1
|
Wang T, Li J, Du J, Zhou W, Lu G. Recent advances in the role of atypical cadherin FAT1 in tumorigenesis (Review). Oncol Lett 2025; 29:110. [PMID: 39776648 PMCID: PMC11704873 DOI: 10.3892/ol.2024.14856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
The FAT atypical cadherin 1 (FAT1) gene is the ortholog of the Drosophila fat gene and encodes the protocadherin FAT1. FAT1 belongs to the cadherin superfamily, a group of full-length membrane proteins that contain cadherin-like repeats. In various types of human cancer, FAT1 is one of the most commonly mutated genes, and is considered to be an emerging cancer biomarker and a potential target for novel therapies. However, the biological functions of FAT1 and the precise downstream signaling pathways that it mediates have remained to be fully elucidated. The present review discussed the current literature on FAT1, focusing on FAT1 mutations and expression levels, and their impact on signaling pathways and mechanisms in various types of cancer, including both solid tumors and hematological malignancies, such as esophageal squamous cell carcinoma, head and neck squamous cell carcinoma, lung squamous cell carcinoma, hepatocellular carcinoma, glioma, breast cancer, acute lymphoblastic leukemia, acute myeloid leukemia, lymphoma and myeloma. The present review aimed to provide further insights and research directions for future studies on FAT1 as an oncogenic factor or tumor suppressor.
Collapse
Affiliation(s)
- Tao Wang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Junting Li
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Jun Du
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, P.R. China
| | - Wei Zhou
- Department of Ultrasonic Examination, Shengli Oilfield Central Hospital, Dongying, Shandong 257000, P.R. China
| | - Guang Lu
- Department of Hematology, Shengli Oilfield Central Hospital, Dongying, Shandong 257000, P.R. China
| |
Collapse
|
2
|
Li JS, Riggins K, Yang L, Chen C, Castro P, Alfarkh W, Zarrin-Khameh N, Scheurer ME, Creighton CJ, Musher B, Li W, Shen L. DNA methylation profiling at base-pair resolution reveals unique epigenetic features of early-onset colorectal cancer in underrepresented populations. Clin Epigenetics 2025; 17:11. [PMID: 39844333 PMCID: PMC11753045 DOI: 10.1186/s13148-025-01817-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 01/10/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND The incidence of early-onset colorectal cancer (EOCRC) has been rising at an alarming rate in the USA, and EOCRC disproportionately affects racial/ethnic minorities. Here, we construct comprehensive profiles of EOCRC DNA methylomes at base-pair resolution for a cohort of Hispanic and African American patients. RESULTS We show the epigenetic landscape of these EOCRC patients differs from that of late-onset colorectal cancer patients, and methylation canyons in EOCRC tumor tissue preferentially overlapped genes in cancer-related pathways. Furthermore, we identify epigenetic alterations in metabolic genes that are specific to our racial/ethnic minority EOCRC cohort but not Caucasian patients from TCGA. Top genes differentially methylated between these cohorts included the obesity-protective MFAP2 gene as well as cancer risk susceptibility genes APOL3 and RNASEL. CONCLUSIONS In this study, we provide to the scientific community high-resolution DNA methylomes for a cohort of EOCRC patients from underrepresented populations. Our exploratory findings in this cohort highlight epigenetic mechanisms underlying the pathogenesis of EOCRC and nominate novel biomarkers for EOCRC in underrepresented populations.
Collapse
Affiliation(s)
- Jason Sheng Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Karen Riggins
- Department of Medicine, Hematology and Oncology, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Li Yang
- Department of Pediatrics, USDA Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chaorong Chen
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Patricia Castro
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Wedad Alfarkh
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Neda Zarrin-Khameh
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology, Ben Taub Hospital, 1504 Taub Loop, Houston, TX, 77030, USA
| | - Michael E Scheurer
- Department of Pediatrics, Center for Epidemiology and Population Health, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chad J Creighton
- Department of Medicine and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Benjamin Musher
- Department of Medicine, Gastrointestinal Medical Oncology, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Wei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA.
| | - Lanlan Shen
- Department of Pediatrics, USDA Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Zhou J, Yang Q, Zhao S, Sun L, Li R, Wang J, Wang L, Wang D. Evolving landscape of colorectal cancer: Global and regional burden, risk factor dynamics, and future scenarios (the Global Burden of Disease 1990-2050). Ageing Res Rev 2025; 104:102666. [PMID: 39828028 DOI: 10.1016/j.arr.2025.102666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Presently, colorectal cancer (CRC) is the second leading cause of cancer-related deaths worldwide. We provided global, regional, and national estimates of the burden of CRC and their attributable risks from 1990 to 2021, aiming to guide screening, early detection, and treatment strategies, optimize healthcare resource allocation, and facilitate the rational management of burden of CRC. METHODS Using data derived from the Global Burden of Disease database, we estimated the incidence, mortality, and disability-adjusted life years (DALYs) of CRC. The temporal trends of the age-standardized rate of CRC were quantified by calculating the estimated annual percentage changes (EAPC). Deaths from CRC attributable to each risk factor that had evidence of causation with CRC were estimated. CRC's deaths and DALYs was forecast through 2050 by logistic regression with Socio-Demographic Index as a predictor, then multiplying by projected population estimates. RESULTS Globally, between 1990 and 2021, the incident cases, death cases, and DALYs attributed to CRC have doubled, the age-standardized incidence rate (ASIR) presented a slightly upward tendency, while the age-standardized death rate (ASMR) and the age-standardized DALYs rate (ASDR) exhibited a decreasing trend. From 1990-2021, the ASIR for males has an increased trend, while females presented a downward trend. The ASIR and ASDR of CRC were higher in high and high-middle sociodemographic index (SDI) countries. The ASIR of CRC in 165 countries and territories showed escalating trend. Globally, for males and both sexes combined, diet low in whole grains was the leading risk factor for age-standardized deaths from CRC in 2021. However, among females, diet low in milk was the leading risk factor. We forecast that 2.18 million (1.53-2.94) individuals will death for CRC worldwide by 2050, and the DALYs achieve 41.7 million (29.9-55.4) by 2050. CONCLUSION The doubling of incidence counts and mortality cases and the rising ASIR in most countries indicates a significant burden of CRC. Authorities should devise suitable measures to address the increasing burdens, such as optimizing screening programs, enhancing awareness and screening efforts for males, and reducing exposure to modifiable risk factors.
Collapse
Affiliation(s)
- Jiajie Zhou
- Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou 225001, China.
| | - Qizhi Yang
- Medical College of Yangzhou University, Yangzhou 225001, China; Department of Thoracic Surgery, No.6 People's Hospital of Xuzhou, Xuzhou, Jiangsu, China.
| | - Shuai Zhao
- Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou 225001, China.
| | - Longhe Sun
- The Forth People's Hospital of Taizhou, Taizhou 225300, China; Clinical Medical College, Yangzhou University, Yangzhou 225001, China.
| | - Ruiqi Li
- Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou 225001, China.
| | - Jie Wang
- Clinical Medical College, Yangzhou University, Yangzhou 225001, China.
| | - Liuhua Wang
- Northern Jiangsu People's Hospital, Yangzhou 225001, China.
| | - Daorong Wang
- Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou 225001, China; Northern Jiangsu People's Hospital, Yangzhou, China; Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Disease, China.
