1
|
Wang Y, Zhang J, Wu X, Huang L, Xiao W, Guo C. The Potential of PARP Inhibitors as Antitumor Drugs and the Perspective of Molecular Design. J Med Chem 2024. [PMID: 39723587 DOI: 10.1021/acs.jmedchem.4c02642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
PARP (poly-ADP ribose polymerase) has received widespread attention in cancer treatment. Research has shown that PARP plays a crucial role in DNA damage repair and has become a popular target for drug design. Based on the mechanism of "synthetic lethality", multiple PARPis (PARP inhibitors) have been launched for the treatment of BRCA deficient tumors. For example, the approved PARPis have shown significant potential in cancer treatment, particularly in breast cancer and cancers associated with BRCA1/BRCA2 deficiencies. However, the clinical efficacy and safety of PARP inhibitors in different cancers remain issues that cannot be overlooked. The design of PARPis aims to eliminate their resistance and broaden their application scope. Designing selective PARP-1 inhibitors is also a potential strategy. PROTACs (Proteolysis Targeting Chimeras) to degrade PARP have become a potential novel cancer treatment strategy.
Collapse
Affiliation(s)
- Yinghan Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jingtao Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaochen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Longjiang Huang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wenjing Xiao
- Department of Radiation Therapy, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Chuanlong Guo
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
2
|
Lin Q, Zhang Y, Zeng Y, Zha Y, Xue W, Yu S. Hybrid membrane based biomimetic nanodrug with high-efficient melanoma-homing and NIR-II laser-amplified peroxynitrite boost properties for enhancing antitumor therapy via effective immunoactivation. Biomaterials 2024; 317:123045. [PMID: 39742839 DOI: 10.1016/j.biomaterials.2024.123045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/04/2025]
Abstract
Owing to the excellent stability, anticancer activity and immunogenicity, peroxynitrite (ONOO-) has been gained enormous interests in cancer therapy. Nevertheless, precise delivery and control release of ONOO- in tumors remains a big challenge. Herein, B16F10 cancer cell membrane/liposome hybrid membrane (CM-Lip) based biomimetic nanodrug with high-efficient tumor-homing and NIR-II laser controlled ONOO- boost properties was designed for melanoma treatment. Briefly, NIR-II molecule IR1061, NO donor BNN6 and β-lapachone (Lapa) were firstly encapsulated in the heat-responsive palmitoyl phosphatidylcholine/cholesterol liposome, followed by fusion with B16F10 cell membrane (CM) to obtain biomimetic CM-Lip@(IR/BNN6/Lapa). The hybrid membrane-based nanodrug displayed excellent biocompatibility and melanoma-targeting efficiency. Upon 1064 nm laser irradiation, the mild photothermal effect of CM-Lip@(IR/BNN6/Lapa) firstly triggered the release of NO and Lapa, which subsequently catalyzed the quinone oxidoreductase 1 (NQO1) overexpressed in tumors to produce O2•-, finally caused intraturmal ONOO- boost via cascade reaction. The boosted ONOO- could effectively inhibit melanoma by ways of triggering mitochondrion-mediated apoptotic pathway, upregulating 3-nitrotyrosine expression, inducing DNA damage and inhibiting DNA repair enzyme expression of poly (ADP-ribose) polymerase 1 (PARP-1). Moreover, ONOO- displayed excellent immunoactivation and immunomodulation activities by effectively inducing immunogenic tumor cell death, promoting dendritic cells maturation, increasing cytotoxic T lymphocytes expression and repolarizing M1-phenotype macrophages.
Collapse
Affiliation(s)
- Qi Lin
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Yu Zhang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Yina Zeng
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Yongchao Zha
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Siming Yu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
3
|
Ottaiano A, Santorsola M, Sirica R, Mauro AD, Di Carlo A, Ianniello M, Sabbatino F, Castiello R, Peschio FD, Cascella M, Perri F, Capuozzo M, Martucci N, Mercadante E, Borzillo V, Di Franco R, Izzo F, Granata V, Picone C, Petrillo A, Berretta M, Stilo S, Tarotto L, Carratù AC, Ferrara G, Tathode M, Cossu AM, Bocchetti M, Caraglia M, Nasti G, Savarese G. Clinical and genetic drivers of oligo-metastatic disease in colon cancer. Neoplasia 2024; 60:101111. [PMID: 39709701 DOI: 10.1016/j.neo.2024.101111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Oligo-metastatic disease (OMD) in colon cancer patients exhibits distinct clinical behavior compared to poly-metastatic disease (PMD), with a more responsive and indolent course. This study aims to identify clinical and biological factors uniquely associated with oligo-metastatic behavior. METHODS Metastatic colon cancer patients from an academic center underwent genetic characterization. OMD was defined as ≤3 lesions per organ, each with a total diameter <70 mm and none exceeding 25 mm. Tumor DNA sequencing by NGS utilized the TruSight Oncology 500 kit. Overall survival (OS) was determined from metastasis diagnosis until death using Kaplan-Meier analysis. Multivariate Cox regression examined prognostic links between clinicopathological and genetic factors. Associations with metastatic patterns were evaluated using Chi-square. RESULTS The analysis involved 104 patients (44 with OMD, 60 with PMD). OMD was more prevalent in males (P = 0.0299) and with single organ involvement (P = 0.0226). Multivariate analysis adjusted for age (>70 vs. <70 years), gender (male vs. female), tumor side (right vs. left), metastatic involvement (more than one site vs. one site), response to first-line therapy (disease control vs. no disease control), and RAS/BRAF variants (wild-type vs. mutated) identified OMD vs. PMD as the strongest independent predictor of survival (HR: 0.14; 95 % CI: 0.06-0.33; P<0.0001). OMD patients exhibited distinct molecular characteristics, including lower frequencies of BRAF p.V600E (P=0.0315) and KRAS mutations (P=0.0456), as well as a higher frequency of high tumor mutational burden (P=0.0127). Additionally, by integrating data from public datasets and our case study, we hypothesize that some gene alterations (i.e.: BRAF, SMAD4, RAF1, and mTOR) may prevent OMD occurrence. CONCLUSION OMD, characterized by male predominance, single-site involvement, and distinct molecular features in colon cancer, suggests the need for tailored management strategies.
Collapse
Affiliation(s)
- Alessandro Ottaiano
- SSD-Innovative Therapies for Abdominal Metastases, IRCCS "G. Pascale", Istituto Nazionale Tumori di Napoli, Via M. Semmola, Naples 80131, Italy.
