironment comprehensively. Results We identified two DRLR clusters, in which OC patients with low-risk scores exhibited a favorable prognosis, up-regulated immune cell infiltrations and enhanced sensitivity to immunotherapy. Furthermore, validation of the signature by clinical features and Cox analysis demonstrated remarkable consistency, suggesting the universal applicability of our model. It's worth noting that high-risk patients showed more positive responses to immune checkpoint inhibitors and potential chemotherapeutic drugs. Conclusion Our findings provided valuable insights into DRLRs in OC for the first time, which indicated an excellent clinical value in the selection of management strategies, spreading brilliant horizons into individualized therapy.
Collapse
Affiliation(s)
- Shouze Liu
- Department of Gynecology III, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Rulan Jiang
- Department of Pain, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine (TCM-WM) Hebei, Cangzhou, Hebei, China
| | - Xinxin Wang
- Department of Gynecology III, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Qianqian Zhang
- Department of Gynecology and Obstetrics, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Shumei Li
- Department of Gynecology III, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Xiaoxue Sun
- Department of Gynecology III, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Yajun Feng
- Department of Gynecology III, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Feida Du
- Department of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Pengtao Zheng
- Department of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yanpeng Tian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhongkang Li
- Department of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shikai Liu
- Department of Gynecology III, Cangzhou Central Hospital, Cangzhou, Hebei, China
| |
Collapse
|
22
|
Karunasagara S, Taghizadeh A, Kim SH, Kim SJ, Kim YJ, Taghizadeh M, Kim MY, Oh KY, Lee JH, Kim HS, Hyun J, Kim HW. Tissue Mechanics and Hedgehog Signaling Crosstalk as a Key Epithelial-Stromal Interplay in Cancer Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400063. [PMID: 38976559 PMCID: PMC11425211 DOI: 10.1002/advs.202400063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/30/2024] [Indexed: 07/10/2024]
Abstract
Epithelial-stromal interplay through chemomechanical cues from cells and matrix propels cancer progression. Elevated tissue stiffness in potentially malignant tissues suggests a link between matrix stiffness and enhanced tumor growth. In this study, employing chronic oral/esophageal injury and cancer models, it is demonstrated that epithelial-stromal interplay through matrix stiffness and Hedgehog (Hh) signaling is key in compounding cancer development. Epithelial cells actively interact with fibroblasts, exchanging mechanoresponsive signals during the precancerous stage. Specifically, epithelial cells release Sonic Hh, activating fibroblasts to produce matrix proteins and remodeling enzymes, resulting in tissue stiffening. Subsequently, basal epithelial cells adjacent to the stiffened tissue become proliferative and undergo epithelial-to-mesenchymal transition, acquiring migratory and invasive properties, thereby promoting invasive tumor growth. Notably, transcriptomic programs of oncogenic GLI2, mechano-activated by actin cytoskeletal tension, govern this process, elucidating the crucial role of non-canonical GLI2 activation in orchestrating the proliferation and mesenchymal transition of epithelial cells. Furthermore, pharmacological intervention targeting tissue stiffening proves highly effective in slowing cancer progression. These findings underscore the impact of epithelial-stromal interplay through chemo-mechanical (Hh-stiffness) signaling in cancer development, and suggest that targeting tissue stiffness holds promise as a strategy to disrupt chemo-mechanical feedback, enabling effective cancer treatment.
Collapse
Affiliation(s)
- Shanika Karunasagara
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Ali Taghizadeh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Sang-Hyun Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Chemistry, College of Science & Technology, Dankook University, Cheonan, 31116, Republic of Korea
| | - So Jung Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Yong-Jae Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Mohsen Taghizadeh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Moon-Young Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Kyu-Young Oh
- Department of Oral Pathology, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hye Sung Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jeongeun Hyun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| |
Collapse
|
23
|
Kumar S, Arwind DA, Kumar B H, Pandey S, Nayak R, Vithalkar MP, Kumar N, Pai KSR. Inhibition of STAT3: A promising approach to enhancing the efficacy of chemotherapy in medulloblastoma. Transl Oncol 2024; 46:102023. [PMID: 38852276 PMCID: PMC11220551 DOI: 10.1016/j.tranon.2024.102023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024] Open
Abstract
Medulloblastoma is a type of brain cancer that primarily affects children. While chemotherapy has been shown to be effective in treating medulloblastoma, the development of chemotherapy resistance remains a challenge. One potential therapeutic approach is to selectively inhibit the inducible transcription factor called STAT3, which is known to play a crucial role in the survival and growth of tumor cells. The activation of STAT3 has been linked to the growth and progression of various cancers, including medulloblastoma. Inhibition of STAT3 has been shown to sensitize medulloblastoma cells to chemotherapy, leading to improved treatment outcomes. Different approaches to STAT3 inhibition have been developed, including small-molecule inhibitors and RNA interference. Preclinical studies have shown the efficacy of STAT3 inhibitors in medulloblastoma, and clinical trials are currently ongoing to evaluate their safety and effectiveness in patients with various solid tumors, including medulloblastoma. In addition, researchers are also exploring ways to optimize the use of STAT3 inhibitors in combination with chemotherapy and identify biomarkers that can predict treatment that will help to develop personalized treatment strategies. This review highlights the potential of selective inhibition of STAT3 as a novel approach for the treatment of medulloblastoma and suggests that further research into the development of STAT3 inhibitors could lead to improved outcomes for patients with aggressive cancer.
Collapse
Affiliation(s)
- Sachindra Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Dube Aakash Arwind
- Department of Pharmacology and toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India
| | - Harish Kumar B
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Samyak Pandey
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Raksha Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Megh Pravin Vithalkar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Nitesh Kumar
- Department of Pharmacology and toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India.
| |
Collapse
|
24
|
Joy JD, Malacrida B, Laforêts F, Kotantaki P, Maniati E, Manchanda R, Annibaldi A, Hopkins S, Garrobo-Calleja I, Gautrot J, Balkwill FR. Human 3D Ovarian Cancer Models Reveal Malignant Cell-Intrinsic and -Extrinsic Factors That Influence CAR T-cell Activity. Cancer Res 2024; 84:2432-2449. [PMID: 38819641 PMCID: PMC11292204 DOI: 10.1158/0008-5472.can-23-3007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/29/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
In vitro preclinical testing of chimeric antigen receptor (CAR) T cells is mostly carried out in monolayer cell cultures. However, alternative strategies are needed to take into account the complexity and the effects of the tumor microenvironment. Here, we describe the modulation of CAR T-cell activity by malignant cells and fibroblasts in human three-dimensional (3D) in vitro cell models of increasing complexity. In models combining mucin-1 (MUC1) and TnMUC1 CAR T cells with human high-grade serous ovarian cancer cell spheroids, malignant cell-intrinsic resistance to CAR T-cell killing was due to defective death receptor signaling involving TNFα. Adding primary human fibroblasts to spheroids unexpectedly increased the ability of CAR T cells to kill resistant malignant cells as CCL2 produced by fibroblasts activated CCR2/4+ CAR T cells. However, culturing malignant cells and fibroblasts in collagen gels engendered production of a dense extracellular matrix that impeded CAR T-cell activity in a TGFβ-dependent manner. A vascularized microfluidic device was developed that allowed CAR T cells to flow through the vessels and penetrate the gels in a more physiological way, killing malignant cells in a TNFα-dependent manner. Complex 3D human cell models may provide an efficient way of screening multiple cytotoxic human immune cell constructs while also enabling evaluation of mechanisms of resistance involving cell-cell and cell-matrix interactions, thus accelerating preclinical research on cytotoxic immune cell therapies in solid tumors. Significance: Three-dimensional in vitro models of increasing complexity uncover mechanisms of resistance to CAR T cells in solid tumors, which could help accelerate development of improved CAR T-cell constructs.
Collapse
Affiliation(s)
- Joash D. Joy
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
| | - Beatrice Malacrida
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
| | - Florian Laforêts
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
| | - Panoraia Kotantaki
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
| | - Eleni Maniati
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
| | - Ranjit Manchanda
- Wolfson Institute of Population Health, Cancer Research UK, Barts Centre, Queen Mary University of London, London, United Kingdom.
- Department of Gynaecological Oncology, Royal London Hospital, Barts Health NHS Trust, London, United Kingdom.