| |
Collapse
|
4
|
Alshenaifi JY, Vetere G, Maddalena G, Yousef M, White MG, Shen JP, Vilar E, Parseghian C, Dasari A, Morris VK, Huey R, Overman MJ, Wolff R, Raghav KP, Willis J, Alfaro K, Futreal A, You YN, Kopetz S. Mutational and co-mutational landscape of early onset colorectal cancer. Biomarkers 2025:1-13. [PMID: 39761813 DOI: 10.1080/1354750x.2024.2447089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
INTRODUCTION Colorectal cancer (CRC) incidence and mortality before 50 have been rising alarmingly in the recent decades. METHODS Using a cohort of 10,000 patients, this study investigates the clinical, mutational, and co-mutational features of CRC in early-onset (EOCRC, < 50 years) compared to late-onset (LOCRC, ≥ 50 years). RESULTS EOCRC was associated with a higher prevalence of Asian and Hispanic patients, rectal or left-sided tumors (72% vs. 59%), and advanced-stage disease. Molecular analyses revealed differences in mutation patterns, with EOCRC having higher frequencies of TP53 (74% vs. 68%, p < 0.01) and SMAD4 (17% vs. 14%, p = 0.015), while BRAF (5% vs. 11%, p < 0.001) and NOTCH1 (2.7% vs. 4.1%, p = 0.01) mutations were more prevalent in LOCRC. Stratification by tumor site and MSI status highlighted significant location- and age-specific molecular differences, such as increased KRAS and CTNNB1 mutations in right-sided EOCRC and higher BRAF prevalence in MSI-H LOCRC (47% vs. 6.7%, p < 0.001). Additionally, co-occurrence analysis revealed unique mutational networks in EOCRC MSS, including significant co-occurrences of FBXW7 with NOTCH3, RB1, and PIK3R1. CONCLUSION This study highlights the significance of age-specific molecular profiling, offering insights into the unique biology of EOCRC and potential clinical applications.
Collapse
Affiliation(s)
- Jumanah Yousef Alshenaifi
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guglielmo Vetere
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Giulia Maddalena
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mahmoud Yousef
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael G White
- Department of Colon & Rectal Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John Paul Shen
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eduardo Vilar
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christine Parseghian
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Arvind Dasari
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Van Karlyle Morris
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ryan Huey
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael J Overman
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert Wolff
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kanwal P Raghav
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason Willis
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristin Alfaro
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andy Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Y Nancy You
- Department of Colon & Rectal Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
5
|
Shen X, Zhang Y, Li J, Zhou Y, Butensky S, Zhang Y, Cai Z, DeWan AT, Khan SA, Yan H, Johnson CH, Zhu F. OncoSexome: the landscape of sex-based differences in oncologic diseases. Nucleic Acids Res 2025; 53:D1443-D1459. [PMID: 39535034 PMCID: PMC11701605 DOI: 10.1093/nar/gkae1003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/28/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
The NIH policy on sex as biological variable (SABV) emphasized the importance of sex-based differences in precision oncology. Over 50% of clinically actionable oncology genes are sex-biased, indicating differences in drug efficacy. Research has identified sex differences in non-reproductive cancers, highlighting the need for comprehensive sex-based cancer data. We therefore developed OncoSexome, a multidimensional knowledge base describing sex-based differences in cancer (https://idrblab.org/OncoSexome/) across four key topics: antineoplastic drugs and responses (SDR), oncology-related biomarkers (SBM), risk factors (SRF) and microbial landscape (SML). SDR covers sex-based differences in 2051 anticancer drugs; SBM describes 12 551 sex-differential biomarkers; SRF illustrates 350 sex-dependent risk factors; SML demonstrates 1386 microbes with sex-differential abundances associated with cancer development. OncoSexome is unique in illuminating multifaceted influences of biological sex on cancer, providing both external and endogenous contributors to cancer development and describing sex-based differences for the broadest oncological classes. Given the increasing global research interest in sex-based differences, OncoSexome is expected to impact future precision oncology practices significantly.
Collapse
Affiliation(s)
- Xinyi Shen
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven 06510, USA
| | - Yintao Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Jiamin Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Ying Zhou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | | | - Yechi Zhang
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven 06510, USA
- School of Public Health, Zhejiang University, Hangzhou 310058, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Andrew T DeWan
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven 06510, USA
| | - Sajid A Khan
- Yale School of Medicine, Yale University, New Haven 06510, USA
- Division of Surgical Oncology, Department of Surgery, Yale School of Medicine, New Haven 06510, USA
| | - Hong Yan
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Caroline H Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven 06510, USA
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
6
|
Cai B, Zheng M, Li Y, Chen Z, Zhong C, Chen X, Chen G. Nomogram based on the log odds of negative lymph node/T stage can predict the prognosis of patients with colorectal cancer: a retrospective study based on SEER database and external validation in China. BMJ Open 2024; 14:e083942. [PMID: 39806584 PMCID: PMC11667382 DOI: 10.1136/bmjopen-2024-083942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 11/12/2024] [Indexed: 01/16/2025] Open
Abstract
OBJECTIVES This study investigated the prognostic role of log odds of negative lymph node/T stage (LONT) and established a nomogram based on LONT to predict the prognosis in colorectal cancer (CRC) patients. DESIGN A retrospective cohort study. SETTING AND PARTICIPANTS We enrolled 80 518 CRC patients from the Surveillance, Epidemiology and End Results database between 2010 and 2015. The dataset was split into a training cohort (56 364 patients) and a validation cohort (24 154 patients) at a ratio of 7:3. Furthermore, 500 CRC patients who underwent surgery in the Tenth Affiliated Hospital of Southern Medical University between 1 January 2017 and 20 December 2018, were recruited as the external validation set. OUTCOME MEASURES 1-, 3- and 5-year cancer-specific survival (CSS). METHODS The univariate and multivariate Cox regression analyses were carried out to identify the significant independent prognostic factors of CSS. A nomogram was established based on LONT to predict the prognosis. The performance of the nomogram was comprehensively assessed via the time-dependent receiver operating characteristic curve, concordance index (C-index), calibration curve and decision curve analysis (DCA) comprehensively. Moreover, Kaplan-Meier curves were performed to assess the CSS of the three risk subgroups. RESULT LONT was a significant independent prognostic factor for CSS (LONT1 vs LONT2, HR=0.670, 95% CI 0.642 to 0.698, p<0.001; LONT1 vs LONT3, HR=0.443, 95% CI 0.420 to 0.467, p<0.001). LONT, age, sex, race, subsite, differentiation, histology, tumour size, T stage, N stage, M stage and chemotherapy were included in the nomogram. The 1-, 3- and 5-year survival area under the curve were 0.856, 0.862 and 0.852, respectively. The C-index of the model was 0.809 (95% CI 0.825 to 0.839) in the model. The calibration curve and DCA verified the favourable predictive performance and clinical application of the nomogram. CONCLUSION CRC patients with a high LONT had a low incidence of CSS. The nomogram based on LONT could effectively predict the CSS of CRC.
Collapse
Affiliation(s)
- Boyong Cai
- Department of Gastroenterology, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, China
| | - Mengli Zheng
- Department of Gastroenterology, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, China
| | - Yimin Li
- Department of Gastroenterology, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, China
| | - Zhicao Chen
- Department of Gastroenterology, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, China
| | - Canxin Zhong
- Department of Gastroenterology, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, China
| | - Xiaochun Chen
- Department of Gastroenterology, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, China
| | - Guiquan Chen
- Department of Gastroenterology, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, China
| |
Collapse
|
7
|
Hussain S. A modeling of complex trait phenotypic variance determinants. PNAS NEXUS 2024; 3:pgae472. [PMID: 39529912 PMCID: PMC11552524 DOI: 10.1093/pnasnexus/pgae472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Studies have now shown that the heritability of some complex traits, such as human height, can be virtually fully captured via potential use of sufficiently powered approaches that can characterize the associated collective common- and rare-variant additive genetic architecture. However, for other traits, including complex disease traits, full recovery of such narrow sense heritability would still likely fall far short of respective heritability estimates yielded from pedigree-based analyses such as twin studies. Here, it is proposed that such traits could also involve additional types of relevant architecture and underlying genetic mechanism, such that interaction of somatic variants with heritable variants may represent an underappreciated component. The theoretical model suggested predicts that some relevant heritability estimates are systematically inflated by twin studies, and that instead a significant proportion of the phenotypic variances may be explained by specialized types of heritable genotype-by-environment interaction.