| | - Mariachiara Santorsola
- SSD-Innovative Therapies for Abdominal Metastases, IRCCS "G. Pascale", Istituto Nazionale Tumori di Napoli, Via M. Semmola, Naples 80131, Italy
| | - Roberto Sirica
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, Casalnuovo Di Napoli 80013, Italy
| | - Annabella Di Mauro
- Unit of Pathology, IRCCS "G. Pascale", Istituto Nazionale Tumori di Napoli, Via M. Semmola, Naples 80131, Italy
| | - Antonella Di Carlo
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, Casalnuovo Di Napoli 80013, Italy
| | - Monica Ianniello
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, Casalnuovo Di Napoli 80013, Italy
| | - Francesco Sabbatino
- Medical Oncology, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi 84081, Italy
| | - Rosa Castiello
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, Casalnuovo Di Napoli 80013, Italy
| | - Francesca Del Peschio
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, Casalnuovo Di Napoli 80013, Italy
| | - Marco Cascella
- Unit of Anesthesia and Pain Medicine, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi 84081, Italy
| | - Francesco Perri
- Medical and Experimental Head and Neck Oncology Unit, IRCCS "G. Pascale", Istituto Nazionale Tumori di Napoli, Via M. Semmola, Naples 80131, Italy
| | | | - Nicola Martucci
- Unit of Thoracic Surgery, Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, Naples 80131, Italy
| | - Edoardo Mercadante
- Unit of Thoracic Surgery, Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, Naples 80131, Italy
| | - Valentina Borzillo
- Department of Radiation Oncology, IRCCS "G. Pascale", Istituto Nazionale Tumori di Napoli, Via M. Semmola, Naples 80131, Italy
| | - Rossella Di Franco
- Department of Radiation Oncology, IRCCS "G. Pascale", Istituto Nazionale Tumori di Napoli, Via M. Semmola, Naples 80131, Italy
| | - Francesco Izzo
- Unit of Epato-Biliary Surgery, Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, Naples 80131, Italy
| | - Vincenza Granata
- Unit of Radiology, Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, Naples 80131, Italy
| | - Carmine Picone
- Unit of Radiology, Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, Naples 80131, Italy
| | - Antonella Petrillo
- Unit of Radiology, Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, Naples 80131, Italy
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, Messina 98122, Italy
| | - Salvatore Stilo
- Interventional Radiology Unit, Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, Naples 80131, Italy
| | - Luca Tarotto
- Interventional Radiology Unit, Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, Naples 80131, Italy
| | - Anna Chiara Carratù
- SSD-Innovative Therapies for Abdominal Metastases, IRCCS "G. Pascale", Istituto Nazionale Tumori di Napoli, Via M. Semmola, Naples 80131, Italy
| | - Gerardo Ferrara
- Unit of Pathology, IRCCS "G. Pascale", Istituto Nazionale Tumori di Napoli, Via M. Semmola, Naples 80131, Italy
| | - Madhura Tathode
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio 7, Naples 80138, Italy; Laboratory of Precision and Molecular Oncology, Biogem Scarl IRGS, Ariano Irpino, Italy
| | - Alessia Maria Cossu
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio 7, Naples 80138, Italy; Laboratory of Precision and Molecular Oncology, Biogem Scarl IRGS, Ariano Irpino, Italy
| | - Marco Bocchetti
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio 7, Naples 80138, Italy; Laboratory of Precision and Molecular Oncology, Biogem Scarl IRGS, Ariano Irpino, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio 7, Naples 80138, Italy; Laboratory of Precision and Molecular Oncology, Biogem Scarl IRGS, Ariano Irpino, Italy
| | - Guglielmo Nasti
- SSD-Innovative Therapies for Abdominal Metastases, IRCCS "G. Pascale", Istituto Nazionale Tumori di Napoli, Via M. Semmola, Naples 80131, Italy
| | - Giovanni Savarese
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, Casalnuovo Di Napoli 80013, Italy
| |
Collapse
|
4
|
Sasaki N, Homme M, Murayama T, Osaki T, Tenma T, An T, Takegami Y, Tani T, Gedeon PC, Kobayashi Y, Cañadas I, Barbie DA, Yao R, Kitajima S. RNA sensing induced by chromosome missegregation augments anti-tumor immunity. Mol Cell 2024:S1097-2765(24)00950-X. [PMID: 39706184 DOI: 10.1016/j.molcel.2024.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 12/23/2024]
Abstract
Viral mimicry driven by endogenous double-stranded RNA (dsRNA) stimulates innate and adaptive immune responses. However, the mechanisms that regulate dsRNA-forming transcripts during cancer therapy remain unclear. Here, we demonstrate that dsRNA is significantly accumulated in cancer cells following pharmacologic induction of micronuclei, stimulating mitochondrial antiviral signaling (MAVS)-mediated dsRNA sensing in conjunction with the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway. Activation of cytosolic dsRNA sensing cooperates with double-stranded DNA (dsDNA) sensing to upregulate immune cell migration and antigen-presenting machinery. Tracing of dsRNA-sequences reveals that dsRNA-forming transcripts are predominantly generated from non-exonic regions, particularly in locations proximal to genes exhibiting high chromatin accessibility. Activation of this pathway by pulsed monopolar spindle 1 (MPS1) inhibitor treatment, which potently induces micronuclei formation, upregulates cytoplasmic dsRNA sensing and thus promotes anti-tumor immunity mediated by cytotoxic lymphocyte activation in vivo. Collectively, our findings uncover a mechanism in which dsRNA sensing cooperates with dsDNA sensing to boost immune responses, offering an approach to enhance the efficacy of cancer therapies targeting genomic instability.
Collapse
Affiliation(s)
- Nobunari Sasaki
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Mizuki Homme
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Takahiko Murayama
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Tatsuya Osaki
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| | - Toshiyuki Tenma
- Respiratory Center, Asahikawa Medical University Hospital, Asahikawa 078-8510, Japan
| | - Tadaichi An
- DNAFORM Precision Gene Technologies, Yokohama, Kanagawa 230-0051, Japan
| | - Yujiro Takegami
- DNAFORM Precision Gene Technologies, Yokohama, Kanagawa 230-0051, Japan
| | - Tetsuo Tani
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Patrick C Gedeon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yoshihisa Kobayashi
- Division of Molecular Pathology, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | - Israel Cañadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ryoji Yao
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Shunsuke Kitajima
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan.
| |
Collapse
|
5
|
Galassi C, Chan TA, Vitale I, Galluzzi L. The hallmarks of cancer immune evasion. Cancer Cell 2024; 42:1825-1863. [PMID: 39393356 DOI: 10.1016/j.ccell.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
According to the widely accepted "three Es" model, the host immune system eliminates malignant cell precursors and contains microscopic neoplasms in a dynamic equilibrium, preventing cancer outgrowth until neoplastic cells acquire genetic or epigenetic alterations that enable immune escape. This immunoevasive phenotype originates from various mechanisms that can be classified under a novel "three Cs" conceptual framework: (1) camouflage, which hides cancer cells from immune recognition, (2) coercion, which directly or indirectly interferes with immune effector cells, and (3) cytoprotection, which shields malignant cells from immune cytotoxicity. Blocking the ability of neoplastic cells to evade the host immune system is crucial for increasing the efficacy of modern immunotherapy and conventional therapeutic strategies that ultimately activate anticancer immunosurveillance. Here, we review key hallmarks of cancer immune evasion under the "three Cs" framework and discuss promising strategies targeting such immunoevasive mechanisms.
Collapse
Affiliation(s)
- Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Timothy A Chan
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA; Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; National Center for Regenerative Medicine, Cleveland, OH, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Ilio Vitale
- Italian Institute for Genomic Medicine, c/o IRCSS Candiolo, Torino, Italy; Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA; Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Naulin F, Guilbaud E, Galluzzi L. PARP7 and nucleic acid-driven oncosuppression. Cell Mol Immunol 2024; 21:1177-1179. [PMID: 38834655 PMCID: PMC11528111 DOI: 10.1038/s41423-024-01182-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 06/06/2024] Open
Affiliation(s)
- Flavie Naulin
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Emma Guilbaud
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Chen G, Ren Q, Zhong Z, Li Q, Huang Z, Zhang C, Yuan H, Feng Z, Chen B, Wang N, Feng Y. Exploring the gut microbiome's role in colorectal cancer: diagnostic and prognostic implications. Front Immunol 2024; 15:1431747. [PMID: 39483461 PMCID: PMC11524876 DOI: 10.3389/fimmu.2024.1431747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
The intricate interplay between the gut microbiome and colorectal cancer (CRC) presents novel avenues for early diagnosis and prognosis, crucial for improving patient outcomes. This comprehensive review synthesizes current findings on the gut microbiome's contribution to CRC pathogenesis, highlighting its potential as a biomarker for non-invasive CRC screening strategies. We explore the mechanisms through which the microbiome influences CRC, including its roles in inflammation, metabolism, and immune response modulation. Furthermore, we assess the viability of microbial signatures as predictive tools for CRC prognosis, offering insights into personalized treatment approaches. Our analysis underscores the necessity for advanced metagenomic studies to elucidate the complex microbiome-CRC nexus, aiming to refine diagnostic accuracy and prognostic assessment in clinical settings. This review propels forward the understanding of the microbiome's diagnostic and prognostic capabilities, paving the way for microbiome-based interventions in CRC management.