- Department of Health Services Research and Policy, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | | | - Sarah Hopkins
- GlaxoSmithKline Medicines Research Centre, Stevenage, United Kingdom.
| | | | - Julien Gautrot
- School of Engineering and Material Science, Centre for Bioengineering, Queen Mary University of London, London, United Kingdom.
| | - Frances R. Balkwill
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
25
|
Pankova V, Krasny L, Kerrison W, Tam YB, Chadha M, Burns J, Wilding CP, Chen L, Chowdhury A, Perkins E, Lee AT, Howell L, Guljar N, Sisley K, Fisher C, Chudasama P, Thway K, Jones RL, Huang PH. Clinical Implications and Molecular Features of Extracellular Matrix Networks in Soft Tissue Sarcomas. Clin Cancer Res 2024; 30:3229-3242. [PMID: 38810090 PMCID: PMC11292195 DOI: 10.1158/1078-0432.ccr-23-3960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/25/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE The landscape of extracellular matrix (ECM) alterations in soft tissue sarcomas (STS) remains poorly characterized. We aimed to investigate the tumor ECM and adhesion signaling networks present in STS and their clinical implications. EXPERIMENTAL DESIGN Proteomic and clinical data from 321 patients across 11 histological subtypes were analyzed to define ECM and integrin adhesion networks. Subgroup analysis was performed in leiomyosarcomas (LMS), dedifferentiated liposarcomas (DDLPS), and undifferentiated pleomorphic sarcomas (UPS). RESULTS This analysis defined subtype-specific ECM profiles including enrichment of basement membrane proteins in LMS and ECM proteases in UPS. Across the cohort, we identified three distinct coregulated ECM networks which are associated with tumor malignancy grade and histological subtype. Comparative analysis of LMS cell line and patient proteomic data identified the lymphocyte cytosolic protein 1 cytoskeletal protein as a prognostic factor in LMS. Characterization of ECM network events in DDLPS revealed three subtypes with distinct oncogenic signaling pathways and survival outcomes. Evaluation of the DDLPS subtype with the poorest prognosis nominates ECM remodeling proteins as candidate antistromal therapeutic targets. Finally, we define a proteoglycan signature that is an independent prognostic factor for overall survival in DDLPS and UPS. CONCLUSIONS STS comprise heterogeneous ECM signaling networks and matrix-specific features that have utility for risk stratification and therapy selection, which could in future guide precision medicine in these rare cancers.
Collapse
Affiliation(s)
- Valeriya Pankova
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom.
| | - Lukas Krasny
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom.
| | - William Kerrison
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom.
| | - Yuen B. Tam
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom.
| | - Madhumeeta Chadha
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom.
| | - Jessica Burns
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom.
| | - Christopher P. Wilding
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom.
| | - Liang Chen
- Precision Sarcoma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- National Center for Tumor Diseases, Heidelberg, Germany.
| | - Avirup Chowdhury
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom.
| | - Emma Perkins
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom.
| | | | - Louise Howell
- Light Microscopy Facility, The Institute of Cancer Research, London, United Kingdom.
| | - Nafia Guljar
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom.
| | - Karen Sisley
- Division of Clinical Medicine, The Medical School, University of Sheffield, Sheffield, United Kingdom.
| | - Cyril Fisher
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom.
| | - Priya Chudasama
- Precision Sarcoma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- National Center for Tumor Diseases, Heidelberg, Germany.
| | - Khin Thway
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom.
- The Royal Marsden NHS Foundation Trust, London, United Kingdom.
| | - Robin L. Jones
- The Royal Marsden NHS Foundation Trust, London, United Kingdom.
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom.
| | - Paul H. Huang
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
26
|
Tocci P, Roman C, Sestito R, Caprara V, Sacconi A, Molineris I, Tonon G, Blandino G, Bagnato A. The endothelin-1-driven tumor-stroma feed-forward loops in high-grade serous ovarian cancer. Clin Sci (Lond) 2024; 138:851-862. [PMID: 38884602 PMCID: PMC11230866 DOI: 10.1042/cs20240346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/30/2024] [Accepted: 06/17/2024] [Indexed: 06/18/2024]
Abstract
The high-grade serous ovarian cancer (HG-SOC) tumor microenvironment (TME) is constellated by cellular elements and a network of soluble constituents that contribute to tumor progression. In the multitude of the secreted molecules, the endothelin-1 (ET-1) has emerged to be implicated in the tumor/TME interplay; however, the molecular mechanisms induced by the ET-1-driven feed-forward loops (FFL) and associated with the HG-SOC metastatic potential need to be further investigated. The tracking of the patient-derived (PD) HG-SOC cell transcriptome by RNA-seq identified the vascular endothelial growth factor (VEGF) gene and its associated signature among those mostly up-regulated by ET-1 and down-modulated by the dual ET-1R antagonist macitentan. Within the ligand-receptor pairs concurrently expressed in PD-HG-SOC cells, endothelial cells and activated fibroblasts, we discovered two intertwined FFL, the ET-1/ET-1R and VEGF/VEGF receptors, concurrently activated by ET-1 and shutting-down by macitentan, or by the anti-VEGF antibody bevacizumab. In parallel, we observed that ET-1 fine-tuned the tumoral and stromal secretome toward a pro-invasive pattern. Into the fray of the HG-SOC/TME double and triple co-cultures, the secretion of ET-1 and VEGF, that share a common co-regulation, was inhibited upon the administration of macitentan. Functionally, macitentan, mimicking the effect of bevacizumab, interfered with the HG-SOC/TME FFL-driven communication that fuels the HG-SOC invasive behavior. The identification of ET-1 and VEGF FFL as tumor and TME actionable vulnerabilities, reveals how ET-1R blockade, targeting the HG-SOC cells and the TME simultaneously, may represent an effective therapeutic option for HG-SOC patients.
Collapse
Affiliation(s)
- Piera Tocci
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| | - Celia Roman
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| | - Rosanna Sestito
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| | - Valentina Caprara
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Sacconi
- Translational Oncology Research Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Ivan Molineris
- Department of Life Science and System Biology, University of Turin, Turin, Italy
| | - Giovanni Tonon
- Center for Omics Sciences (COSR) and Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, 20132, Milan, Italy
| | - Giovanni Blandino
- Translational Oncology Research Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Bagnato
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
27
|
Liu Y, Okesola BO, Osuna de la Peña D, Li W, Lin M, Trabulo S, Tatari M, Lawlor RT, Scarpa A, Wang W, Knight M, Loessner D, Heeschen C, Mata A, Pearce OMT. A Self-Assembled 3D Model Demonstrates How Stiffness Educates Tumor Cell Phenotypes and Therapy Resistance in Pancreatic Cancer. Adv Healthc Mater 2024; 13:e2301941. [PMID: 38471128 PMCID: PMC11468796 DOI: 10.1002/adhm.202301941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/16/2024] [Indexed: 03/14/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense and stiff extracellular matrix (ECM) associated with tumor progression and therapy resistance. To further the understanding of how stiffening of the tumor microenvironment (TME) contributes to aggressiveness, a three-dimensional (3D) self-assembling hydrogel disease model is developed based on peptide amphiphiles (PAs, PA-E3Y) designed to tailor stiffness. The model displays nanofibrous architectures reminiscent of native TME and enables the study of the invasive behavior of PDAC cells. Enhanced tuneability of stiffness is demonstrated by interacting thermally annealed aqueous solutions of PA-E3Y (PA-E3Yh) with divalent cations to create hydrogels with mechanical properties and ultrastructure similar to native tumor ECM. It is shown that stiffening of PA-E3Yh hydrogels to levels found in PDAC induces ECM deposition, promotes epithelial-to-mesenchymal transition (EMT), enriches CD133+/CXCR4+ cancer stem cells (CSCs), and subsequently enhances drug resistance. The findings reveal how a stiff 3D environment renders PDAC cells more aggressive and therefore more faithfully recapitulates in vivo tumors.