Collapse
Affiliation(s)
- Shobbir Hussain
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| |
Collapse
|
8
|
Li Y, Wang Q, Gao X, Zheng J, Zhang W, Ren Y, Shen W, Su W, Lu P. Somatic mutational landscape reveals mutational signatures and significantly mutated genes of cancer immunotherapeutic outcome and sex disparities. Front Immunol 2024; 15:1423796. [PMID: 39555056 PMCID: PMC11563811 DOI: 10.3389/fimmu.2024.1423796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/11/2024] [Indexed: 11/19/2024] Open
Abstract
Background Currently developed molecular markers can predict the effectiveness of cancer immunotherapy and screen beneficiaries to some extent, but they are not stable enough. Therefore, there is an urgent need for discovering novel biomarkers. At the same time, sex factor plays a vital role in the response to immunotherapy, so it is particularly important to identify sex-related molecular indicators. Methods We integrated a pan-cancer cohort consisting of 2348 cancer patients who received immune checkpoint inhibitors and targeted sequencing. Using somatic mutation profiles, we identified mutational signatures, molecular subtypes, and frequently mutated genes, and analyzed their relationships with immunotherapeutic outcomes. We also explored sex disparities of determined biomarkers in response to treatments. Results We found that male patients exhibited better immunotherapy outcomes and higher tumor mutational burden. A total of seven mutational signatures were identified, among which signatures 1 and 3 were associated with worse immunotherapy outcomes, while signatures 2 and 6 correlated with better outcomes. Gender-based analysis revealed that mutational signature 1 continued to show a worse immunotherapy outcome in female patients, whereas signature 6 demonstrated a better outcome in male patients. Based on mutational activities, we identified four potential molecular subtypes with gender differences and relevance to treatment outcomes. PI3K-AKT, RAS signaling pathways, and 68 significantly mutated genes were identified to be associated with immunotherapy outcomes, with nine genes (i.e., ATM, ATRX, DOT1L, EP300, EPHB1, NOTCH1, PBRM1, RBM10, and SETD2) exhibiting gender differences. Finally, we discovered co-mutated gene pairs and TP53 p.R282W mutations related to treatment outcomes, highlighting their gender-specific differences. Conclusion This study identified several molecular biomarkers related to cancer immunotherapy outcomes in terms of mutational signatures, molecular subtypes, and mutated genes, and explored their gender-relatedness in order to provide clues and basis for clinical treatment efficacy evaluation and patient selection.
Collapse
Affiliation(s)
- Yuting Li
- Department of Radiation Oncology, Department of Pathology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Qinghua Wang
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Shandong Second Medical University, Weifang, Shandong, China
| | - Xiaopan Gao
- Department of Pulmonary and Critical Care Medicine, Sunshine Union Hospital, Weifang, Shandong, China
| | - Jinyang Zheng
- Department of Pulmonary and Critical Care Medicine, Sunshine Union Hospital, Weifang, Shandong, China
| | - Wenjing Zhang
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Shandong Second Medical University, Weifang, Shandong, China
| | - Yanfeng Ren
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Shandong Second Medical University, Weifang, Shandong, China
| | - Wei Shen
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Wei Su
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Ping Lu
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
9
|
Gandini A, Taieb J, Blons H, Netter J, Laurent-Puig P, Gallois C. Early-Onset colorectal Cancer: From the laboratory to the clinic. Cancer Treat Rev 2024; 130:102821. [PMID: 39236404 DOI: 10.1016/j.ctrv.2024.102821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Colorectal cancer that occurs before age of 50 is defined as Early-Onset Colorectal Cancer (EOCRC). Its incidence has worryingly increased since the late 90 s and is expected to keep rising in the next future, despite Late-Onset CRC (LOCRC) is decreasing worldwide. Because of this, there is an urgent need to better understand this subset of patients in order to give them the best treatment possible. However, most of the literature is retrospective and often discordant. In this review, we aim to provide a general overview of the issue, endeavoring to highlight the current available knowledge. We decided to move from the beginning, investigating risk factors and inheritance, passing through diagnosis and clinical aspects, and to conclude with the translational part, focusing on the biology of the tumor. However, lot of questions remain open, including screening age and prognosis. Indeed, young patients tend to be treated more aggressively, even if a survival benefit has not been proven yet. Every clinician should be aware of the best practice for young people, and more translational studies are awaited in order to clarify is EOCRC represents a distinct biological entity.
Collapse
Affiliation(s)
- Annalice Gandini
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Personalized Medicine, Phamacogenomics and Therapeutic Optimization, Paris, France; Institut du Cancer Paris CARPEM, AP-HP Centre, Department of Gastroenterology and Digestive Oncology, Hôpital Européen Georges Pompidou, Paris, France
| | - Julien Taieb
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Personalized Medicine, Phamacogenomics and Therapeutic Optimization, Paris, France; Institut du Cancer Paris CARPEM, AP-HP Centre, Department of Gastroenterology and Digestive Oncology, Hôpital Européen Georges Pompidou, Paris, France
| | - Hélène Blons
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Personalized Medicine, Phamacogenomics and Therapeutic Optimization, Paris, France; Assistance Publique-Hôpitaux de Paris, Department of Biochemistry, Pharmacogenetics and Molecular Oncology, European Georges Pompidou Hospital, Paris Cancer Institute CARPEM, 20 Rue Leblanc, 75015, Paris, France; Department of Genetics and Molecular Medicine, Georges Pompidou European Hospital, APHP Centre, Paris, France
| | - Jeanne Netter
- Institut du Cancer Paris CARPEM, AP-HP Centre, Department of Gastroenterology and Digestive Oncology, Hôpital Européen Georges Pompidou, Paris, France
| | - Pierre Laurent-Puig
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Personalized Medicine, Phamacogenomics and Therapeutic Optimization, Paris, France; Institut du Cancer Paris CARPEM, APHP. Centre, Department of Biology, Hôpital Européen Georges Pompidou, Paris, France
| | - Claire Gallois
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Personalized Medicine, Phamacogenomics and Therapeutic Optimization, Paris, France; Institut du Cancer Paris CARPEM, AP-HP Centre, Department of Gastroenterology and Digestive Oncology, Hôpital Européen Georges Pompidou, Paris, France.
| |
Collapse
|
10
|
Li Z, Xu L. Letter to the editor regarding "Racial and ethnic disparities in access to total neoadjuvant therapy for rectal cancer". Surgery 2024:S0039-6060(24)00774-8. [PMID: 39395861 DOI: 10.1016/j.surg.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/08/2024] [Indexed: 10/14/2024]
Affiliation(s)
- Zefang Li
- Department of Nuclear Medicine, Shaoxing Second Hospital, Shaoxing, Zhejiang, China.
| | - Lingjia Xu
- Department of Clinical Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| |
Collapse
|
11
|
Mauri G, Patelli G, Sartore-Bianchi A, Abrignani S, Bodega B, Marsoni S, Costanzo V, Bachi A, Siena S, Bardelli A. Early-onset cancers: Biological bases and clinical implications. Cell Rep Med 2024; 5:101737. [PMID: 39260369 PMCID: PMC11525030 DOI: 10.1016/j.xcrm.2024.101737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024]
Abstract
Since the nineties, the incidence of sporadic early-onset (EO) cancers has been rising worldwide. The underlying reasons are still unknown. However, identifying them is vital for advancing both prevention and intervention. Here, we exploit available knowledge derived from clinical observations to formulate testable hypotheses aimed at defining the causal factors of this epidemic and discuss how to experimentally test them. We explore the potential impact of exposome changes from the millennials to contemporary young generations, considering both environmental exposures and enhanced susceptibilities to EO-cancer development. We emphasize how establishing the time required for an EO cancer to develop is relevant to defining future screening strategies. Finally, we discuss the importance of integrating multi-dimensional data from international collaborations to generate comprehensive knowledge and translate these findings back into clinical practice.