Collapse
Affiliation(s)
- Guoming Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Qing Ren
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Zilan Zhong
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qianfan Li
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiqiang Huang
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hongchao Yuan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Zixin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
8
|
Sandoval TA, Salvagno C, Chae CS, Awasthi D, Giovanelli P, Falco MM, Hwang SM, Teran-Cabanillas E, Suominen L, Yamazaki T, Kuo HH, Moyer JE, Martin ML, Manohar J, Kim K, Sierra MA, Ramos Y, Tan C, Emmanuelli A, Song M, Morales DK, Zamarin D, Frey MK, Cantillo E, Chapman-Davis E, Holcomb K, Mason CE, Galluzzi L, Zhou ZN, Vähärautio A, Cloonan SM, Cubillos-Ruiz JR. Iron Chelation Therapy Elicits Innate Immune Control of Metastatic Ovarian Cancer. Cancer Discov 2024; 14:1901-1921. [PMID: 39073085 PMCID: PMC11452292 DOI: 10.1158/2159-8290.cd-23-1451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Iron accumulation in tumors contributes to disease progression and chemoresistance. Although targeting this process can influence various hallmarks of cancer, the immunomodulatory effects of iron chelation in the tumor microenvironment are unknown. Here, we report that treatment with deferiprone, an FDA-approved iron chelator, unleashes innate immune responses that restrain ovarian cancer. Deferiprone reprogrammed ovarian cancer cells toward an immunostimulatory state characterized by the production of type-I IFN and overexpression of molecules that activate NK cells. Mechanistically, these effects were driven by innate sensing of mitochondrial DNA in the cytosol and concomitant activation of nuclear DNA damage responses triggered upon iron chelation. Deferiprone synergized with chemotherapy and prolonged the survival of mice with ovarian cancer by bolstering type-I IFN responses that drove NK cell-dependent control of metastatic disease. Hence, iron chelation may represent an alternative immunotherapeutic strategy for malignancies that are refractory to current T-cell-centric modalities. Significance: This study uncovers that targeting dysregulated iron accumulation in ovarian tumors represents a major therapeutic opportunity. Iron chelation therapy using an FDA-approved agent causes immunogenic stress responses in ovarian cancer cells that delay metastatic disease progression and enhance the effects of first-line chemotherapy. See related commentary by Bell and Zou, p. 1771.
Collapse
Affiliation(s)
- Tito A. Sandoval
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Camilla Salvagno
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Chang-Suk Chae
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Deepika Awasthi
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Paolo Giovanelli
- Weill Cornell Graduate School of Medical Sciences. New York, NY 10065. USA
| | - Matias Marin Falco
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sung-Min Hwang
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Eli Teran-Cabanillas
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Lasse Suominen
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medicine. New York, NY 10065, USA
| | - Hui-Hsuan Kuo
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065. USA
| | - Jenna E. Moyer
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065. USA
| | - M Laura Martin
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065. USA
| | - Jyothi Manohar
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065. USA
| | - Kihwan Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine. New York, NY 10065, USA
| | - Maria A. Sierra
- Weill Cornell Graduate School of Medical Sciences. New York, NY 10065. USA
| | - Yusibeska Ramos
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
| | - Chen Tan
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Alexander Emmanuelli
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
- Weill Cornell Graduate School of Medical Sciences. New York, NY 10065. USA
| | - Minkyung Song
- Departments of Integrative Biotechnology and of Biopharmaceutical Convergence, Sungkyunkwan University. Suwon, Gyeonggi-do, Korea
| | - Diana K. Morales
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
| | - Dmitriy Zamarin
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Melissa K. Frey
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Evelyn Cantillo
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Eloise Chapman-Davis
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Kevin Holcomb
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Christopher E. Mason
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine. New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine. New York, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine. New York, NY, USA
| | - Lorenzo Galluzzi
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
- Department of Radiation Oncology, Weill Cornell Medicine. New York, NY 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065. USA
| | - Zhen Ni Zhou
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Anna Vähärautio
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Foundation for the Finnish Cancer Institute, Helsinki, Finland
| | - Suzanne M. Cloonan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine. New York, NY 10065, USA
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College. Dublin, Ireland
| | - Juan R. Cubillos-Ruiz
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
- Weill Cornell Graduate School of Medical Sciences. New York, NY 10065. USA
| |
Collapse
|
9
|
Yang J, Guo J, Tang P, Yan S, Wang X, Li H, Xie J, Deng J, Hou X, Du Z, Hao E. Insights from Traditional Chinese Medicine for Restoring Skin Barrier Functions. Pharmaceuticals (Basel) 2024; 17:1176. [PMID: 39338338 PMCID: PMC11435147 DOI: 10.3390/ph17091176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
The skin barrier is essential for maintaining the body's internal homeostasis, protecting against harmful external substances, and regulating water and electrolyte balance. Traditional Chinese Medicine (TCM) offers notable advantages in restoring skin barrier function due to its diverse components, targets, and pathways. Recent studies have demonstrated that active ingredients in TCM can safely and effectively repair damaged skin barriers, reinstating their proper functions. This review article provides a comprehensive overview of the mechanisms underlying skin barrier damage and explores how the bioactive constituents of TCM contribute to skin barrier repair, thereby offering a theoretical framework to inform clinical practices.
Collapse
Affiliation(s)
- Jieyi Yang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Jiageng Guo
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Peiling Tang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Shidu Yan
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Xiaodong Wang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Huaying Li
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Jinling Xie
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Jiagang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Xiaotao Hou
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Zhengcai Du
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| |
Collapse
|
10
|
De Martino M, Rathmell JC, Galluzzi L, Vanpouille-Box C. Cancer cell metabolism and antitumour immunity. Nat Rev Immunol 2024; 24:654-669. [PMID: 38649722 PMCID: PMC11365797 DOI: 10.1038/s41577-024-01026-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/25/2024]
Abstract
Accumulating evidence suggests that metabolic rewiring in malignant cells supports tumour progression not only by providing cancer cells with increased proliferative potential and an improved ability to adapt to adverse microenvironmental conditions but also by favouring the evasion of natural and therapy-driven antitumour immune responses. Here, we review cancer cell-intrinsic and cancer cell-extrinsic mechanisms through which alterations of metabolism in malignant cells interfere with innate and adaptive immune functions in support of accelerated disease progression. Further, we discuss the potential of targeting such alterations to enhance anticancer immunity for therapeutic purposes.
Collapse
Affiliation(s)
- Mara De Martino
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Jeffrey C Rathmell
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| | - Claire Vanpouille-Box
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
| |
Collapse
|
11
|
Prakash P, Verma S, Gupta S. Influence of microbiome in intraprostatic inflammation and prostate cancer. Prostate 2024; 84:1179-1188. [PMID: 38899408 DOI: 10.1002/pros.24756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/22/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Chronic infection and inflammation have been linked to the development of prostate cancer. Dysbiosis of the oral and gut microbiomes and subsequent microbial translocation can lead to pathogenic prostate infections. Microbial-produced metabolites have also been associated with signaling pathways that promote prostate cancer development. A comprehensive discussion on the mechanisms of microbiome infection and the prostate microenvironment is essential to understand prostate carcinogenesis. METHODS Published studies were used from the National Center for Biotechnology Information (NCBI) database to conduct a narrative review. No restrictions were applied in the selection of articles. RESULTS Microbiome-derived short-chain fatty acids (SCFAs) have been found to upregulate multiple signaling pathways, including MAPK and PI3K, through IGF-1 signaling and M2 macrophage polarization. SCFAs can also upregulate Toll-like receptors, leading to chronic inflammation and the creation of a pro-prostate cancer environment. Dysbiosis of oral microbiota has been correlated with prostate infection and inflammation. Additionally, pathogenic microbiomes associated with urinary tract infections have shown a link to prostate cancer, with vesicoureteral reflux potentially contributing to prostate infection. CONCLUSIONS This review offers a comprehensive understanding of the impact of microbial infections linked to intraprostatic inflammation as a causative factor for prostate cancer. Further studies involving the manipulation of the microbiome and its produced metabolites may provide a more complete understanding of the microenvironmental mechanisms that promote prostate carcinogenesis.