Collapse
Affiliation(s)
- Ying Liu
- Barts Cancer InstituteQueen Mary University of LondonLondonEC1M 6BQUK
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - Babatunde O. Okesola
- School of Life SciencesFaculty of Medicine and Health SciencesUniversity of NottinghamNottinghamNG7 2RDUK
| | - David Osuna de la Peña
- Barts Cancer InstituteQueen Mary University of LondonLondonEC1M 6BQUK
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - Weiqi Li
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - Meng‐Lay Lin
- Barts Cancer InstituteQueen Mary University of LondonLondonEC1M 6BQUK
| | - Sara Trabulo
- Barts Cancer InstituteQueen Mary University of LondonLondonEC1M 6BQUK
| | - Marianthi Tatari
- Barts Cancer InstituteQueen Mary University of LondonLondonEC1M 6BQUK
| | - Rita T. Lawlor
- Department of Diagnostics and Public HealthSection of PathologyUniversity of VeronaVerona37134Italy
- ARC‐NetApplied Research on Cancer CentreUniversity of VeronaVerona37134Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public HealthSection of PathologyUniversity of VeronaVerona37134Italy
- ARC‐NetApplied Research on Cancer CentreUniversity of VeronaVerona37134Italy
| | - Wen Wang
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - Martin Knight
- Centre for BioengineeringSchool of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
- Centre for Predictive in vitro ModelsQueen Mary University of LondonLondonE1 4NSUK
| | - Daniela Loessner
- Barts Cancer InstituteQueen Mary University of LondonLondonEC1M 6BQUK
- Department of Chemical and Biological EngineeringFaculty of EngineeringMonash UniversityMelbourneVIC3800Australia
- Department of Materials Science and EngineeringFaculty of EngineeringMonash UniversityMelbourneVIC3800Australia
- Department of Anatomy and Developmental BiologyFaculty of MedicineNursing and Health SciencesMonash UniversityMelbourneVIC3800Australia
| | - Christopher Heeschen
- Pancreatic Cancer HeterogeneityCandiolo Cancer Institute – FPO – IRCCSCandiolo (TO)10060Italy
| | - Alvaro Mata
- School of PharmacyUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
- Biodiscovery InstituteUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
- Department of Chemical and Environmental EngineeringUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | | |
Collapse
|
28
|
Ashworth JC, Cox TR. The importance of 3D fibre architecture in cancer and implications for biomaterial model design. Nat Rev Cancer 2024; 24:461-479. [PMID: 38886573 DOI: 10.1038/s41568-024-00704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 06/20/2024]
Abstract
The need for improved prediction of clinical response is driving the development of cancer models with enhanced physiological relevance. A new concept of 'precision biomaterials' is emerging, encompassing patient-mimetic biomaterial models that seek to accurately detect, treat and model cancer by faithfully recapitulating key microenvironmental characteristics. Despite recent advances allowing tissue-mimetic stiffness and molecular composition to be replicated in vitro, approaches for reproducing the 3D fibre architectures found in tumour extracellular matrix (ECM) remain relatively unexplored. Although the precise influences of patient-specific fibre architecture are unclear, we summarize the known roles of tumour fibre architecture, underlining their implications in cell-matrix interactions and ultimately clinical outcome. We then explore the challenges in reproducing tissue-specific 3D fibre architecture(s) in vitro, highlighting relevant biomaterial fabrication techniques and their benefits and limitations. Finally, we discuss imaging and image analysis techniques (focussing on collagen I-optimized approaches) that could hold the key to mapping tumour-specific ECM into high-fidelity biomaterial models. We anticipate that an interdisciplinary approach, combining materials science, cancer research and image analysis, will elucidate the role of 3D fibre architecture in tumour development, leading to the next generation of patient-mimetic models for mechanistic studies and drug discovery.
Collapse
Affiliation(s)
- Jennifer C Ashworth
- School of Veterinary Medicine & Science, Sutton Bonington Campus, University of Nottingham, Leicestershire, UK.
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK.
- Cancer Ecosystems Program, The Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
| | - Thomas R Cox
- Cancer Ecosystems Program, The Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
- The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia.
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
29
|
Chen J, Yang L, Ma Y, Zhang Y. Recent advances in understanding the immune microenvironment in ovarian cancer. Front Immunol 2024; 15:1412328. [PMID: 38903506 PMCID: PMC11188340 DOI: 10.3389/fimmu.2024.1412328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Abstract
The occurrence of ovarian cancer (OC) is a major factor in women's mortality rates. Despite progress in medical treatments, like new drugs targeting homologous recombination deficiency, survival rates for OC patients are still not ideal. The tumor microenvironment (TME) includes cancer cells, fibroblasts linked to cancer (CAFs), immune-inflammatory cells, and the substances these cells secrete, along with non-cellular components in the extracellular matrix (ECM). First, the TME mainly plays a role in inhibiting tumor growth and protecting normal cell survival. As tumors progress, the TME gradually becomes a place to promote tumor cell progression. Immune cells in the TME have attracted much attention as targets for immunotherapy. Immune checkpoint inhibitor (ICI) therapy has the potential to regulate the TME, suppressing factors that facilitate tumor advancement, reactivating immune cells, managing tumor growth, and extending the survival of patients with advanced cancer. This review presents an outline of current studies on the distinct cellular elements within the OC TME, detailing their main functions and possible signaling pathways. Additionally, we examine immunotherapy rechallenge in OC, with a specific emphasis on the biological reasons behind resistance to ICIs.
Collapse
Affiliation(s)
- Jinxin Chen
- Department of Gynecology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Lu Yang
- Department of Internal Medicine, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yiming Ma
- Department of Medical Oncology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
- Liaoning Key Laboratory of Gastrointestinal Cancer Translational Research, Shenyang, Liaoning, China
| | - Ye Zhang
- Department of Radiation Oncology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
30
|
Stiegeler N, Garsed DW, Au-Yeung G, Bowtell DDL, Heinzelmann-Schwarz V, Zwimpfer TA. Homologous recombination proficient subtypes of high-grade serous ovarian cancer: treatment options for a poor prognosis group. Front Oncol 2024; 14:1387281. [PMID: 38894867 PMCID: PMC11183307 DOI: 10.3389/fonc.2024.1387281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Approximately 50% of tubo-ovarian high-grade serous carcinomas (HGSCs) have functional homologous recombination-mediated (HR) DNA repair, so-called HR-proficient tumors, which are often associated with primary platinum resistance (relapse within six months after completion of first-line therapy), minimal benefit from poly(ADP-ribose) polymerase (PARP) inhibitors, and shorter survival. HR-proficient tumors comprise multiple molecular subtypes including cases with CCNE1 amplification, AKT2 amplification or CDK12 alteration, and are often characterized as "cold" tumors with fewer infiltrating lymphocytes and decreased expression of PD-1/PD-L1. Several new treatment approaches aim to manipulate these negative prognostic features and render HR-proficient tumors more susceptible to treatment. Alterations in multiple different molecules and pathways in the DNA damage response are driving new drug development to target HR-proficient cancer cells, such as inhibitors of the CDK or P13K/AKT pathways, as well as ATR inhibitors. Treatment combinations with chemotherapy or PARP inhibitors and agents targeting DNA replication stress have shown promising preclinical and clinical results. New approaches in immunotherapy are also being explored, including vaccines or antibody drug conjugates. Many approaches are still in the early stages of development and further clinical trials will determine their clinical relevance. There is a need to include HR-proficient tumors in ovarian cancer trials and to analyze them in a more targeted manner to provide further evidence for their specific therapy, as this will be crucial in improving the overall prognosis of HGSC and ovarian cancer in general.
Collapse
Affiliation(s)
| | - Dale W. Garsed
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - George Au-Yeung
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - David D. L. Bowtell
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | | | - Tibor A. Zwimpfer
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Department of Gynecological Oncology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
31
|
Liang W, Yang X, Li X, Wang P, Zhu Z, Liu S, Xu D, Zhi X, Xue J. Investigating gene signatures associated with immunity in colon adenocarcinoma to predict the immunotherapy effectiveness using NFM and WGCNA algorithms. Aging (Albany NY) 2024; 16:7596-7621. [PMID: 38742936 PMCID: PMC11131999 DOI: 10.18632/aging.205763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/26/2024] [Indexed: 05/16/2024]
Abstract
Colon adenocarcinoma (COAD), a frequently encountered and highly lethal malignancy of the digestive system, has been the focus of intensive research regarding its prognosis. The intricate immune microenvironment plays a pivotal role in the pathological progression of COAD; nevertheless, the underlying molecular mechanisms remain incompletely understood. This study aims to explore the immune gene expression patterns in COAD, construct a robust prognostic model, and delve into the molecular mechanisms and potential therapeutic targets for COAD liver metastasis, thereby providing critical support for individualized treatment strategies and prognostic evaluation. Initially, we curated a comprehensive dataset by screening 2600 immune-related genes (IRGs) from the ImmPort and InnateDB databases, successfully obtaining a rich data resource. Subsequently, the COAD patient cohort was classified using the non-negative matrix factorization (NMF) algorithm, enabling accurate categorization. Continuing on, utilizing the weighted gene co-expression network analysis (WGCNA) method, we analyzed the top 5000 genes with the smallest p-values among the differentially expressed genes (DEGs) between immune subtypes. Through this rigorous screening process, we identified the gene modules with the strongest correlation to the COAD subpopulation, and the intersection of genes in these modules with DEGs (COAD vs COAD vs Normal colon tissue) is referred to as Differentially Expressed Immune Genes Associated with COAD (DEIGRC). Employing diverse bioinformatics methodologies, we successfully developed a prognostic model (DPM) consisting of six genes derived from the DEIGRC, which was further validated across multiple independent datasets. Not only does this predictive model accurately forecast the prognosis of COAD patients, but it also provides valuable insights for formulating personalized treatment regimens. Within the constructed DPM, we observed a downregulation of CALB2 expression levels in COAD tissues, whereas NOXA1, KDF1, LARS2, GSR, and TIMP1 exhibited upregulated expression levels. These genes likely play indispensable roles in the initiation and progression of COAD and thus represent potential therapeutic targets for patient management. Furthermore, our investigation into the molecular mechanisms and therapeutic targets for COAD liver metastasis revealed associations with relevant processes such as fat digestion and absorption, cancer gene protein polysaccharides, and nitrogen metabolism. Consequently, genes including CAV1, ANXA1, CPS1, EDNRA, and GC emerge as promising candidates as therapeutic targets for COAD liver metastasis, thereby providing crucial insights for future clinical practices and drug development. In summary, this study uncovers the immune gene expression patterns in COAD, establishes a robust prognostic model, and elucidates the molecular mechanisms and potential therapeutic targets for COAD liver metastasis, thereby possessing significant theoretical and clinical implications. These findings are anticipated to offer substantial support for both the treatment and prognosis management of COAD patients.