Collapse
Affiliation(s)
- Gianluca Mauri
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy; Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giorgio Patelli
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy; Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Andrea Sartore-Bianchi
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy; Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Sergio Abrignani
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Beatrice Bodega
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy; Department of Biosciences, University of Milan, Milan, Italy
| | - Silvia Marsoni
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Vincenzo Costanzo
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Angela Bachi
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Salvatore Siena
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy; Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Alberto Bardelli
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy.
| |
Collapse
|
12
|
Jayakrishnan T, Baca Y, Xiu J, Patel M, Weinberg BA, Lou E, Datta J, Khushman M, Gulhati P, Goel S, Biachi de Castria T, Florou V, Nair KG, Kamath SD, Khorana AA. Molecular Differences With Therapeutic Implications in Early-Onset Compared With Average-Onset Biliary Tract Cancers. JCO Precis Oncol 2024; 8:e2400138. [PMID: 39102632 DOI: 10.1200/po.24.00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/04/2024] [Accepted: 06/13/2024] [Indexed: 08/07/2024] Open
Abstract
PURPOSE Early-onset biliary tract cancer (eoBTC) is among the fast-growing subset of early-onset cancers, yet little is known about its biology. We sought to identify novel molecular characteristics of eoBTC in relation to average-onset BTC (aoBTC) using a real-world multiomics data set. METHODS The study comprised patients with BTC whose tumors underwent molecular analyses at Caris Life Sciences and were categorized by age (<50 years for eoBTC, ≥50 years for aoBTC). P values were adjusted for multiple testing and considered significant at Q < 0.05 (molecular comparisons) or Q < 0.25 (Gene Set Enrichment Analysis [GSEA]). Insurance claims data were used for survival analysis. RESULTS The study included 5,587 patients with BTC (453 eoBTC, median age = 44 years and 5,134 aoBTC, median age = 68 years). FGFR2 fusion (15.7% in eoBTC v 5.9% in aoBTC) and NIPBL fusion (1.1% v 0%) were significantly more prevalent in eoBTC (both Q < 0.001). The interferon gamma-IFG score (fold change [FC], 1.1; Q = 0.01) and T-cell inflammation score (FC, 17.3; Q = 0.03) were significantly higher in aoBTC. On GSEA, angiogenesis was enriched in eoBTC (normalized enrichment score [NES] = 1.51; Q = 0.16), whereas IFG (NES = -1.58; Q = 0.06) and inflammatory response (NES = -1.46; Q = 0.18) were enriched in aoBTC. The median overall survival (OS) was 16.5 (eoBTC) versus 13.3 months (aoBTC), hazard ratio = 0.86, P = .004. The median OS by FGFR2 fusion (with fusion v without) was 21.7 versus 15.0 months (P = .47) for eoBTC and 18.6 versus 12.2 months (P < .001) for aoBTC. CONCLUSION We identified crucial differences including higher prevalence of FGFR2 fusions in eoBTC and variations in immunotherapy-related markers. Better outcomes in eoBTC were affected by the FGFR2 fusion status. Our findings underscore the need for ensuring access to next-generation sequencing testing, including prompt identification of actionable targets.
Collapse
Affiliation(s)
- Thejus Jayakrishnan
- Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | | | | | - Mehrie Patel
- Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Benjamin A Weinberg
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Emil Lou
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Jashodeep Datta
- University of Miami-Sylvester Comprehensive Cancer Center, Miami, FL
| | - Moh'd Khushman
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO
| | - Pat Gulhati
- Department of Medical Oncology, Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
| | - Sanjay Goel
- Department of Medical Oncology, Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
| | - Tiago Biachi de Castria
- Moffitt Cancer Center, Tampa, FL
- Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Vaia Florou
- Huntsman Cancer Institute, University of Utah Health, Salt Lake City, UT
| | - Kanika G Nair
- Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
- Case Comprehensive Cancer Center, Cleveland, OH
| | - Suneel D Kamath
- Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
- Case Comprehensive Cancer Center, Cleveland, OH
| | - Alok A Khorana
- Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
- Case Comprehensive Cancer Center, Cleveland, OH
| |
Collapse
|
13
|
Chen H, Sun B, Liu H, Gao W, Qiu Y, Hua C, Lin X. Delineation of the phenotypes and genotypes of PIK3CA-related overgrowth spectrum in East asians. Mol Genet Genomics 2024; 299:66. [PMID: 38980418 DOI: 10.1007/s00438-024-02159-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024]
Abstract
PIK3CA-related overgrowth spectrum (PROS) is an umbrella term to describe a diverse range of developmental disorders. Research to date has predominantly emerged from Europe and North America, resulting in a notable scarcity of studies focusing on East Asian populations. Currently, the prevalence and distribution of PIK3CA variants across various genetic loci and their correlation with distinct phenotypes in East Asian populations remain unclear. This study aims to elucidate the phenotype-genotype correlations of PROS in East Asian populations. We presented the phenotypes and genotypes of 82 Chinese patients. Among our cohort, 67 individuals carried PIK3CA variants, including missense, frameshift, and splice variants. Six patients presented with both PIK3CA and an additional variant. Seven PIK3CA-negative patients exhibited overlapping PROS manifestations with variants in GNAQ, AKT1, PTEN, MAP3K3, GNA11, or KRAS. An integrative review of the literature pertaining to East Asian populations revealed that specific variants are uniquely associated with certain PROS phenotypes. Some rare variants were exclusively identified in cases of megalencephaly and diffuse capillary malformation with overgrowth. Non-hotspot variants with undefined oncogenicity were more common in CNS phenotypes. Diseases with vascular malformation were more likely to have variants in the helical domain, whereas phenotypes involving adipose/muscle overgrowth without vascular abnormalities predominantly presented variants in the C2 domain. Our findings underscore the unique phenotype-genotype patterns within the East Asian PROS population, highlighting the necessity for an expanded cohort to further elucidate these correlations. Such endeavors would significantly facilitate the development of PI3Kα selective inhibitors tailored for the East Asian population in the future.