Collapse
Affiliation(s)
- Pranav Prakash
- College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Shiv Verma
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Sanjay Gupta
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio, USA
- Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| |
Collapse
|
12
|
Frederick MI, Abdesselam D, Clouvel A, Croteau L, Hassan S. Leveraging PARP-1/2 to Target Distant Metastasis. Int J Mol Sci 2024; 25:9032. [PMID: 39201718 PMCID: PMC11354653 DOI: 10.3390/ijms25169032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Poly (ADP-Ribose) Polymerase (PARP) inhibitors have changed the outcomes and therapeutic strategy for several cancer types. As a targeted therapeutic mainly for patients with BRCA1/2 mutations, PARP inhibitors have commonly been exploited for their capacity to prevent DNA repair. In this review, we discuss the multifaceted roles of PARP-1 and PARP-2 beyond DNA repair, including the impact of PARP-1 on chemokine signalling, immune modulation, and transcriptional regulation of gene expression, particularly in the contexts of angiogenesis and epithelial-to-mesenchymal transition (EMT). We evaluate the pre-clinical role of PARP inhibitors, either as single-agent or combination therapies, to block the metastatic process. Efficacy of PARP inhibitors was demonstrated via DNA repair-dependent and independent mechanisms, including DNA damage, cell migration, invasion, initial colonization at the metastatic site, osteoclastogenesis, and micrometastasis formation. Finally, we summarize the recent clinical advancements of PARP inhibitors in the prevention and progression of distant metastases, with a particular focus on specific metastatic sites and PARP-1 selective inhibitors. Overall, PARP inhibitors have demonstrated great potential in inhibiting the metastatic process, pointing the way for greater use in early cancer settings.
Collapse
Affiliation(s)
- Mallory I. Frederick
- Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3T5, Canada; (M.I.F.); (D.A.); (L.C.)
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), l’Institut de Cancer de Montreal, Montreal, QC H2X 0A9, Canada;
| | - Djihane Abdesselam
- Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3T5, Canada; (M.I.F.); (D.A.); (L.C.)
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), l’Institut de Cancer de Montreal, Montreal, QC H2X 0A9, Canada;
| | - Anna Clouvel
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), l’Institut de Cancer de Montreal, Montreal, QC H2X 0A9, Canada;
| | - Laurent Croteau
- Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3T5, Canada; (M.I.F.); (D.A.); (L.C.)
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), l’Institut de Cancer de Montreal, Montreal, QC H2X 0A9, Canada;
| | - Saima Hassan
- Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3T5, Canada; (M.I.F.); (D.A.); (L.C.)
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), l’Institut de Cancer de Montreal, Montreal, QC H2X 0A9, Canada;
- Division of Surgical Oncology, Department of Surgery, Centre Hospitalier de l’Université de Montréal (CHUM), Montreal, QC H2X 0C1, Canada
| |
Collapse
|
13
|
Shen LP, Zhang WC, Deng JR, Qi ZH, Lin ZW, Wang ZD. Advances in the mechanism of small nucleolar RNA and its role in DNA damage response. Mil Med Res 2024; 11:53. [PMID: 39118131 PMCID: PMC11308251 DOI: 10.1186/s40779-024-00553-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Small nucleolar RNAs (snoRNAs) were previously regarded as a class of functionally conserved housekeeping genes, primarily involved in the regulation of ribosome biogenesis by ribosomal RNA (rRNA) modification. However, some of them are involved in several biological processes via complex molecular mechanisms. DNA damage response (DDR) is a conserved mechanism for maintaining genomic stability to prevent the occurrence of various human diseases. It has recently been revealed that snoRNAs are involved in DDR at multiple levels, indicating their relevant theoretical and clinical significance in this field. The present review systematically addresses four main points, including the biosynthesis and classification of snoRNAs, the mechanisms through which snoRNAs regulate target molecules, snoRNAs in the process of DDR, and the significance of snoRNA in disease diagnosis and treatment. It focuses on the potential functions of snoRNAs in DDR to help in the discovery of the roles of snoRNAs in maintaining genome stability and pathological processes.
Collapse
Affiliation(s)
- Li-Ping Shen
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Wen-Cheng Zhang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jia-Rong Deng
- Graduate Collaborative Training Base of Academy of Military Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhen-Hua Qi
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zhong-Wu Lin
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zhi-Dong Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
- Graduate Collaborative Training Base of Academy of Military Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
14
|
Beltrán-Visiedo M, Balachandran S, Galluzzi L. MRE11 mobilizes CGAS and drives ZBP1-dependent necroptosis. Cell Res 2024; 34:477-478. [PMID: 38443562 PMCID: PMC11217265 DOI: 10.1038/s41422-024-00939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Affiliation(s)
| | | | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
15
|
Liu J, Cao L, Wang Y, Zou Y, Guo Q, Chen S, Jiang B, Wu X, Zheng L, Zhang S, Lu S, Zhou K, Jiang P, Xiao Y, Yang R, Dong S, Li Z, Chen D, Zhang Y, Zhang N, Sun G, Xing C, Song X, Wang Z, Cao L. The phosphorylation-deubiquitination positive feedback loop of the CHK2-USP7 axis stabilizes p53 under oxidative stress. Cell Rep 2024; 43:114366. [PMID: 38879877 DOI: 10.1016/j.celrep.2024.114366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/20/2024] [Accepted: 05/31/2024] [Indexed: 06/18/2024] Open
Abstract
p53 regulates multiple signaling pathways and maintains cell homeostasis under conditions of DNA damage and oxidative stress. Although USP7 has been shown to promote p53 stability via deubiquitination, the USP7-p53 activation mechanism has remained unclear. Here, we propose that DNA damage induces reactive oxygen species (ROS) production and activates ATM-CHK2, and CHK2 then phosphorylates USP7 at S168 and T231. USP7 phosphorylation is essential for its deubiquitination activity toward p53. USP7 also deubiquitinates CHK2 at K119 and K131, increasing CHK2 stability and creating a positive feedback loop between CHK2 and USP7. Compared to peri-tumor tissues, thyroid cancer and colon cancer tissues show higher CHK2 and phosphorylated USP7 (S168, T231) levels, and these levels are positively correlated. Collectively, our results uncover a phosphorylation-deubiquitination positive feedback loop involving the CHK2-USP7 axis that supports the stabilization of p53 and the maintenance of cell homeostasis.