Collapse
Affiliation(s)
- Weizheng Liang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China
| | - Xiangyu Yang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, Yuzhong 400010, Chongqing, China
| | - Xiushen Li
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen 518055, Guangdong, China
| | - Peng Wang
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China
| | - Zhenpeng Zhu
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China
| | - Shan Liu
- Bioimaging Core of Shenzhen Bay Laboratory Shenzhen, Shenzhen 518132, Guangdong, China
| | - Dandan Xu
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China
| | - Xuejun Zhi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China
| | - Jun Xue
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China
| |
Collapse
|
32
|
Jalil SMA, Henry JC, Cameron AJM. Targets in the Tumour Matrisome to Promote Cancer Therapy Response. Cancers (Basel) 2024; 16:1847. [PMID: 38791926 PMCID: PMC11119821 DOI: 10.3390/cancers16101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The extracellular matrix (ECM) is composed of complex fibrillar proteins, proteoglycans, and macromolecules, generated by stromal, immune, and cancer cells. The components and organisation of the matrix evolves as tumours progress to invasive disease and metastasis. In many solid tumours, dense fibrotic ECM has been hypothesised to impede therapy response by limiting drug and immune cell access. Interventions to target individual components of the ECM, collectively termed the matrisome, have, however, revealed complex tumour-suppressor, tumour-promoter, and immune-modulatory functions, which have complicated clinical translation. The degree to which distinct components of the matrisome can dictate tumour phenotypes and response to therapy is the subject of intense study. A primary aim is to identify therapeutic opportunities within the matrisome, which might support a better response to existing therapies. Many matrix signatures have been developed which can predict prognosis, immune cell content, and immunotherapy responses. In this review, we will examine key components of the matrisome which have been associated with advanced tumours and therapy resistance. We have primarily focussed here on targeting matrisome components, rather than specific cell types, although several examples are described where cells of origin can dramatically affect tumour roles for matrix components. As we unravel the complex biochemical, biophysical, and intracellular transduction mechanisms associated with the ECM, numerous therapeutic opportunities will be identified to modify tumour progression and therapy response.
Collapse
Affiliation(s)
| | | | - Angus J. M. Cameron
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK; (S.M.A.J.); (J.C.H.)
| |
Collapse
|
33
|
Micek HM, Yang N, Dutta M, Rosenstock L, Ma Y, Hielsberg C, McCord M, Notbohm J, McGregor S, Kreeger PK. The role of Piezo1 mechanotransduction in high-grade serous ovarian cancer: Insights from an in vitro model of collective detachment. SCIENCE ADVANCES 2024; 10:eadl4463. [PMID: 38669327 PMCID: PMC11051664 DOI: 10.1126/sciadv.adl4463] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/22/2024] [Indexed: 04/28/2024]
Abstract
Slowing peritoneal spread in high-grade serous ovarian cancer (HGSOC) would improve patient prognosis and quality of life. HGSOC spreads when single cells and spheroids detach, float through the peritoneal fluid and take over new sites, with spheroids thought to be more aggressive than single cells. Using our in vitro model of spheroid collective detachment, we determine that increased substrate stiffness led to the detachment of more spheroids. We identified a mechanism where Piezo1 activity increased MMP-1/MMP-10, decreased collagen I and fibronectin, and increased spheroid detachment. Piezo1 expression was confirmed in omental masses from patients with stage III/IV HGSOC. Using OV90 and CRISPR-modified PIEZO1-/- OV90 in a mouse xenograft model, we determined that while both genotypes efficiently took over the omentum, loss of Piezo1 significantly decreased ascitic volume, tumor spheroids in the ascites, and the number of macroscopic tumors in the mesentery. These results support that slowing collective detachment may benefit patients and identify Piezo1 as a potential therapeutic target.
Collapse
Affiliation(s)
- Hannah M. Micek
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ning Yang
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Mayuri Dutta
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Lauren Rosenstock
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yicheng Ma
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Caitlin Hielsberg
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Molly McCord
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Biophysics Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jacob Notbohm
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Biophysics Program, University of Wisconsin-Madison, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Stephanie McGregor
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Pamela K. Kreeger
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
34
|
Waters JA, Robinson M, Lujano-Olazaba O, Lucht C, Gilbert SF, House CD. Omental preadipocytes stimulate matrix remodeling and IGF signaling to support ovarian cancer metastasis. Cancer Res 2024; 84:743101. [PMID: 38635891 PMCID: PMC11217736 DOI: 10.1158/0008-5472.can-23-2613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/19/2024] [Accepted: 04/03/2024] [Indexed: 04/20/2024]
Abstract
Ovarian cancer can metastasize to the omentum, which is associated with a complex tumor microenvironment. Omental stromal cells facilitate ovarian cancer colonization by secreting cytokines and growth factors. Improved understanding of the tumor supportive functions of specific cell populations in the omentum could identify strategies to prevent and treat ovarian cancer metastasis. Here, we showed that omental preadipocytes enhance the tumor initiation capacity of ovarian cancer cells. Secreted factors from preadipocytes supported cancer cell viability during nutrient and isolation stress and enabled prolonged proliferation. Co-culturing with pre-adipocytes led to upregulation of genes involved in extracellular matrix (ECM) organization, cellular response to stress, and regulation of insulin-like growth factor (IGF) signaling in ovarian cancer cells. IGF-1 induced ECM genes and increased alternative NF-κB signaling by activating RelB. Inhibiting the IGF-1 receptor (IGF1R) initially increased tumor omental adhesion but decreased growth of established preadipocyte-induced subcutaneous tumors as well as established intraperitoneal tumors. Together, this study shows that omental preadipocytes support ovarian cancer progression, which has implications for targeting metastasis.
Collapse
Affiliation(s)
- Jennifer A. Waters
- Department of Biology, San Diego State University, San Diego, California.
| | - Mikella Robinson
- Department of Biology, San Diego State University, San Diego, California.
| | | | - Cassidy Lucht
- Department of Biology, San Diego State University, San Diego, California.
| | - Samuel F. Gilbert
- Department of Biology, San Diego State University, San Diego, California.
| | - Carrie D. House
- Department of Biology, San Diego State University, San Diego, California.
- Moores Cancer Center, University of California San Diego, La Jolla, California.
| |
Collapse
|
35
|
Hirani P, McDermott J, Rajeeve V, Cutillas PR, Jones JL, Pennington DJ, Wight TN, Santamaria S, Alonge KM, Pearce OM. Versican Associates with Tumor Immune Phenotype and Limits T-cell Trafficking via Chondroitin Sulfate. CANCER RESEARCH COMMUNICATIONS 2024; 4:970-985. [PMID: 38517140 PMCID: PMC10989462 DOI: 10.1158/2767-9764.crc-23-0548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/02/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
Immunotherapies for cancers of epithelial origin have limited efficacy, and a growing body of evidence links the composition of extracellular matrix (ECM) with the likelihood of a favorable response to treatment. The ECM may be considered an immunologic barrier, restricting the localization of cytotoxic immune cells to stromal areas and inhibiting their contact with tumor cells. Identifying ECM components of this immunologic barrier could provide targets that whether degraded in situ may support antitumor immunity and improve immunotherapy response. Using a library of primary triple-negative breast cancer tissues, we correlated CD8+ T-cell tumor contact with ECM composition and identified a proteoglycan, versican (VCAN), as a putative member of the immunologic barrier. Our analysis reveals that CD8+ T-cell contact with tumor associates with the location of VCAN expression, the specific glycovariant of VCAN [defined through the pattern of posttranslational attachments of glycosaminoglycans (GAG)], and the cell types that produce the variant. In functional studies, the isomers of chondroitin sulfate presented on VCAN have opposing roles being either supportive or inhibiting of T-cell trafficking, and removal of the GAGs ameliorates these effects on T-cell trafficking. Overall, we conclude that VCAN can either support or inhibit T-cell trafficking within the tumor microenvironment depending on the pattern of GAGs present, and that VCAN is a major component of the ECM immunologic barrier that defines the type of response to immunotherapy. SIGNIFICANCE The response to immunotherapy has been poor toward solid tumors despite immune cells infiltrating into the tumor. The ECM has been associated with impacting T-cell infiltration toward the tumor and in this article we have identified VCAN and its structural modification, chondroitin sulfate as having a key role in T-cell invasion.