Collapse
Affiliation(s)
- Hongrui Chen
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China
| | - Bin Sun
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China
| | - Hongyuan Liu
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China
| | - Wei Gao
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China
| | - Yajing Qiu
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China
| | - Chen Hua
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China.
| | - Xiaoxi Lin
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China.
| |
Collapse
|
14
|
Sanvicente García A, Pedregal M, Paniagua-Herranz L, Díaz-Tejeiro C, Nieto-Jiménez C, Pérez Segura P, Munkácsy G, Győrffy B, Calvo E, Moreno V, Ocaña A. Clinical and Immunologic Characteristics of Colorectal Cancer Tumors Expressing LY6G6D. Int J Mol Sci 2024; 25:5345. [PMID: 38791382 PMCID: PMC11121234 DOI: 10.3390/ijms25105345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The identification of targets that are expressed on the cell membrane is a main goal in cancer research. The Lymphocyte Antigen 6 Family Member G6D (LY6G6D) gene codes for a protein that is mainly present on the surface of colorectal cancer (CRC) cells. Therapeutic strategies against this protein like the development of T cell engagers (TCE) are currently in the early clinical stage. In the present work, we interrogated public genomic datasets including TCGA to evaluate the genomic and immunologic cell profile present in tumors with high expression of LY6G6D. We used data from TCGA, among others, and the Tumor Immune Estimation Resource (TIMER2.0) platform for immune cell estimations and Spearman correlation tests. LY6G6D expression was exclusively present in CRC, particularly in the microsatellite stable (MSS) subtype, and was associated with left-side tumors and the canonical genomic subgroup. Tumors with mutations of APC and p53 expressed elevated levels of LY6G6D. This protein was expressed in tumors with an inert immune microenvironment with an absence of immune cells and co-inhibitory molecules. In conclusion, we described clinical, genomic and immune-pathologic characteristics that can be used to optimize the clinical development of agents against this target. Future studies should be performed to confirm these findings and potentially explore the suggested clinical development options.
Collapse
Affiliation(s)
- Adrián Sanvicente García
- Experimental Therapeutics in Cancer Unit, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (A.S.G.); (L.P.-H.); (C.D.-T.); (C.N.-J.)
- Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Manuel Pedregal
- START Madrid-Fundación Jiménez Díaz (FJD) Early Phase Program, Fundación Jiménez Díaz Hospital, 28040 Madrid, Spain; (M.P.); (E.C.); (V.M.)
| | - Lucía Paniagua-Herranz
- Experimental Therapeutics in Cancer Unit, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (A.S.G.); (L.P.-H.); (C.D.-T.); (C.N.-J.)
| | - Cristina Díaz-Tejeiro
- Experimental Therapeutics in Cancer Unit, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (A.S.G.); (L.P.-H.); (C.D.-T.); (C.N.-J.)
| | - Cristina Nieto-Jiménez
- Experimental Therapeutics in Cancer Unit, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (A.S.G.); (L.P.-H.); (C.D.-T.); (C.N.-J.)
| | - Pedro Pérez Segura
- Medical Oncology Department, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain;
| | - Gyöngyi Munkácsy
- Department of Bioinformatics, Semmelweis University, H-1094 Budapest, Hungary; (G.M.); (B.G.)
- Department of Pediatrics, Semmelweis University, H-1094 Budapest, Hungary
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, H-1094 Budapest, Hungary; (G.M.); (B.G.)
- Department of Pediatrics, Semmelweis University, H-1094 Budapest, Hungary
- Research Centre for Natural Sciences, Institute of Enzymology, H-1117 Budapest, Hungary
- Department of Biophysics, Medical School, University of Pecs, H-7624 Pecs, Hungary
| | - Emiliano Calvo
- START Madrid-Fundación Jiménez Díaz (FJD) Early Phase Program, Fundación Jiménez Díaz Hospital, 28040 Madrid, Spain; (M.P.); (E.C.); (V.M.)
- START Madrid-HM Centro Integral Oncológico Clara Campal (CIOCC), Early Phase Program, HM Sanchinarro University Hospital, 28050 Madrid, Spain
| | - Víctor Moreno
- START Madrid-Fundación Jiménez Díaz (FJD) Early Phase Program, Fundación Jiménez Díaz Hospital, 28040 Madrid, Spain; (M.P.); (E.C.); (V.M.)
| | - Alberto Ocaña
- Experimental Therapeutics in Cancer Unit, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (A.S.G.); (L.P.-H.); (C.D.-T.); (C.N.-J.)
- START Madrid-Fundación Jiménez Díaz (FJD) Early Phase Program, Fundación Jiménez Díaz Hospital, 28040 Madrid, Spain; (M.P.); (E.C.); (V.M.)
- Medical Oncology Department, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain;
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
15
|
Yin W, Zhang M, Ji Z, Li X, Zhang S, Liu G. Impact of tumor size on overall survival and cancer-specific survival of early-onset colon and rectal cancer: a retrospective cohort study. Int J Colorectal Dis 2024; 39:69. [PMID: 38717476 PMCID: PMC11078790 DOI: 10.1007/s00384-024-04644-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
PURPOSE This study aimed to investigate the impact of tumor size on survival in early-onset colon and rectal cancer. METHODS Early-onset colon and rectal cancer patients were identified from the Surveillance, Epidemiology, and End Results (SEER) database between 2004 and 2015. Tumor size was analyzed as both continuous and categorical variables. Several statistical techniques, including restricted cubic spline (RCS), Cox proportional hazard model, subgroup analysis, propensity score matching (PSM), and Kaplan-Meier survival analysis, were employed to demonstrate the association between tumor size and overall survival (OS) and cancer-specific survival (CSS) of early-onset colon and rectal cancer. RESULTS Seventeen thousand five hundred fifty-one (76.7%) early-onset colon and 5323 (23.3%) rectal cancer patients were included. RCS analysis confirmed a linear association between tumor size and survival. Patients with a tumor size > 5 cm had worse OS and CSS, compared to those with a tumor size ≤ 5 cm for both early-onset colon and rectal cancer. Notably, subgroup analysis showed that a smaller tumor size (≤ 50 mm) was associated with worse survival in stage II early-onset colon cancer, although not statistically significant. After PSM, Kaplan-Meier survival curves showed that the survival of patients with tumor size ≤ 50 mm was better than that of patients with tumor size > 50 mm. CONCLUSION Patients with tumors larger than 5 cm were associated with worse survival in early-onset colon and rectal cancer. However, smaller tumor size may indicate a more biologically aggressive phenotype, correlating with poorer survival in stage II early-onset colon cancer.
Collapse
Affiliation(s)
- Wanbin Yin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Department of Anorectal Surgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Maorun Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhe Ji
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoping Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Shiyao Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Gang Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
16
|
Lawler T, Parlato L, Warren Andersen S. The histological and molecular characteristics of early-onset colorectal cancer: a systematic review and meta-analysis. Front Oncol 2024; 14:1349572. [PMID: 38737895 PMCID: PMC11082351 DOI: 10.3389/fonc.2024.1349572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/16/2024] [Indexed: 05/14/2024] Open
Abstract
Background Early-onset colorectal cancer (CRC), defined as diagnosis before age 50, has increased in recent decades. Although more often diagnosed at advanced stage, associations with other histological and molecular markers that impact prognosis and treatment remain to be clarified. We conducted a systematic review and meta-analysis concerning the prevalence of prognostic and predictive tumor markers for early- vs. late-onset CRC, including oncogene mutations, microsatellite instability (MSI), and emerging markers including immune cells and the consensus molecular subtypes. Methods We systematically searched PubMed for original research articles published between April 2013-January 2024. Included studies compared the prevalence of tumor markers in early- vs. late-onset CRC. A meta-analysis was completed and summary odds ratios (ORs) with 95% confidence intervals (CIs) were obtained from a random effects model via inverse variance weighting. A sensitivity analysis was completed to restrict the meta-analysis to studies that excluded individuals with Lynch syndrome, a hereditary condition that influences the distribution of tumor markers for early-onset CRC. Results In total, 149 articles were identified. Tumors from early-onset CRC are less likely to include mutations in KRAS (OR, 95% CI: 0.91, 0.85-0.98), BRAF (0.63, 0.51-0.78), APC (0.70, 0.58-0.84), and NRAS (0.88, 0.78-1.00) but more likely to include mutations in PTEN (1.68, 1.04-2.73) and TP53 (1.34, 1.24-1.45). After limiting to studies that excluded Lynch syndrome, the associations between early-onset CRC and BRAF (0.77, 0.64-0.92) and APC mutation (0.81, 0.67-0.97) were attenuated, while an inverse association with PIK3CA mutation was also observed (0.88, 0.78-0.99). Early-onset tumors are less likely to develop along the CpG Island Methylator Phenotype pathway (0.24, 0.10-0.57), but more likely to possess adverse histological features including high tumor grade (1.20, 1.15-1.25), and mucinous (1.22, 1.16-1.27) or signet ring histology (2.32, 2.08-2.57). A positive association with MSI status (1.31, 1.11-1.56) was also identified. Associations with immune markers and the consensus molecular subtypes are inconsistent. Discussion A lower prevalence of mutations in KRAS and BRAF is consistent with extended survival and superior response to targeted therapies for metastatic disease. Conversely, early-onset CRC is associated with aggressive histological subtypes and TP53 and PTEN mutations, which may serve as therapeutic targets.