Collapse
Affiliation(s)
- Jingwei Liu
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China; Department of Anus and Intestine Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110001, China
| | - Liangzi Cao
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Yubang Wang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Yu Zou
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Qiqiang Guo
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Shu Chen
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Bo Jiang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Xuan Wu
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Lixia Zheng
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Siyi Zhang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Songming Lu
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Keshen Zhou
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Pengcheng Jiang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Yutong Xiao
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Ruohan Yang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Shiyuan Dong
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Ziwei Li
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Di Chen
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Ying Zhang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Naijin Zhang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Guozhe Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang 110001, China.
| | - Chengzhong Xing
- Department of Anus and Intestine Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110001, China.
| | - Xiaoyu Song
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China.
| | - Zhenning Wang
- Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China.
| | - Liu Cao
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China.
| |
Collapse
|
16
|
Capuozzo M, Santorsola M, Ianniello M, Ferrara F, Zovi A, Petrillo N, Castiello R, Fantuz MR, Ottaiano A, Savarese G. Innovative Drug Modalities for the Treatment of Advanced Prostate Cancer. Diseases 2024; 12:87. [PMID: 38785742 PMCID: PMC11119780 DOI: 10.3390/diseases12050087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Prostate cancer, a prevalent malignancy affecting the prostate gland, is a significant global health concern. Androgen-deprivation therapy (ADT) has proven effective in controlling advanced disease, with over 50% of patients surviving at the 10-year mark. However, a diverse spectrum of responses exists, and resistance to ADT may emerge over time. This underscores the need to explore innovative treatment strategies for effectively managing prostate cancer progression. Ongoing research endeavors persist in unraveling the complexity of prostate cancer and fostering the development of biologic and innovative approaches, including immunotherapies and targeted therapies. This review aims to provide a valuable synthesis of the dynamic landscape of emerging drug modalities in this context. Interestingly, the complexities posed by prostate cancer not only present a formidable challenge but also serve as a model and an opportunity for translational research and innovative therapies in the field of oncology.
Collapse
Affiliation(s)
- Maurizio Capuozzo
- Coordinamento Farmaceutico, ASL-Naples-3, 80056 Ercolano, Italy; (M.C.); (F.F.)
| | - Mariachiara Santorsola
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy;
| | - Monica Ianniello
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy; (M.I.); (N.P.); (R.C.); (M.R.F.)
| | - Francesco Ferrara
- Coordinamento Farmaceutico, ASL-Naples-3, 80056 Ercolano, Italy; (M.C.); (F.F.)
| | - Andrea Zovi
- Ministry of Health, Viale Giorgio Ribotta 5, 00144 Rome, Italy;
| | - Nadia Petrillo
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy; (M.I.); (N.P.); (R.C.); (M.R.F.)
| | - Rosa Castiello
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy; (M.I.); (N.P.); (R.C.); (M.R.F.)
| | - Maria Rosaria Fantuz
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy; (M.I.); (N.P.); (R.C.); (M.R.F.)
| | - Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy;
| | - Giovanni Savarese
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy;
| |
Collapse
|
17
|
Catanzaro E, Demuynck R, Naessens F, Galluzzi L, Krysko DV. Immunogenicity of ferroptosis in cancer: a matter of context? Trends Cancer 2024; 10:407-416. [PMID: 38368244 DOI: 10.1016/j.trecan.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/19/2024]
Abstract
Ferroptosis is a variant of regulated cell death (RCD) elicited by an imbalance of cellular redox homeostasis that culminates with extensive lipid peroxidation and rapid plasma membrane breakdown. Since other necrotic forms of RCD, such as necroptosis, are highly immunogenic, ferroptosis inducers have attracted considerable attention as potential tools to selectively kill malignant cells while eliciting therapeutically relevant tumor-targeting immune responses. However, rather than being consistently immunogenic, ferroptosis mediates context-dependent effects on anticancer immunity. The inability of ferroptotic cancer cells to elicit adaptive immune responses may arise from contextual deficiencies in intrinsic aspects of the process, such as adjuvanticity and antigenicity, or from microenvironmental defects imposed by ferroptotic cancer cells themselves or elicited by the induction of ferroptosis in immune cells.
Collapse
Affiliation(s)
- Elena Catanzaro
- Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Robin Demuynck
- Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Faye Naessens
- Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Dmitri V Krysko
- Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent University, Ghent, Belgium.
| |
Collapse
|
18
|
Suba Z. DNA Damage Responses in Tumors Are Not Proliferative Stimuli, but Rather They Are DNA Repair Actions Requiring Supportive Medical Care. Cancers (Basel) 2024; 16:1573. [PMID: 38672654 PMCID: PMC11049279 DOI: 10.3390/cancers16081573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND In tumors, somatic mutagenesis presumably drives the DNA damage response (DDR) via altered regulatory pathways, increasing genomic instability and proliferative activity. These considerations led to the standard therapeutic strategy against cancer: the disruption of mutation-activated DNA repair pathways of tumors. PURPOSE Justifying that cancer cells are not enemies to be killed, but rather that they are ill human cells which have the remnants of physiologic regulatory pathways. RESULTS 1. Genomic instability and cancer development may be originated from a flaw in estrogen signaling rather than excessive estrogen signaling; 2. Healthy cells with genomic instability exhibit somatic mutations, helping DNA restitution; 3. Somatic mutations in tumor cells aim for the restoration of DNA damage, rather than further genomic derangement; 4. In tumors, estrogen signaling drives the pathways of DNA stabilization, leading to apoptotic death; 5. In peritumoral cellular infiltration, the genomic damage of the tumor induces inflammatory cytokine secretion and increased estrogen synthesis. In the inflammatory cells, an increased growth factor receptor (GFR) signaling confers the unliganded activation of estrogen receptors (ERs); 6. In breast cancer cells responsive to genotoxic therapy, constitutive mutations help the upregulation of estrogen signaling and consequential apoptosis. In breast tumors non-responsive to genotoxic therapy, the possibilities for ER activation via either liganded or unliganded pathways are exhausted, leading to farther genomic instability and unrestrained proliferation. CONCLUSIONS Understanding the real character and behavior of human tumors at the molecular level suggests that we should learn the genome repairing methods of tumors and follow them by supportive therapy, rather than provoking additional genomic damages.
Collapse
Affiliation(s)
- Zsuzsanna Suba
- Department of Molecular Pathology, National Institute of Oncology, Ráth György Str. 7-9, H-1122 Budapest, Hungary
| |
Collapse
|
19
|
Chen Z, Huang H, Huang H, Yu L, Weng H, Xiao J, Zou L, Zhang H, Liang C, Zhou H, Guo H, Wang Z, Li Z, Wu T, Zhang H, Wu H, Peng Z, Zhai L, Chen X, Liang Y, Hong H, Lin T. Genomic features reveal potential benefit of adding anti-PD-1 immunotherapy to treat non-upper aerodigestive tract natural killer/T-cell lymphoma. Leukemia 2024; 38:829-839. [PMID: 38378844 DOI: 10.1038/s41375-024-02171-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
Natural killer/T-cell lymphoma (NKTCL) is a highly heterogeneous disease with a poor prognosis. However, the genomic characteristics and proper treatment strategies for non-upper aerodigestive tract NKTCL (NUAT-NKTCL), a rare subtype of NKTCL, remain largely unexplored. In this study, 1589 patients newly diagnosed with NKTCL at 14 hospitals were assessed, 196 (12.3%) of whom had NUAT-NKTCL with adverse clinical characteristics and an inferior prognosis. By using whole-genome sequencing (WGS) and whole-exome sequencing (WES) data, we found strikingly different mutation profiles between upper aerodigestive tract (UAT)- and NUAT-NKTCL patients, with the latter group exhibiting significantly higher genomic instability. In the NUAT-NKTCL cohort, 128 patients received frontline P-GEMOX chemotherapy, 37 of whom also received anti-PD-1 immunotherapy. The application of anti-PD-1 significantly improved progression-free survival (3-year PFS rate 53.9% versus 17.0%, P = 0.009) and overall survival (3-year OS rate 63.7% versus 29.2%, P = 0.01) in the matched NUAT-NKTCL cohort. WES revealed frequent mutations involving immune regulation and genomic instability in immunochemotherapy responders. Our study showed distinct clinical characteristics and mutational profiles in NUAT-NKTCL compared with UAT patients and suggested adding anti-PD-1 immunotherapy in front-line treatment of NUAT-NKTCL. Further studies are needed to validate the efficacy and related biomarkers for immunochemotherapy proposed in this study.