Collapse
Affiliation(s)
- Priyanka Hirani
- Barts Cancer Institute, John Vane Science Centre, Queen Mary University of London, London, United Kingdom
| | - Jacqueline McDermott
- Department of Histopathology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Vinothini Rajeeve
- Barts Cancer Institute, John Vane Science Centre, Queen Mary University of London, London, United Kingdom
| | - Pedro R. Cutillas
- Barts Cancer Institute, John Vane Science Centre, Queen Mary University of London, London, United Kingdom
| | - J. Louise Jones
- Barts Cancer Institute, John Vane Science Centre, Queen Mary University of London, London, United Kingdom
| | - Daniel J. Pennington
- Centre for Immunobiology, Blizard Institute, Barts and the London Medical School, Queen Mary University of London, London, United Kingdom
| | - Thomas N. Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Salvatore Santamaria
- Department of Biochemical Sciences, School of Biosciences, Faculty of Health and Medical Sciences, Edward Jenner Building, University of Surrey, Surrey, United Kingdom
| | - Kimberly M. Alonge
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington
| | - Oliver M.T. Pearce
- Barts Cancer Institute, John Vane Science Centre, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
36
|
Major G, Simcock J, Kumar A, Kleffmann T, Woodfield TBF, Lim KS. Comprehensive Matrisome Profiling of Human Adipose Tissue for Soft Tissue Reconstruction. Adv Biol (Weinh) 2024; 8:e2300448. [PMID: 37953659 DOI: 10.1002/adbi.202300448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/14/2023] [Indexed: 11/14/2023]
Abstract
For effective translation of research from tissue engineering and regenerative medicine domains, the cell-instructive extracellular matrix (ECM) of specific tissues must be accurately realized. As adipose tissue is gaining traction as a biomaterial for soft tissue reconstruction, with highly variable clinical outcomes obtained, a quantitative investigation of the adipose tissue matrisome is overdue. In this study, the human adipose tissue matrisome is profiled using quantitative sequential windowed acquisition of all theoretical fragment ion spectra - mass spectrometry (SWATH-MS) proteomics across a cohort of 13 fat-grafting patients, to provide characterization of ECM proteins within the tissue, and to understand human population variation. There are considerable differences in the expression of matrisome proteins across the patient cohort, with age and lipoaspirate collection technique contributing to the greatest variation across the core matrisome. A high abundance of basement membrane proteins (collagen IV and heparan sulfate proteoglycan) is detected, as well as fibrillar collagens I and II, reflecting the hierarchical structure of the tissue. This study provides a comprehensive proteomic evaluation of the adipose tissue matrisome and contributes to an enhanced understanding of the influence of the matrisome in adipose-related pathologies by providing a healthy reference cohort and details an experimental pipeline that can be further exploited for future biomaterial development.
Collapse
Affiliation(s)
- Gretel Major
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch, 8011, New Zealand
| | - Jeremy Simcock
- Department of Surgery, University of Otago, Christchurch, 8011, New Zealand
| | - Abhishek Kumar
- Centre for Protein Research, Research Infrastructure Centre, University of Otago, Dunedin, 9054, New Zealand
| | - Torsten Kleffmann
- Centre for Protein Research, Research Infrastructure Centre, University of Otago, Dunedin, 9054, New Zealand
| | - Tim B F Woodfield
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch, 8011, New Zealand
| | - Khoon S Lim
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch, 8011, New Zealand
- Light-Activated Biomaterials Group, School of Medical Science, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
37
|
Zheng J, Hao H. The importance of cancer-associated fibroblasts in targeted therapies and drug resistance in breast cancer. Front Oncol 2024; 13:1333839. [PMID: 38273859 PMCID: PMC10810416 DOI: 10.3389/fonc.2023.1333839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) play a substantial role in the tumor microenvironment, exhibiting a strong association with the advancement of various types of cancer, including breast, pancreatic, and prostate cancer. CAFs represent the most abundant mesenchymal cell population in breast cancer. Through diverse mechanisms, including the release of cytokines and exosomes, CAFs contribute to the progression of breast cancer by influencing tumor energy metabolism, promoting angiogenesis, impairing immune cell function, and remodeling the extracellular matrix. Moreover, CAFs considerably impact the response to treatment in breast cancer. Consequently, the development of interventions targeting CAFs has emerged as a promising therapeutic approach in the management of breast cancer. This article provides an analysis of the role of CAFs in breast cancer, specifically in relation to diagnosis, treatment, drug resistance, and prognosis. The paper succinctly outlines the diverse mechanisms through which CAFs contribute to the malignant behavior of breast cancer cells, including proliferation, invasion, metastasis, and drug resistance. Furthermore, the article emphasizes the potential of CAFs as valuable tools for early diagnosis, targeted therapy, treatment resistance, and prognosis assessment in breast cancer, thereby offering novel approaches for targeted therapy and overcoming treatment resistance in this disease.
Collapse
Affiliation(s)
| | - Hua Hao
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
38
|
Chakkera M, Foote JB, Farran B, Nagaraju GP. Breaking the stromal barrier in pancreatic cancer: Advances and challenges. Biochim Biophys Acta Rev Cancer 2024; 1879:189065. [PMID: 38160899 DOI: 10.1016/j.bbcan.2023.189065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/15/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Pancreatic cancer (PC) remains a leading cause of mortality worldwide due to the absence of early detection methods and the low success rates of traditional therapeutic strategies. Drug resistance in PC is driven by its desmoplastic stroma, which creates a barrier that shields cancer niches and prevents the penetration of drugs. The PC stroma comprises heterogeneous cellular populations and non-cellular components involved in aberrant ECM deposition, immunosuppression, and drug resistance. These components can influence PC development through intricate and complex crosstalk with the PC cells. Understanding how stromal components and cells interact with and influence the invasiveness and refractoriness of PC cells is thus a prerequisite for developing successful stroma-modulating strategies capable of remodeling the PC stroma to alleviate drug resistance and enhance therapeutic outcomes. In this review, we explore how non-cellular and cellular stromal components, including cancer-associated fibroblasts and tumor-associated macrophages, contribute to the immunosuppressive and tumor-promoting effects of the stroma. We also examine the signaling pathways underlying their activation, tumorigenic effects, and interactions with PC cells. Finally, we discuss recent pre-clinical and clinical work aimed at developing and testing novel stroma-modulating agents to alleviate drug resistance and improve therapeutic outcomes in PC.
Collapse
Affiliation(s)
- Mohana Chakkera
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA
| | - Jeremy B Foote
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Batoul Farran
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA.
| |
Collapse
|
39
|
Carter EP, Yoneten KK, Gavara N, Tyler EJ, Gauthier V, Murray ER, ten Dijke P, Cameron AJ, Pearce O, Grose RP. Opposing roles for ADAMTS2 and ADAMTS14 in myofibroblast differentiation and function. J Pathol 2024; 262:90-104. [PMID: 37929635 PMCID: PMC10953099 DOI: 10.1002/path.6214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/31/2023] [Accepted: 08/29/2023] [Indexed: 11/07/2023]
Abstract
Crosstalk between cancer and stellate cells is pivotal in pancreatic cancer, resulting in differentiation of stellate cells into myofibroblasts that drives tumour progression. To assess cooperative mechanisms in a 3D context, we generated chimeric spheroids using human and mouse cancer and stellate cells. Species-specific deconvolution of bulk-RNA sequencing data revealed cell type-specific transcriptomes underpinning invasion. This dataset highlighted stellate-specific expression of transcripts encoding the collagen-processing enzymes ADAMTS2 and ADAMTS14. Strikingly, loss of ADAMTS2 reduced, while loss of ADAMTS14 promoted, myofibroblast differentiation and invasion independently of their primary role in collagen-processing. Functional and proteomic analysis demonstrated that these two enzymes regulate myofibroblast differentiation through opposing roles in the regulation of transforming growth factor β availability, acting on the protease-specific substrates, Serpin E2 and fibulin 2, for ADAMTS2 and ADAMTS14, respectively. Showcasing a broader complexity for these enzymes, we uncovered a novel regulatory axis governing malignant behaviour of the pancreatic cancer stroma. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Edward P Carter
- Centre for Tumour Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
- Department of Life SciencesUniversity of BathBathUK
- Centre for Therapeutic Innovation, Faculty of ScienceUniversity of BathBathUK
| | - Kubra K Yoneten
- Centre for Tumour Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Nuria Gavara
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la SalutUniversitat de BarcelonaBarcelonaSpain
| | - Eleanor J Tyler
- Centre for Tumour Microenvironment, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Valentine Gauthier
- Centre for Tumour Microenvironment, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Elizabeth R Murray
- Centre for Tumour Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Peter ten Dijke
- Oncode Institute and Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Angus J Cameron
- Centre for Tumour Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Oliver Pearce
- Centre for Tumour Microenvironment, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Richard P Grose
- Centre for Tumour Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| |
Collapse
|
40
|
Gamradt P, Thierry K, Masmoudi M, Wu Z, Hernandez-Vargas H, Bachy S, Antonio T, Savas B, Hussain Z, Tomasini R, Milani P, Bertolino P, Hennino A. Stiffness-induced cancer-associated fibroblasts are responsible for immunosuppression in a platelet-derived growth factor ligand-dependent manner. PNAS NEXUS 2023; 2:pgad405. [PMID: 38111825 PMCID: PMC10727001 DOI: 10.1093/pnasnexus/pgad405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/02/2023] [Indexed: 12/20/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with a vast stromal reaction that arises mainly from cancer-associated fibroblasts (CAFs) and promotes both immune escape and tumor growth. Here, we used a mouse model with deletion of the activin A receptor ALK4 in the context of the KrasG12D mutation, which strongly drives collagen deposition that leads to tissue stiffness. By ligand-receptor analysis of single-cell RNA-sequencing data, we identified that, in stiff conditions, neoplastic ductal cells instructed CAFs through sustained platelet-derived growth factor (PDGF) signaling. Tumor-associated tissue rigidity resulted in the emergence of stiffness-induced CAFs (siCAFs) in vitro and in vivo. Similar results were confirmed in human data. siCAFs were able to strongly inhibit CD8+ T-cell responses in vitro and in vivo, promoting local immunosuppression. More importantly, targeting PDGF signaling led to diminished siCAF and reduced tumor growth. Our data show for the first time that early paracrine signaling leads to profound changes in tissue mechanics, impacting immune responses and tumor progression. Our study highlights that PDGF ligand neutralization can normalize the tissue architecture independent of the genetic background, indicating that finely tuned stromal therapy may open new therapeutic avenues in pancreatic cancer.