Collapse
Affiliation(s)
- Thomas Lawler
- School of Medicine and Public Health, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Lisa Parlato
- School of Medicine and Public Health, Department of Population Health Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Shaneda Warren Andersen
- School of Medicine and Public Health, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
- School of Medicine and Public Health, Department of Population Health Sciences, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
17
|
Gupta S, May FP, Kupfer SS, Murphy CC. Birth Cohort Colorectal Cancer (CRC): Implications for Research and Practice. Clin Gastroenterol Hepatol 2024; 22:455-469.e7. [PMID: 38081492 PMCID: PMC11304405 DOI: 10.1016/j.cgh.2023.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
Colorectal cancer (CRC) epidemiology is changing due to a birth cohort effect, first recognized by increasing incidence of early onset CRC (EOCRC, age <50 years). In this paper, we define "birth cohort CRC" as the observed phenomenon, among individuals born 1960 and later, of increasing CRC risk across successive birth cohorts, rising EOCRC incidence, increasing incidence among individuals aged 50 to 54 years, and flattening of prior decreasing incidence among individuals aged 55 to 74 years. We demonstrate birth cohort CRC is associated with unique features, including increasing rectal cancer (greater than colon) and distant (greater than local) stage CRC diagnosis, and increasing EOCRC across all racial/ethnic groups. We review potential risk factors, etiologies, and mechanisms for birth cohort CRC, using EOCRC as a starting point and describing importance of viewing these through the lens of birth cohort. We also outline implications of birth cohort CRC for epidemiologic and translational research, as well as current clinical practice. We postulate that recognition of birth cohort CRC as an entity-including and extending beyond rising EOCRC-can advance understanding of risk factors, etiologies, and mechanisms, and address the public health consequences of changing CRC epidemiology.
Collapse
Affiliation(s)
- Samir Gupta
- Section of Gastroenterology, Jennifer Moreno San Diego VA Medical Center, San Diego, California; Division of Gastroenterology, Department of Medicine, and Moores Cancer Center, University of California, La Jolla, California.
| | - Folasade P May
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California; Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California; UCLA Kaiser Permanente Center for Health Equity, Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Sonia S Kupfer
- Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Caitlin C Murphy
- Department of Health Promotion & Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth Houston) School of Public Health, Houston, Texas
| |
Collapse
|
18
|
Li R, Wu Y, Li Y, Shuai W, Wang A, Zhu Y, Hu X, Xia Y, Ouyang L, Wang G. Targeted regulated cell death with small molecule compounds in colorectal cancer: Current perspectives of targeted therapy and molecular mechanisms. Eur J Med Chem 2024; 265:116040. [PMID: 38142509 DOI: 10.1016/j.ejmech.2023.116040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/26/2023]
Abstract
Colorectal cancer (CRC), a tumor of the digestive system, is characterized by high malignancy and poor prognosis. Currently, targeted therapy of CRC is far away from satisfying. The molecular mechanisms of regulated cell death (RCD) have been clearly elucidated, which can be intervened by drug or genetic modification. Numerous studies have provided substantial evidence linking these mechanisms to the progression and treatment of CRC. The RCD includes apoptosis, autophagy-dependent cell death (ADCD), ferroptosis, necroptosis, and pyroptosis, and immunogenic cell death, etc, which provide potential targets for anti-cancer treatment. For the last several years, small-molecule compounds targeting RCD have been a well concerned therapeutic strategy for CRC. This present review aims to describe the function of small-molecule compounds in the targeted therapy of CRC via targeting apoptosis, ADCD, ferroptosis, necroptosis, immunogenic dell death and pyroptosis, and their mechanisms. In addition, we prospect the application of newly discovered cuproptosis and disulfidptosis in CRC. Our review may provide references for the targeted therapy of CRC using small-molecule compounds targeting RCD, including the potential targets and candidate compounds.
Collapse
Affiliation(s)
- Ru Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yongya Wu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yan Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Wen Shuai
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Aoxue Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yumeng Zhu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Xiuying Hu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yong Xia
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China; Department of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, 610041, China.
| | - Liang Ouyang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
19
|
Chen Z, Song W, Shu XO, Wen W, Devall M, Dampier C, Moratalla-Navarro F, Cai Q, Long J, Van Kaer L, Wu L, Huyghe JR, Thomas M, Hsu L, Woods MO, Albanes D, Buchanan DD, Gsur A, Hoffmeister M, Vodicka P, Wolk A, Marchand LL, Wu AH, Phipps AI, Moreno V, Ulrike P, Zheng W, Casey G, Guo X. Novel insights into genetic susceptibility for colorectal cancer from transcriptome-wide association and functional investigation. J Natl Cancer Inst 2024; 116:127-137. [PMID: 37632791 PMCID: PMC10777674 DOI: 10.1093/jnci/djad178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/10/2023] [Accepted: 08/19/2023] [Indexed: 08/28/2023] Open
Abstract
BACKGROUND Transcriptome-wide association studies have been successful in identifying candidate susceptibility genes for colorectal cancer (CRC). To strengthen susceptibility gene discovery, we conducted a large transcriptome-wide association study and an alternative splicing transcriptome-wide association study in CRC using improved genetic prediction models and performed in-depth functional investigations. METHODS We analyzed RNA-sequencing data from normal colon tissues and genotype data from 423 European descendants to build genetic prediction models of gene expression and alternative splicing and evaluated model performance using independent RNA-sequencing data from normal colon tissues of the Genotype-Tissue Expression Project. We applied the verified models to genome-wide association studies (GWAS) summary statistics among 58 131 CRC cases and 67 347 controls of European ancestry to evaluate associations of genetically predicted gene expression and alternative splicing with CRC risk. We performed in vitro functional assays for 3 selected genes in multiple CRC cell lines. RESULTS We identified 57 putative CRC susceptibility genes, which included the 48 genes from transcriptome-wide association studies and 15 genes from splicing transcriptome-wide association studies, at a Bonferroni-corrected P value less than .05. Of these, 16 genes were not previously implicated in CRC susceptibility, including a gene PDE7B (6q23.3) at locus previously not reported by CRC GWAS. Gene knockdown experiments confirmed the oncogenic roles for 2 unreported genes, TRPS1 and METRNL, and a recently reported gene, C14orf166. CONCLUSION This study discovered new putative susceptibility genes of CRC and provided novel insights into the biological mechanisms underlying CRC development.