Collapse
Affiliation(s)
- Zegeng Chen
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - He Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Huageng Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Le Yu
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Huawei Weng
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Jian Xiao
- Department of Medical Oncology, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, China
| | - Liqun Zou
- Department of Medical Oncology of Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Huilai Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Chaoyong Liang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Hui Zhou
- Hunan Cancer Hospital, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, China
| | - Hongqiang Guo
- The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450003, China
| | - Zhao Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhiming Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Tao Wu
- The Affiliated Hospital of Guizhou Medical University, Guizhou Cancer Hospital, Guiyang, 550004, China
| | - Hongyu Zhang
- Department of Oncology, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, China
| | - Huijing Wu
- Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, China
| | - Zhigang Peng
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Linzhu Zhai
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xinggui Chen
- Department of Medical Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yang Liang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Huangming Hong
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China.
| | - Tongyu Lin
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
20
|
Toufektchan E, Maciejowski J. Feeding two birds with one scone: The dual roles of SMARCAL1 in antitumor immunity. Mol Cell 2024; 84:819-821. [PMID: 38458172 DOI: 10.1016/j.molcel.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 03/10/2024]
Abstract
In a recent issue of Cell, Leuzzi et al.1 report the identification of the DNA translocase SMARCAL1 as a novel factor that dampens immune responses against tumor cells through two distinct mechanisms.
Collapse
Affiliation(s)
- Eléonore Toufektchan
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - John Maciejowski
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
21
|
Leuzzi G, Vasciaveo A, Taglialatela A, Chen X, Firestone TM, Hickman AR, Mao W, Thakar T, Vaitsiankova A, Huang JW, Cuella-Martin R, Hayward SB, Kesner JS, Ghasemzadeh A, Nambiar TS, Ho P, Rialdi A, Hebrard M, Li Y, Gao J, Gopinath S, Adeleke OA, Venters BJ, Drake CG, Baer R, Izar B, Guccione E, Keogh MC, Guerois R, Sun L, Lu C, Califano A, Ciccia A. SMARCAL1 is a dual regulator of innate immune signaling and PD-L1 expression that promotes tumor immune evasion. Cell 2024; 187:861-881.e32. [PMID: 38301646 PMCID: PMC10980358 DOI: 10.1016/j.cell.2024.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 07/23/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024]
Abstract
Genomic instability can trigger cancer-intrinsic innate immune responses that promote tumor rejection. However, cancer cells often evade these responses by overexpressing immune checkpoint regulators, such as PD-L1. Here, we identify the SNF2-family DNA translocase SMARCAL1 as a factor that favors tumor immune evasion by a dual mechanism involving both the suppression of innate immune signaling and the induction of PD-L1-mediated immune checkpoint responses. Mechanistically, SMARCAL1 limits endogenous DNA damage, thereby suppressing cGAS-STING-dependent signaling during cancer cell growth. Simultaneously, it cooperates with the AP-1 family member JUN to maintain chromatin accessibility at a PD-L1 transcriptional regulatory element, thereby promoting PD-L1 expression in cancer cells. SMARCAL1 loss hinders the ability of tumor cells to induce PD-L1 in response to genomic instability, enhances anti-tumor immune responses and sensitizes tumors to immune checkpoint blockade in a mouse melanoma model. Collectively, these studies uncover SMARCAL1 as a promising target for cancer immunotherapy.
Collapse
Affiliation(s)
- Giuseppe Leuzzi
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alessandro Vasciaveo
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Angelo Taglialatela
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xiao Chen
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | | | - Wendy Mao
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tanay Thakar
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alina Vaitsiankova
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jen-Wei Huang
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Raquel Cuella-Martin
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Samuel B Hayward
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jordan S Kesner
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ali Ghasemzadeh
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tarun S Nambiar
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Patricia Ho
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alexander Rialdi
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Maxime Hebrard
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Yinglu Li
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jinmei Gao
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | | | | | | | - Charles G Drake
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Urology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Richard Baer
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Benjamin Izar
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ernesto Guccione
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Raphael Guerois
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Lu Sun
- EpiCypher Inc., Durham, NC 27709, USA
| | - Chao Lu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Andrea Califano
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alberto Ciccia
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
22
|
Lizarralde-Guerrero M, Zucaro L, Kroemer G, Pol JG. Single-cell analysis of T lymphocytes infiltrating colorectal carcinoma: the dilemma of specificity. Oncoimmunology 2024; 13:2300520. [PMID: 38192442 PMCID: PMC10773693 DOI: 10.1080/2162402x.2023.2300520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Advances in single-cell RNA and T cell receptor (TCR) sequencing allow to study the specificity and functionality of tumor-infiltrating T lymphocytes. A recent study unravels fundamental differences between microsatellite-instable (MSI) colorectal cancers, in which T cells tend to be tumor-specific, and microsatellite-stable (MSS) cancers, in which T cells exhibit bystander features.
Collapse
Affiliation(s)
- Manuela Lizarralde-Guerrero
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Faculté de Médecine, Kremlin-Bicêtre, France
| | - Laura Zucaro
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Department of Translational Medical Sciences, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Jonathan G. Pol
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| |
Collapse
|
23
|
Galassi C, Klapp V, Yamazaki T, Galluzzi L. Molecular determinants of immunogenic cell death elicited by radiation therapy. Immunol Rev 2024; 321:20-32. [PMID: 37679959 PMCID: PMC11075037 DOI: 10.1111/imr.13271] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Cancer cells undergoing immunogenic cell death (ICD) can initiate adaptive immune responses against dead cell-associated antigens, provided that (1) said antigens are not perfectly covered by central tolerance (antigenicity), (2) cell death occurs along with the emission of immunostimulatory cytokines and damage-associated molecular patterns (DAMPs) that actively engage immune effector mechanisms (adjuvanticity), and (3) the microenvironment of dying cells is permissive for the initiation of adaptive immunity. Finally, ICD-driven immune responses can only operate and exert cytotoxic effector functions if the microenvironment of target cancer cells enables immune cell infiltration and activity. Multiple forms of radiation, including non-ionizing (ultraviolet) and ionizing radiation, elicit bona fide ICD as they increase both the antigenicity and adjuvanticity of dying cancer cells. Here, we review the molecular determinants of ICD as elicited by radiation as we critically discuss strategies to reinforce the immunogenicity of cancer cells succumbing to clinically available radiation strategies.
Collapse
Affiliation(s)
- Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Vanessa Klapp
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| |
Collapse
|
24
|
Holicek P, Guilbaud E, Klapp V, Truxova I, Spisek R, Galluzzi L, Fucikova J. Type I interferon and cancer. Immunol Rev 2024; 321:115-127. [PMID: 37667466 DOI: 10.1111/imr.13272] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Type I interferon (IFN) is a class of proinflammatory cytokines with a dual role on malignant transformation, tumor progression, and response to therapy. On the one hand, robust, acute, and resolving type I IFN responses have been shown to mediate prominent anticancer effects, reflecting not only their direct cytostatic/cytotoxic activity on (at least some) malignant cells, but also their pronounced immunostimulatory functions. In line with this notion, type I IFN signaling has been implicated in the antineoplastic effects of various immunogenic therapeutics, including (but not limited to) immunogenic cell death (ICD)-inducing agents and immune checkpoint inhibitors (ICIs). On the other hand, weak, indolent, and non-resolving type I IFN responses have been demonstrated to support tumor progression and resistance to therapy, reflecting the ability of suboptimal type I IFN signaling to mediate cytoprotective activity, promote stemness, favor tolerance to chromosomal instability, and facilitate the establishment of an immunologically exhausted tumor microenvironment. Here, we review fundamental aspects of type I IFN signaling and their context-dependent impact on malignant transformation, tumor progression, and response to therapy.