Collapse
Affiliation(s)
- Pia Gamradt
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
| | - Kevin Thierry
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
| | - Melissa Masmoudi
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
- StromaCare, Lyon F-69008, France
| | - Zhichong Wu
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hector Hernandez-Vargas
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
| | - Sophie Bachy
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
- StromaCare, Lyon F-69008, France
| | - Tiffanie Antonio
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
| | - Berkan Savas
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
| | | | | | | | - Philippe Bertolino
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
| | - Ana Hennino
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
- StromaCare, Lyon F-69008, France
| |
Collapse
|
41
|
Neilson LJ, Cartwright D, Risteli M, Jokinen EM, McGarry L, Sandvik T, Nikolatou K, Hodge K, Atkinson S, Vias M, Kay EJ, Brenton JD, Carlin LM, Bryant DM, Salo T, Zanivan S. Omentum-derived matrix enables the study of metastatic ovarian cancer and stromal cell functions in a physiologically relevant environment. Matrix Biol Plus 2023; 19-20:100136. [PMID: 38223308 PMCID: PMC10784634 DOI: 10.1016/j.mbplus.2023.100136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/20/2023] [Accepted: 11/12/2023] [Indexed: 01/16/2024] Open
Abstract
High-grade serous (HGS) ovarian cancer is the most lethal gynaecological disease in the world and metastases is a major cause. The omentum is the preferential metastatic site in HGS ovarian cancer patients and in vitro models that recapitulate the original environment of this organ at cellular and molecular level are being developed to study basic mechanisms that underpin this disease. The tumour extracellular matrix (ECM) plays active roles in HGS ovarian cancer pathology and response to therapy. However, most of the current in vitro models use matrices of animal origin and that do not recapitulate the complexity of the tumour ECM in patients. Here, we have developed omentum gel (OmGel), a matrix made from tumour-associated omental tissue of HGS ovarian cancer patients that has unprecedented similarity to the ECM of HGS omental tumours and is simple to prepare. When used in 2D and 3D in vitro assays to assess cancer cell functions relevant to metastatic ovarian cancer, OmGel performs as well as or better than the widely use Matrigel and does not induce additional phenotypic changes to ovarian cancer cells. Surprisingly, OmGel promotes pronounced morphological changes in cancer associated fibroblasts (CAFs). These changes were associated with the upregulation of proteins that define subsets of CAFs in tumour patient samples, highlighting the importance of using clinically and physiologically relevant matrices for in vitro studies. Hence, OmGel provides a step forward to study the biology of HGS omental metastasis. Metastasis in the omentum are also typical of other cancer types, particularly gastric cancer, implying the relevance of OmGel to study the biology of other highly lethal cancers.
Collapse
Affiliation(s)
| | - Douglas Cartwright
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Maija Risteli
- Research Unit of Population Health, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Elina M. Jokinen
- Department of Bacteriology and Immunology, Translational Immunology Research Program, University of Helsinki, Finland
| | - Lynn McGarry
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Toni Sandvik
- Research Unit of Population Health, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Konstantina Nikolatou
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Kelly Hodge
- Cancer Research UK Scotland Institute, Glasgow, UK
| | | | - Maria Vias
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, UK
| | - Emily J. Kay
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - James D. Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, UK
| | - Leo M. Carlin
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - David M. Bryant
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Tuula Salo
- Research Unit of Population Health, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
- Department of Pathology, University of Helsinki, Helsinki, Finland
- Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sara Zanivan
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
42
|
Ferreira GA, Thomé CH, Izumi C, Grassi ML, Lanfredi GP, Smolka M, Faça VM, Candido Dos Reis FJ. Proteomic analysis of exosomes secreted during the epithelial-mesenchymal transition and potential biomarkers of mesenchymal high-grade serous ovarian carcinoma. J Ovarian Res 2023; 16:232. [PMID: 38031074 PMCID: PMC10685605 DOI: 10.1186/s13048-023-01304-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/28/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND The epithelial-mesenchymal transition (EMT) promotes cell signaling and morphology alterations, contributing to cancer progression. Exosomes, extracellular vesicles containing proteins involved in cell-cell communication, have emerged as a potential source of biomarkers for several diseases. METHODS Our aim was to assess the proteome content of exosomes secreted after EMT-induction to identify potential biomarkers for ovarian cancer classification. EMT was induced in the ovarian cancer cell line CAOV3 by treating it with EGF (10 ng/mL) for 96 h following 24 h of serum deprivation. Subsequently, exosomes were isolated from the supernatant using selective centrifugation after decellularization, and their characteristics were determined. The proteins present in the exosomes were extracted, identified, and quantified using Label-Free-Quantification (LFQ) via Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). To identify potential biomarkers, the obtained proteomic data was integrated with the TGGA database for mRNA expression using principal component analysis and a conditional inference tree. RESULTS The exosomes derived from CAOV3 cells exhibited similar diameter and morphology, measuring approximately 150 nm, regardless of whether they were subjected to EMT stimulation or not. The proteomic analysis of proteins from CAOV3-derived exosomes revealed significant differential regulation of 157 proteins, with 100 showing upregulation and 57 downregulation upon EMT induction. Further comparison of the upregulated proteins with the TCGA transcriptomic data identified PLAU, LAMB1, COL6A1, and TGFB1 as potential biomarkers of the mesenchymal HGSOC subtype. CONCLUSIONS The induction of EMT, the isolation of exosomes, and the subsequent proteomic analysis highlight potential biomarkers for an aggressive ovarian cancer subtype. Further investigation into the role of these proteins is warranted to enhance our understanding of ovarian cancer outcomes.
Collapse
Affiliation(s)
- Germano Aguiar Ferreira
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, Ribeirão Preto, SP, Brazil
- Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, and Center for Cell Based Therapy, University of São Paulo, Ribeirão Preto, Brazil
| | - Carolina Hassibe Thomé
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, Ribeirão Preto, SP, Brazil
- Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, and Center for Cell Based Therapy, University of São Paulo, Ribeirão Preto, Brazil
| | - Clarice Izumi
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Mariana Lopes Grassi
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Guilherme Pauperio Lanfredi
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Marcus Smolka
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Vitor Marcel Faça
- Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, and Center for Cell Based Therapy, University of São Paulo, Ribeirão Preto, Brazil
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | |
Collapse
|
43
|
Akasaka H, Naora H. Revisiting the Use of Normal Saline for Peritoneal Washing in Ovarian Cancer. Int J Mol Sci 2023; 24:16449. [PMID: 38003636 PMCID: PMC10671679 DOI: 10.3390/ijms242216449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The omentum is the predominant site of ovarian cancer metastasis, but it is difficult to remove the omentum in its entirety. There is a critical need for effective approaches that minimize the risk of colonization of preserved omental tissues by occult cancer cells. Normal saline (0.9% sodium chloride) is commonly used to wash the peritoneal cavity during ovarian cancer surgery. The omentum has a prodigious ability to absorb fluid in the peritoneal cavity, but the impact of normal saline on the omentum is poorly understood. In this review article, we discuss why normal saline is not a biocompatible solution, drawing insights from clinical investigations of normal saline in fluid resuscitation and from the cytopathologic evaluation of peritoneal washings. We integrate these insights with the unique biology of the omentum and omental metastasis, highlighting the importance of considering the absorptive ability of the omentum when administering agents into the peritoneal cavity. Furthermore, we describe insights from preclinical studies regarding the mechanisms by which normal saline might render the omentum conducive for colonization by cancer cells. Importantly, we discuss the possibility that the risk of colonization of preserved omental tissues might be minimized by using balanced crystalloid solutions for peritoneal washing.