Collapse
Affiliation(s)
- Zhishan Chen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Wenqiang Song
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Matthew Devall
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Christopher Dampier
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Ferran Moratalla-Navarro
- Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), L’Hospitalet de Llobregat, Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Institut de Recerca Biomedica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, Faculty of Medicine and Health Sciences and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona (UB), L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lan Wu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Minta Thomas
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Michael O Woods
- Memorial University of Newfoundland, Discipline of Genetics, St. John’s, ON, Canada
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
- Genetic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Andrea Gsur
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Anna H Wu
- Preventative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Victor Moreno
- Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), L’Hospitalet de Llobregat, Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Institut de Recerca Biomedica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, Faculty of Medicine and Health Sciences and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona (UB), L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Peters Ulrike
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Graham Casey
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
20
|
Belova VA, Spirina LV, Avgustinovich AV, Afanas'ev SG, Volkov MY, Azovsky DI, Volkov AM, Klyushina TS. New Perspectives in Colorectal Cancers Treatment, the Role of MicroRNAs. Curr Drug Targets 2024; 25:715-723. [PMID: 39051587 DOI: 10.2174/0113894501304351240703113651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 07/27/2024]
Abstract
The main epidemiological and clinical data on colorectal cancer, as well as the features of molecular pathology, are discussed in the literature review. Efforts are being putto identify promising targets, particularly small non-coding nucleotide sequences, which can lead to new treatments for this disease. The discovery of significant mutations that contribute to the development of colorectal tumors is a major step in the advancement of molecular oncology, as these mutations give rise to heterogeneous tumors that differ in their origin. These mutations play a significant role in the progression of the disease and are now being targeted for treatment. The prognosis for a disease is influenced by the patient's sensitivity to antitumor therapy. However, new approaches to finding effective targets for antitumor treatments face new fundamental challenges due to clinical issues. These issues include the epigenetic regulation of markers of oncogenesis, which allows for the development of new therapeutic strategies. RNA interference, in particular, has been linked to non-copying RNA sequences such as microRNAs. These microRNAs are associated with certain processes that can influence all aspects of oncogenesis. The diversity of microRNAs allows for a differentiated approach when treating tumors in various locations.
Collapse
Affiliation(s)
- Victoria A Belova
- Division of Biochemistry and Molecular Biology, Siberian State Medical University, Tomsk, Russian Federation
| | - Liudmila V Spirina
- Division of Biochemistry and Molecular Biology, Siberian State Medical University, Tomsk, Russian Federation
- Cancer Research Institute, Tomsk National Research Medical Center of Russian Academy of Sciences, Tomsk, Russian Federation
| | - Alexandra V Avgustinovich
- Cancer Research Institute, Tomsk National Research Medical Center of Russian Academy of Sciences, Tomsk, Russian Federation
| | - Sergey G Afanas'ev
- Cancer Research Institute, Tomsk National Research Medical Center of Russian Academy of Sciences, Tomsk, Russian Federation
| | - Maxim Y Volkov
- Cancer Research Institute, Tomsk National Research Medical Center of Russian Academy of Sciences, Tomsk, Russian Federation
| | - Daniil I Azovsky
- Cancer Research Institute, Tomsk National Research Medical Center of Russian Academy of Sciences, Tomsk, Russian Federation
| | - Alexander M Volkov
- Cancer Research Institute, Tomsk National Research Medical Center of Russian Academy of Sciences, Tomsk, Russian Federation
| | - Tatyana S Klyushina
- Division of Biochemistry and Molecular Biology, Siberian State Medical University, Tomsk, Russian Federation
| |
Collapse
|
21
|
Ben-Aharon I, Rotem R, Melzer-Cohen C, Twig G, Cercek A, Half E, Goshen-Lago T, Chodik G, Kelsen D. Pharmaceutical Agents as Potential Drivers in the Development of Early-Onset Colorectal Cancer: Case-Control Study. JMIR Public Health Surveill 2023; 9:e50110. [PMID: 37933755 PMCID: PMC10753427 DOI: 10.2196/50110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/08/2023] [Accepted: 11/07/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND The incidence of early-onset colorectal cancer (EOCRC) rose abruptly in the mid 1990s, is continuing to increase, and has now been noted in many countries. By 2030, 25% of American patients diagnosed with rectal cancer will be 49 years or younger. The large majority of EOCRC cases are not found in patients with germline cancer susceptibility mutations (eg, Lynch syndrome) or inflammatory bowel disease. Thus, environmental or lifestyle factors are suspected drivers. Obesity, sedentary lifestyle, diabetes mellitus, smoking, alcohol, or antibiotics affecting the gut microbiome have been proposed. However, these factors, which have been present since the 1950s, have not yet been conclusively linked to the abrupt increase in EOCRC. The sharp increase suggests the introduction of a new risk factor for young people. We hypothesized that the driver may be an off-target effect of a pharmaceutical agent (ie, one requiring regulatory approval before its use in the general population or an off-label use of a previously approved agent) in a genetically susceptible subgroup of young adults. If a pharmaceutical agent is an EOCRC driving factor, regulatory risk mitigation strategies could be used. OBJECTIVE We aimed to evaluate the possibility that pharmaceutical agents serve as risk factors for EOCRC. METHODS We conducted a case-control study. Data including demographics, comorbidities, and complete medication dispensing history were obtained from the electronic medical records database of Maccabi Healthcare Services, a state-mandated health provider covering 26% of the Israeli population. The participants included 941 patients with EOCRC (≤50 years of age) diagnosed during 2001-2019 who were density matched at a ratio of 1:10 with 9410 control patients. Patients with inflammatory bowel disease and those with a known inherited cancer susceptibility syndrome were excluded. An advanced machine learning algorithm based on gradient boosted decision trees coupled with Bayesian model optimization and repeated data sampling was used to sort through the very high-dimensional drug dispensing data to identify specific medication groups that were consistently linked with EOCRC while allowing for synergistic or antagonistic interactions between medications. Odds ratios for the identified medication classes were obtained from a conditional logistic regression model. RESULTS Out of more than 800 medication classes, we identified several classes that were consistently associated with EOCRC risk across independently trained models. Interactions between medication groups did not seem to substantially affect the risk. In our analysis, drug groups that were consistently positively associated with EOCRC included beta blockers and valerian (Valeriana officinalis). Antibiotics were not consistently associated with EOCRC risk. CONCLUSIONS Our analysis suggests that the development of EOCRC may be correlated with prior use of specific medications. Additional analyses should be used to validate the results. The mechanism of action inducing EOCRC by candidate pharmaceutical agents will then need to be determined.