Collapse
Affiliation(s)
- Peter Holicek
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Emma Guilbaud
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York, USA
| | - Vanessa Klapp
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Strassen, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | - Radek Spisek
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York, USA
- Sandra and Edward Meyer Cancer Center, New York, New York, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, New York, USA
| | - Jitka Fucikova
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
25
|
Fang Z, Jiang J, Zheng X. Interleukin-1 receptor antagonist: An alternative therapy for cancer treatment. Life Sci 2023; 335:122276. [PMID: 37977354 DOI: 10.1016/j.lfs.2023.122276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
The interleukin-1 receptor antagonist (IL-1Ra) is an anti-inflammatory cytokine and a naturally occurring antagonist of the IL-1 receptor. It effectively counteracts the IL-1 signaling pathway mediated by IL-1α/β. Over the past few decades, accumulating evidence has suggested that IL-1 signaling plays an essential role in tumor formation, growth, and metastasis. Significantly, anakinra, the first United States Food and Drug Administration (FDA)-approved IL-1Ra drug, has demonstrated promising antitumor effects in animal studies. Numerous clinical trials have subsequently incorporated anakinra into their cancer treatment protocols. In this review, we comprehensively discuss the research progress on the role of IL-1 in tumors and summarize the significant contribution of IL-1Ra (anakinra) to tumor immunity. Additionally, we analyze the potential value of IL-1Ra as a biomarker from a clinical perspective. This review is aimed to highlight the important link between inflammation and cancer and provide potential drug targets for future cancer therapy.
Collapse
Affiliation(s)
- Zhang Fang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu, China; Institute for Cell Therapy of Soochow University, Changzhou, Jiangsu, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu, China; Institute for Cell Therapy of Soochow University, Changzhou, Jiangsu, China.
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu, China; Institute for Cell Therapy of Soochow University, Changzhou, Jiangsu, China.
| |
Collapse
|
26
|
Li X, He Y, Jiang Y, Pan B, Wu J, Zhao X, Huang J, Wang Q, Cheng L, Han J. PathwayTMB: A pathway-based tumor mutational burden analysis method for predicting the clinical outcome of cancer immunotherapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102026. [PMID: 37744173 PMCID: PMC10514137 DOI: 10.1016/j.omtn.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023]
Abstract
Immunotherapy has become one of the most promising therapy methods for cancer, but only a small number of patients are responsive to it, indicating that more effective biomarkers are urgently needed. This study developed a pathway analysis method, named PathwayTMB, to identify genomic mutation pathways that serve as potential biomarkers for predicting the clinical outcome of immunotherapy. PathwayTMB first calculates the patient-specific pathway-based tumor mutational burden (PTMB) to reflect the cumulative extent of mutations for each pathway. It then screens mutated survival benefit-related pathways to construct an immune-related prognostic signature based on PTMB (IPSP). In a melanoma training set, IPSP-high patients presented a longer overall survival and a higher response rate than IPSP-low patients. Moreover, the IPSP showed a superior predictive effect compared with TMB. In addition, the prognostic and predictive value of the IPSP was consistently validated in two independent validation sets. Finally, in a multi-cancer dataset, PathwayTMB also exhibited good performance. Our results indicate that PathwayTMB could identify the mutation pathways for predicting immunotherapeutic survival, and their combination may serve as a potential predictive biomarker for immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Xiangmei Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yalan He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Ying Jiang
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Bingyue Pan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Jiashuo Wu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xilong Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Junling Huang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Qian Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Liang Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Junwei Han
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
27
|
Pouget JP, Chan TA, Galluzzi L, Constanzo J. Radiopharmaceuticals as combinatorial partners for immune checkpoint inhibitors. Trends Cancer 2023; 9:968-981. [PMID: 37612188 PMCID: PMC11311210 DOI: 10.1016/j.trecan.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of multiple cancer types. However, only a fraction of patients with cancer responds to ICIs employed as stand-alone therapeutics, calling for the development of safe and effective combinatorial regimens to extend the benefits of ICIs to a larger patient population. In addition to exhibiting a good safety and efficacy profile, targeted radionuclide therapy (TRT) with radiopharmaceuticals that specifically accumulate in the tumor microenvironment has been associated with promising immunostimulatory effects that (at least in preclinical cancer models) provide a robust platform for the development of TRT/ICI combinations. We discuss preclinical and clinical findings suggesting that TRT stands out as a promising partner for the development of safe and efficient combinatorial regimens involving ICIs.
Collapse
Affiliation(s)
- Jean-Pierre Pouget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France.
| | - Timothy A Chan
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; National Center for Regenerative Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Centre, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| | - Julie Constanzo
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| |
Collapse
|
28
|
Holicek P, Fucikova J, Galluzzi L. Interferon signaling restrains renal cell carcinoma heterogeneity. Trends Cancer 2023; 9:871-873. [PMID: 37658022 PMCID: PMC11075004 DOI: 10.1016/j.trecan.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023]
Abstract
Type I interferon (IFN) is central to cancer surveillance as it mediates both direct and immune-mediated oncosuppressive effects. A recent study by Perelli et al. suggests that the ability of renal cancer cells to tolerate complex karyotypic alterations elicited by chromosomal instability (CIN), and ultimately acquire full metastatic potential, is also negatively regulated by IFN signaling.
Collapse
Affiliation(s)
- Peter Holicek
- Sotio Biotech a.s., Prague, Czech Republic; Second Medical Faculty, Charles University, Prague, Czech Republic
| | - Jitka Fucikova
- Sotio Biotech a.s., Prague, Czech Republic; Second Medical Faculty, Charles University, Prague, Czech Republic
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
29
|
Li X, Ling Y, Huang X, Zhou T, Wu S, Zhang S, Zhou H, Kang Y, Wang L, Wang X, Yin W. Rosa Roxburghii Tratt Fruit Extract Prevents Dss-Induced Ulcerative Colitis in Mice by Modulating the Gut Microbiota and the IL-17 Signaling Pathway. Nutrients 2023; 15:4560. [PMID: 37960213 PMCID: PMC10650662 DOI: 10.3390/nu15214560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/02/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Ulcerative colitis (UC) is a non-specific inflammatory bowel illness characterized by intestinal mucosal barrier degradation, inflammation, oxidative damage, and gut microbiota imbalances. Rosa roxburghii Tratt Fruit extract (RRTE) was extracted from Rosa roxburghii Tratt fruit, exhibiting an excellent prevention effect against UC; RRTE could prevent the damage of DSS-induced human normal colonic epithelial (NCM 460) cells, especially in cell viability and morphology, and oxidative damage. Additionally, in UC mice, RRTE could limit the intestinal mucosal barrier by increasing the expression of intestinal tight junction proteins and mucin, reducing inflammation and oxidative damage in colon tissue. More importantly, RRTE can increase the abundance of beneficial bacteria to regulate gut microbiota such as Ruminococcus, Turicibacter, and Parabacteroides, and reduce the abundance of harmful bacteria such as Staphylococcus and Shigella. Furthermore, transcriptomics of colonic mucosal findings point out that the beneficial effect of RRTE on UC could be attributed to the modulation of inflammatory responses such as the IL-17 and TNF signaling pathways. The qPCR results confirm that RRTE did involve the regulation of several genes in the IL-17 signaling pathway. In conclusion, RRTE could prevent DSS-induced damage both in vitro and in vivo.