Collapse
Affiliation(s)
| | - Honami Naora
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
44
|
Sun L, Wang X, He Y, Chen B, Shan B, Yang J, Wang R, Zeng X, Li J, Tan H, Liang R. Polyurethane scaffold-based 3D lung cancer model recapitulates in vivo tumor biological behavior for nanoparticulate drug screening. Regen Biomater 2023; 10:rbad091. [PMID: 37965109 PMCID: PMC10641150 DOI: 10.1093/rb/rbad091] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 11/16/2023] Open
Abstract
Lung cancer is the leading cause of cancer mortality worldwide. Preclinical studies in lung cancer hold the promise of screening for effective antitumor agents, but mechanistic studies and drug discovery based on 2D cell models have a high failure rate in getting to the clinic. Thus, there is an urgent need to explore more reliable and effective in vitro lung cancer models. Here, we prepared a series of three-dimensional (3D) waterborne biodegradable polyurethane (WBPU) scaffolds as substrates to establish biomimetic tumor models in vitro. These 3D WBPU scaffolds were porous and could absorb large amounts of free water, facilitating the exchange of substances (nutrients and metabolic waste) and cell growth. The scaffolds at wet state could simulate the mechanics (elastic modulus ∼1.9 kPa) and morphology (porous structures) of lung tissue and exhibit good biocompatibility. A549 lung cancer cells showed adherent growth pattern and rapidly formed 3D spheroids on WBPU scaffolds. Our results showed that the scaffold-based 3D lung cancer model promoted the expression of anti-apoptotic and epithelial-mesenchymal transition-related genes, giving it a more moderate growth and adhesion pattern compared to 2D cells. In addition, WBPU scaffold-established 3D lung cancer model revealed a closer expression of proteins to in vivo tumor, including tumor stem cell markers, cell proliferation, apoptosis, invasion and tumor resistance proteins. Based on these features, we further demonstrated that the 3D lung cancer model established by the WBPU scaffold was very similar to the in vivo tumor in terms of both resistance and tolerance to nanoparticulate drugs. Taken together, WBPU scaffold-based lung cancer model could better mimic the growth, microenvironment and drug response of tumor in vivo. This emerging 3D culture system holds promise to shorten the formulation cycle of individualized treatments and reduce the use of animals while providing valid research data for clinical trials.
Collapse
Affiliation(s)
- Lu Sun
- Department of Targeting Therapy & Immunology; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xiaofei Wang
- Department of Medical Polymer Materials; Department of Artificial Organism, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Yushui He
- Department of Medical Polymer Materials; Department of Artificial Organism, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Boran Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Baoyin Shan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Jinlong Yang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Ruoran Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Xihang Zeng
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Jiehua Li
- Department of Medical Polymer Materials; Department of Artificial Organism, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Hong Tan
- Department of Medical Polymer Materials; Department of Artificial Organism, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Ruichao Liang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, People’s Republic of China
| |
Collapse
|
45
|
Gao Q, Zhan Y, Sun L, Zhu W. Cancer Stem Cells and the Tumor Microenvironment in Tumor Drug Resistance. Stem Cell Rev Rep 2023; 19:2141-2154. [PMID: 37477773 DOI: 10.1007/s12015-023-10593-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
Although there has been some progress in the efficacy of anti-cancer drugs, drug resistance remains challenging. Cancer stem cells (CSCs) are self-renewing and differentiate into cancer tissues with tumor heterogeneity. CSCs are associated with the progression of breast, colon, and lung cancers. Hence, recent studies have focused on the role of CSCs in resistance to anti-cancer drugs. Increasing evidence suggests that CSCs interact with components of the tumor microenvironment (TME), such as vascular and immune cells, as well as various cytokines, and are regulated by multiple signaling pathways, thereby promoting drug resistance in various cancers. Therefore, it is important to clarify the mechanisms underlying the crosstalk between CSCs and the TME for the development of targeted anti-cancer therapies.
Collapse
Affiliation(s)
- Qiuzhi Gao
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Yixiang Zhan
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Li Sun
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, 215300, China
| | - Wei Zhu
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
46
|
Mukherjee S, Patra R, Behzadi P, Masotti A, Paolini A, Sarshar M. Toll-like receptor-guided therapeutic intervention of human cancers: molecular and immunological perspectives. Front Immunol 2023; 14:1244345. [PMID: 37822929 PMCID: PMC10562563 DOI: 10.3389/fimmu.2023.1244345] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023] Open
Abstract
Toll-like receptors (TLRs) serve as the body's first line of defense, recognizing both pathogen-expressed molecules and host-derived molecules released from damaged or dying cells. The wide distribution of different cell types, ranging from epithelial to immune cells, highlights the crucial roles of TLRs in linking innate and adaptive immunity. Upon stimulation, TLRs binding mediates the expression of several adapter proteins and downstream kinases, that lead to the induction of several other signaling molecules such as key pro-inflammatory mediators. Indeed, extraordinary progress in immunobiological research has suggested that TLRs could represent promising targets for the therapeutic intervention of inflammation-associated diseases, autoimmune diseases, microbial infections as well as human cancers. So far, for the prevention and possible treatment of inflammatory diseases, various TLR antagonists/inhibitors have shown to be efficacious at several stages from pre-clinical evaluation to clinical trials. Therefore, the fascinating role of TLRs in modulating the human immune responses at innate as well as adaptive levels directed the scientists to opt for these immune sensor proteins as suitable targets for developing chemotherapeutics and immunotherapeutics against cancer. Hitherto, several TLR-targeting small molecules (e.g., Pam3CSK4, Poly (I:C), Poly (A:U)), chemical compounds, phytocompounds (e.g., Curcumin), peptides, and antibodies have been found to confer protection against several types of cancers. However, administration of inappropriate doses of such TLR-modulating therapeutics or a wrong infusion administration is reported to induce detrimental outcomes. This review summarizes the current findings on the molecular and structural biology of TLRs and gives an overview of the potency and promises of TLR-directed therapeutic strategies against cancers by discussing the findings from established and pipeline discoveries.
Collapse
Affiliation(s)
- Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Ritwik Patra
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Alessandro Paolini
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| |
Collapse
|
47
|
Deng Z, Guo T, Bi J, Wang G, Hu Y, Du H, Zhou Y, Jia S, Xing X, Ji J. Transcriptome profiling of patient-derived tumor xenografts suggests novel extracellular matrix-related signatures for gastric cancer prognosis prediction. J Transl Med 2023; 21:638. [PMID: 37726803 PMCID: PMC10510236 DOI: 10.1186/s12967-023-04473-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/27/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND A major obstacle to the development of personalized therapies for gastric cancer (GC) is the prevalent heterogeneity at the intra-tumor, intra-patient, and inter-patient levels. Although the pathological stage and histological subtype diagnosis can approximately predict prognosis, GC heterogeneity is rarely considered. The extracellular matrix (ECM), a major component of the tumor microenvironment (TME), extensively interacts with tumor and immune cells, providing a possible proxy to investigate GC heterogeneity. However, ECM consists of numerous protein components, and there are no suitable models to screen ECM-related genes contributing to tumor growth and prognosis. We constructed patient-derived tumor xenograft (PDTX) models to obtain robust ECM-related transcriptomic signatures to improve GC prognosis prediction and therapy design. METHODS One hundred twenty two primary GC tumor tissues were collected to construct PDTX models. The tumorigenesis rate and its relationship with GC prognosis were investigated. Transcriptome profiling was performed for PDTX-originating tumors, and least absolute shrinkage and selection operator (LASSO) Cox regression analysis was applied to extract prognostic ECM signatures and establish PDTX tumorigenicity-related gene (PTG) scores. The predictive ability of the PTG score was validated using two independent cohorts. Finally, we combined PTG score, age, and pathological stage information to establish a robust nomogram for GC prognosis prediction. RESULTS We found that PDTX tumorigenicity indicated a poor prognosis in patients with GC, even at the same pathological stage. Transcriptome profiling of PDTX-originating GC tissues and corresponding normal controls identified 383 differentially expressed genes, with enrichment of ECM-related genes. A robust prognosis prediction model using the PTG score showed robust performance in two validation cohorts. A high PTG score was associated with elevated M2 polarized macrophage and cancer-associated fibroblast infiltration. Finally, combining the PTG score with age and TNM stage resulted in a more effective prognostic model than age or TNM stage alone. CONCLUSIONS We found that ECM-related signatures may contribute to PDTX tumorigenesis and indicate a poor prognosis in GC. A feasible survival prediction model was built based on the PTG score, which was associated with immune cell infiltration. Together with patient ages and pathological TNM stages, PTG score could be a new approach for GC prognosis prediction.