Collapse
Affiliation(s)
- Irit Ben-Aharon
- Department of Gastroenterology, Rambam Healthcare Campus, Haifa, Israel
| | - Ran Rotem
- Harvard T Chan School of Public Health, Boston, MA, United States
| | - Cheli Melzer-Cohen
- KSM Research and Innovation Center, Maccabi Healthcare Services, Tel-Aviv, Israel
| | - Gilad Twig
- The Institute of Endocrinology Diabetes and Metabolism, Sheba Medical Center, Ramat Gan, Israel
- Department of Preventive Medicine and Epidemiology, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Gertner Institute for Epidemiology & Health Policy Research, Sheba Medical Center, Ramat Gan, Israel
| | - Andrea Cercek
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Elizabeth Half
- Department of Gastroenterology, Rambam Healthcare Campus, Haifa, Israel
| | - Tal Goshen-Lago
- Department of Gastroenterology, Rambam Healthcare Campus, Haifa, Israel
| | - Gabriel Chodik
- Department of Preventive Medicine and Epidemiology, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David Kelsen
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
22
|
Seagle HM, Keller SR, Tavtigian SV, Horton C, Holowatyj AN. Clinical Multigene Panel Testing Identifies Racial and Ethnic Differences in Germline Pathogenic Variants Among Patients With Early-Onset Colorectal Cancer. J Clin Oncol 2023; 41:4279-4289. [PMID: 37319387 PMCID: PMC10852379 DOI: 10.1200/jco.22.02378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/03/2023] [Accepted: 03/06/2023] [Indexed: 06/17/2023] Open
Abstract
PURPOSE The early-onset colorectal cancer (EOCRC) burden differs across racial/ethnic groups, yet the role of germline genetic predisposition in EOCRC disparities remains uncharacterized. We defined the prevalence and spectrum of inherited colorectal cancer (CRC) susceptibility gene variations among patients with EOCRC by race and ethnicity. PATIENTS AND METHODS We included individuals diagnosed with a first primary CRC between age 15 and 49 years who identified as Ashkenazi Jewish, Asian, Black, Hispanic, or White and underwent germline genetic testing of 14 CRC susceptibility genes performed by a clinical testing laboratory. Variant comparisons by racial and ethnic groups were evaluated using chi-square tests and multivariable logistic regression adjusted for sex, age, CRC site, and number of primary colorectal tumors. RESULTS Among 3,980 patients with EOCRC, a total of 530 germline pathogenic or likely pathogenic variants were identified in 485 individuals (12.2%). By race/ethnicity, 12.7% of Ashkenazim patients, 9.5% of Asian patients, 10.3% of Black patients, 14.0% of Hispanic patients, and 12.4% of White patients carried a germline variant. The prevalence of Lynch syndrome (P = .037), as well as APC, CHEK2, MLH1, monoallelic MUTYH, and PTEN variants, varied by race/ethnicity among patients with EOCRC (all P < .026). Ashkenazim and Hispanic patients had significantly higher odds of presenting with a pathogenic APC variant, which included p.I1307K (odds ratio [OR], 2.67; 95% CI, 1.30 to 5.49; P = .007) and MLH1 variant (OR, 8.69; 95% CI, 2.68 to 28.20; P = .0003), respectively, versus White patients in adjusted models. CONCLUSION Germline genetic features differed by race/ethnicity in young patients with CRC, suggesting that current multigene panel tests may not be representative of EOCRC risk in diverse populations. Further study is needed to optimize genes selected for genetic testing in EOCRC via ancestry-specific gene and variant discovery to yield equitable clinical benefits for all patients and to mitigate inequities in disease burden.
Collapse
Affiliation(s)
- Hannah M. Seagle
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt University School of Medicine, Nashville, TN
| | - Samantha R. Keller
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt University School of Medicine, Nashville, TN
| | - Sean V. Tavtigian
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT
| | - Carolyn Horton
- Department of Clinical Diagnostics, Ambry Genetics, Aliso Viejo, CA
| | - Andreana N. Holowatyj
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt University School of Medicine, Nashville, TN
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT
- Vanderbilt-Ingram Cancer Center, Nashville, TN
| |
Collapse
|
23
|
Green S, Prainsack B, Sabatello M. Precision medicine and the problem of structural injustice. MEDICINE, HEALTH CARE, AND PHILOSOPHY 2023; 26:433-450. [PMID: 37231234 PMCID: PMC10212228 DOI: 10.1007/s11019-023-10158-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
Many countries currently invest in technologies and data infrastructures to foster precision medicine (PM), which is hoped to better tailor disease treatment and prevention to individual patients. But who can expect to benefit from PM? The answer depends not only on scientific developments but also on the willingness to address the problem of structural injustice. One important step is to confront the problem of underrepresentation of certain populations in PM cohorts via improved research inclusivity. Yet, we argue that the perspective needs to be broadened because the (in)equitable effects of PM are also strongly contingent on wider structural factors and prioritization of healthcare strategies and resources. When (and before) implementing PM, it is crucial to attend to how the organisation of healthcare systems influences who will benefit, as well as whether PM may present challenges for a solidaristic sharing of costs and risks. We discuss these issues through a comparative lens of healthcare models and PM-initiatives in the United States, Austria, and Denmark. The analysis draws attention to how PM hinges on-and simultaneously affects-access to healthcare services, public trust in data handling, and prioritization of healthcare resources. Finally, we provide suggestions for how to mitigate foreseeable negative effects.
Collapse
Affiliation(s)
- Sara Green
- Section for History and Philosophy of Science, Department of Science Education, University of Copenhagen, Niels Bohr Building (NBB), Universitetsparken 5, 2100 Copenhagen Ø, Denmark
- Centre for Medical Science and Technology Studies, Department of Public Health, University of Copenhagen, Oester Farimagsgade 5, 1014 Copengagen, Denmark
| | - Barbara Prainsack
- Department of Political Science, University of Vienna, Universitätsstraße 7, 1010 Vienna, Austria
- School of Social and Political Sciences, Faculty of Arts and Social Sciences, University of Sydney, Camperdown, NSW 2006 Australia
| | - Maya Sabatello
- Center for Precision Medicine and Genomics, Department of Medicine, Columbia University, New York, USA
- Division of Ethics, Department of Medical Humanities and Ethics, Columbia University, New York, USA
| |
Collapse
|
24
|
Yang G, Yu XR, Weisenberger DJ, Lu T, Liang G. A Multi-Omics Overview of Colorectal Cancer to Address Mechanisms of Disease, Metastasis, Patient Disparities and Outcomes. Cancers (Basel) 2023; 15:cancers15112934. [PMID: 37296894 DOI: 10.3390/cancers15112934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Human colorectal cancer (CRC) is one of the most common malignancies in men and women across the globe, albeit CRC incidence and mortality shows a substantial racial and ethnic disparity, with the highest burden in African American patients. Even with effective screening tools such as colonoscopy and diagnostic detection assays, CRC remains a substantial health burden. In addition, primary tumors located in the proximal (right) or distal (left) sides of the colorectum have been shown to be unique tumor types that require unique treatment schema. Distal metastases in the liver and other organ systems are the major causes of mortality in CRC patients. Characterizing genomic, epigenomic, transcriptomic and proteomic (multi-omics) alterations has led to a better understanding of primary tumor biology, resulting in targeted therapeutic advancements. In this regard, molecular-based CRC subgroups have been developed that show correlations with patient outcomes. Molecular characterization of CRC metastases has highlighted similarities and differences between metastases and primary tumors; however, our understanding as to how to improve patient outcomes based on metastasis biology is lagging and remains a major obstacle to improving CRC patient outcomes. In this review, we will summarize the multi-omics features of primary CRC tumors and their metastases across racial and ethnic groups, the differences in proximal and distal tumor biology, molecular-based CRC subgroups, treatment strategies and challenges for improving patient outcomes.
Collapse
Affiliation(s)
- Guang Yang
- School of Sciences, China Pharmaceutical University, Nanjing 211121, China
- China Grand Enterprises, Beijing 100101, China
| | - Xi Richard Yu
- China Grand Enterprises, Beijing 100101, China
- Huadong Medicine Co., Ltd., Hangzhou 310011, China
| | - Daniel J Weisenberger
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Tao Lu
- School of Sciences, China Pharmaceutical University, Nanjing 211121, China
- State Key Laboratory of Natural Sciences, China Pharmaceutical University, Nanjing 211121, China
| | - Gangning Liang
- USC Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|