Collapse
Affiliation(s)
- Ziqian Deng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Ting Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Jiwang Bi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Gangjian Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Ying Hu
- Biological Sample Bank, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Hong Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Yuan Zhou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, 100191, People's Republic of China.
| | - Shuqin Jia
- Department of Molecular Diagnosis, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China.
| | - Xiaofang Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China.
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China.
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China.
| |
Collapse
|
48
|
Tang PW, Frisbie L, Hempel N, Coffman L. Insights into the tumor-stromal-immune cell metabolism cross talk in ovarian cancer. Am J Physiol Cell Physiol 2023; 325:C731-C749. [PMID: 37545409 DOI: 10.1152/ajpcell.00588.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/08/2023]
Abstract
The ovarian cancer tumor microenvironment (TME) consists of a constellation of abundant cellular components, extracellular matrix, and soluble factors. Soluble factors, such as cytokines, chemokines, structural proteins, extracellular vesicles, and metabolites, are critical means of noncontact cellular communication acting as messengers to convey pro- or antitumorigenic signals. Vast advancements have been made in our understanding of how cancer cells adapt their metabolism to meet environmental demands and utilize these adaptations to promote survival, metastasis, and therapeutic resistance. The stromal TME contribution to this metabolic rewiring has been relatively underexplored, particularly in ovarian cancer. Thus, metabolic activity alterations in the TME hold promise for further study and potential therapeutic exploitation. In this review, we focus on the cellular components of the TME with emphasis on 1) metabolic signatures of ovarian cancer; 2) understanding the stromal cell network and their metabolic cross talk with tumor cells; and 3) how stromal and tumor cell metabolites alter intratumoral immune cell metabolism and function. Together, these elements provide insight into the metabolic influence of the TME and emphasize the importance of understanding how metabolic performance drives cancer progression.
Collapse
Affiliation(s)
- Priscilla W Tang
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Leonard Frisbie
- Department of Integrative Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Nadine Hempel
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Lan Coffman
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Division of Gynecologic Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
49
|
Arbore G, Albarello L, Bucci G, Punta M, Cossu A, Fanti L, Maurizio A, Di Mauro F, Bilello V, Arrigoni G, Bonfiglio S, Biancolini D, Puccetti F, Elmore U, Vago L, Cascinu S, Tonon G, Rosati R, Casorati G, Dellabona P. Preexisting Immunity Drives the Response to Neoadjuvant Chemotherapy in Esophageal Adenocarcinoma. Cancer Res 2023; 83:2873-2888. [PMID: 37350667 PMCID: PMC10472105 DOI: 10.1158/0008-5472.can-23-0356] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/18/2023] [Accepted: 06/20/2023] [Indexed: 06/24/2023]
Abstract
Current treatment for patients with locally advanced esophageal adenocarcinoma (EAC) is neoadjuvant chemotherapy (nCT), alone or combined with radiotherapy, before surgery. However, fewer than 30% of treated patients show a pathologic complete response to nCT, which correlates with increased 5-year survival compared with nonresponders. Understanding the mechanisms of response to nCT is pivotal to better stratify patients and inform more efficacious therapies. Here, we investigated the immune mechanisms involved in nCT response by multidimensional profiling of pretreatment tumor biopsies and blood from 68 patients with EAC (34 prospectively and 34 retrospectively collected), comparing complete responders versus nonresponders to nCT. At the tumor level, complete response to nCT was associated with molecular signatures of immune response and proliferation, increased putative antitumor tissue-resident memory CD39+ CD103+ CD8+ T cells, and reduced immunosuppressive T regulatory cells (Treg) and M2-like macrophages. Systemically, complete responders showed higher frequencies of immunostimulatory CD14+ CD11c+ HLA-DRhigh cells, and reduced programmed cell death ligand 1-positive (PD-L1+) monocytic myeloid-derived suppressor cells, along with high plasma GM-CSF (proinflammatory) and low IL4, CXCL10, C3a, and C5a (suppressive). Plasma proinflammatory and suppressive cytokines correlated directly and inversely, respectively, with the frequency of tumor-infiltrating CD39+ CD103+ CD8+ T cells. These results suggest that preexisting immunity in baseline tumor drives the clinical activity of nCT in locally advanced EAC. Furthermore, it may be possible to stratify patients based on predictive immune signatures, enabling tailored neoadjuvant and/or adjuvant regimens. SIGNIFICANCE Multidimensional profiling of pretreatment esophageal adenocarcinoma shows patient response to nCT is correlated with active preexisting immunity and indicates molecular pathways of resistance that may be targeted to improve clinical outcomes.
Collapse
Affiliation(s)
- Giuseppina Arbore
- Experimental Immunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Luca Albarello
- Department of Pathology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gabriele Bucci
- Center for OMICS Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Punta
- Center for OMICS Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Hematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Cossu
- Department of Gastrointestinal Surgery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorella Fanti
- Division of Gastroenterology & Gastrointestinal Endoscopy, San Raffaele Scientific Institute, Milan, Italy
| | - Aurora Maurizio
- Center for OMICS Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Di Mauro
- Experimental Immunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vito Bilello
- Experimental Immunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gianluigi Arrigoni
- Department of Pathology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Bonfiglio
- Center for OMICS Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Donatella Biancolini
- Center for OMICS Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Puccetti
- Vita-Salute San Raffaele University, Milan, Italy
- Department of Gastrointestinal Surgery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ugo Elmore
- Vita-Salute San Raffaele University, Milan, Italy
- Department of Gastrointestinal Surgery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Vago
- Vita-Salute San Raffaele University, Milan, Italy
- Hematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Cascinu
- Vita-Salute San Raffaele University, Milan, Italy
- Department of Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giovanni Tonon
- Vita-Salute San Raffaele University, Milan, Italy
- Center for OMICS Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Riccardo Rosati
- Vita-Salute San Raffaele University, Milan, Italy
- Department of Gastrointestinal Surgery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Casorati
- Experimental Immunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Dellabona
- Experimental Immunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
50
|
Bhat BA, Saifi I, Khamjan NA, Hamdani SS, Algaissi A, Rashid S, Alshehri MM, Ganie SA, Lohani M, Abdelwahab SI, Dar SA. Exploring the tumor immune microenvironment in ovarian cancer: a way-out to the therapeutic roadmap. Expert Opin Ther Targets 2023; 27:841-860. [PMID: 37712621 DOI: 10.1080/14728222.2023.2259096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/21/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION Despite cancer treatment strides, mortality due to ovarian cancer remains high globally. While immunotherapy has proven effective in treating cancers with low cure rates, it has limitations. Growing evidence suggests that both tumoral and non-tumoral components of the tumor immune microenvironment (TIME) play a significant role in cancer growth. Therefore, developing novel and focused therapy for ovarian cancer is critical. Studies indicate that TIME is involved in developing ovarian cancer, particularly genome-, transcriptome-, and proteome-wide studies. As a result, TIME may present a prospective therapeutic target for ovarian cancer patients. AREAS COVERED We examined several TIME-targeting medicines and the connection between TIME and ovarian cancer. The key protagonists and events in the TIME and therapeutic strategies that explicitly target these events in ovarian cancer are discussed. EXPERT OPINION We highlighted various targeted therapies against TIME in ovarian cancer, including anti-angiogenesis therapies and immune checkpoint inhibitors. While these therapies are in their infancy, they have shown promise in controlling ovarian cancer progression. The use of 'omics' technology is helping in better understanding of TIME in ovarian cancer and potentially identifying new therapeutic targets. TIME-targeted strategies could account for an additional treatment strategy when treating ovarian cancer.
Collapse
Affiliation(s)
- Basharat Ahmad Bhat
- Department of Bioresources, Amar Singh College Campus, Cluster University, Srinagar, India
| | - Ifra Saifi
- Department of Botany, Chaudhary Charan Singh University, Meerut India
| | - Nizar A Khamjan
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Syed Suhail Hamdani
- Department of Bioresources, Amar Singh College Campus, Cluster University, Srinagar, India
| | - Abdullah Algaissi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
- Medical Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Safeena Rashid
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India
| | | | - Showkat Ahmad Ganie
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Mohtashim Lohani
- Department of Emergency Medical Services, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | | | - Sajad Ahmad Dar
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|