Collapse
Affiliation(s)
- Xingjie Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (X.L.); (Y.L.); (T.Z.); (S.W.); (S.Z.); (H.Z.); (Y.K.); (L.W.); (X.W.)
| | - Yihan Ling
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (X.L.); (Y.L.); (T.Z.); (S.W.); (S.Z.); (H.Z.); (Y.K.); (L.W.); (X.W.)
| | - Xiaoyi Huang
- Department of Clinical Nutrition, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China;
| | - Ting Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (X.L.); (Y.L.); (T.Z.); (S.W.); (S.Z.); (H.Z.); (Y.K.); (L.W.); (X.W.)
| | - Shouxun Wu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (X.L.); (Y.L.); (T.Z.); (S.W.); (S.Z.); (H.Z.); (Y.K.); (L.W.); (X.W.)
| | - Shuwen Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (X.L.); (Y.L.); (T.Z.); (S.W.); (S.Z.); (H.Z.); (Y.K.); (L.W.); (X.W.)
| | - Heting Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (X.L.); (Y.L.); (T.Z.); (S.W.); (S.Z.); (H.Z.); (Y.K.); (L.W.); (X.W.)
| | - Yuhong Kang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (X.L.); (Y.L.); (T.Z.); (S.W.); (S.Z.); (H.Z.); (Y.K.); (L.W.); (X.W.)
| | - Liqun Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (X.L.); (Y.L.); (T.Z.); (S.W.); (S.Z.); (H.Z.); (Y.K.); (L.W.); (X.W.)
| | - Xiaomeng Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (X.L.); (Y.L.); (T.Z.); (S.W.); (S.Z.); (H.Z.); (Y.K.); (L.W.); (X.W.)
| | - Wenya Yin
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (X.L.); (Y.L.); (T.Z.); (S.W.); (S.Z.); (H.Z.); (Y.K.); (L.W.); (X.W.)
| |
Collapse
|
30
|
Galluzzi L, Myint M. Cell death and senescence. J Transl Med 2023; 21:425. [PMID: 37386590 DOI: 10.1186/s12967-023-04297-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| | | |
Collapse
|
31
|
Gregucci F, Spada S, Barcellos-Hoff MH, Bhardwaj N, Chan Wah Hak C, Fiorentino A, Guha C, Guzman ML, Harrington K, Herrera FG, Honeychurch J, Hong T, Iturri L, Jaffee E, Karam SD, Knott SR, Koumenis C, Lyden D, Marciscano AE, Melcher A, Mondini M, Mondino A, Morris ZS, Pitroda S, Quezada SA, Santambrogio L, Shiao S, Stagg J, Telarovic I, Timmerman R, Vozenin MC, Weichselbaum R, Welsh J, Wilkins A, Xu C, Zappasodi R, Zou W, Bobard A, Demaria S, Galluzzi L, Deutsch E, Formenti SC. Updates on radiotherapy-immunotherapy combinations: Proceedings of 6 th annual ImmunoRad conference. Oncoimmunology 2023; 12:2222560. [PMID: 37363104 PMCID: PMC10286673 DOI: 10.1080/2162402x.2023.2222560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Focal radiation therapy (RT) has attracted considerable attention as a combinatorial partner for immunotherapy (IT), largely reflecting a well-defined, predictable safety profile and at least some potential for immunostimulation. However, only a few RT-IT combinations have been tested successfully in patients with cancer, highlighting the urgent need for an improved understanding of the interaction between RT and IT in both preclinical and clinical scenarios. Every year since 2016, ImmunoRad gathers experts working at the interface between RT and IT to provide a forum for education and discussion, with the ultimate goal of fostering progress in the field at both preclinical and clinical levels. Here, we summarize the key concepts and findings presented at the Sixth Annual ImmunoRad conference.
Collapse
Affiliation(s)
- Fabiana Gregucci
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, Bari, Italy
| | - Sheila Spada
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, School of Medicine, University of California, San Francisco, CA, USA
| | - Nina Bhardwaj
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Alba Fiorentino
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, Bari, Italy
- Department of Medicine and Surgery, LUM University, Casamassima, Bari, Italy
| | - Chandan Guha
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Monica L. Guzman
- Division of Hematology/Oncology, Department of Medicine, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Kevin Harrington
- The Institute of Cancer Research/The Royal Marsden NHS Foundation Trust, National Institute for Health Research Biomedical Research Centre, London, UK
| | - Fernanda G. Herrera
- Centre Hospitalier Universitaire Vaudois, University of Lausanne and Ludwig Institute for Cancer Research at the Agora Cancer Research Center, Lausanne, Switzerland
| | - Jamie Honeychurch
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Theodore Hong
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lorea Iturri
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Elisabeth Jaffee
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Sana D. Karam
- Department of Radiation Oncology, University of Colorado, Aurora, CO, USA
| | - Simon R.V. Knott
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | | | - Alan Melcher
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK
| | - Michele Mondini
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France
- Université of Paris-Saclay, Saclay, France
- INSERM U1030, Radiothérapie Moléculaire et Innovation Thérapeutique, Villejuif, France
| | - Anna Mondino
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Zachary S. Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sean Pitroda
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, USA
| | - Sergio A. Quezada
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Stephen Shiao
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l’Universite de Montreal, Faculty of Pharmacy, Montreal, Canada
| | - Irma Telarovic
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Robert Timmerman
- Departments of Radiation Oncology and Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Radiation Oncology Service, Department of Oncology, CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ralph Weichselbaum
- Department of Radiation and Cellular Oncology, Ludwig Center for Metastases Research, University of Chicago, IL, USA
| | - James Welsh
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anna Wilkins
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom, Royal Marsden Hospital, Sutton, UK
| | - Chris Xu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Roberta Zappasodi
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Weiping Zou
- Departments of Surgery and Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | | | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France
- Université of Paris-Saclay, Saclay, France
- INSERM U1030, Radiothérapie Moléculaire et Innovation Thérapeutique, Villejuif, France
| | - Silvia C. Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
32
|
Tang WF, Fan XJ, Bao H, Fu R, Liang Y, Wu M, Zhang C, Su J, Wu YL, Zhong WZ. Acquired DNA damage repairs deficiency-driven immune evolution and involved immune factors of local versus distant metastases in non-small cell lung cancer. Oncoimmunology 2023; 12:2215112. [PMID: 37261085 PMCID: PMC10228401 DOI: 10.1080/2162402x.2023.2215112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/29/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023] Open
Abstract
The evolution of immune profile from primary tumors to distant and local metastases in non-small cell lung cancer (NSCLC), as well as the impact of the immune background of primary tumors on metastatic potential, remains unclear. To address this, we performed whole-exome sequencing and immunohistochemistry for 73 paired primary and metastatic tumor samples from 41 NSCLC patients, and analyzed the change of immune profile from primary tumors to metastases and involved genetic factors. We found that distant metastases tended to have a decreased CD8+ T cell level along with an increased chromosomal instability (CIN) compared with primary tumors, which was partially ascribed to acquired DNA damage repair (DDR) deficiency. Distant metastases were characterized by immunosuppression (low CD8+ T cell level) and immune evasion (high PD-L1 level) whereas local metastases (pleura) were immune-competent with high CD8+ T cell, low CD4+ T cell and low PD-L1 level. Primary tumors with high levels of CD4+ T cells were associated with distant metastases rather than local metastases. Analysis of TCGA data and a single-cell RNA-sequencing dataset revealed a decreasing trend of major immune cells, such as CD8+ T cells, and an increasing trend of CD4 T helper cells (Th2 and Th1) in primary tumors with metastases from local to distant sites. Our study indicates that there are differences in the immune evolution between distant and local metastases, and that acquired DDR deficiency contributes to the immunosuppression in distant metastases of NSCLC. Moreover, the immune background of primary tumors may affect their metastatic potential.
Collapse
Affiliation(s)
- Wen-Fang Tang
- Department of Cardiothoracic Surgery, Zhongshan City People’s Hospital, Zhongshan, P. R. China
| | - Xiao-Jun Fan
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc, Nanjing, P. R. China
| | - Hua Bao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc, Nanjing, P. R. China
| | - Rui Fu
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, P. R. China
| | - Yi Liang
- Department of Cardiothoracic Surgery, Zhongshan City People’s Hospital, Zhongshan, P. R. China
| | - Min Wu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc, Nanjing, P. R. China
| | - Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jian Su
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Wen-Zhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, P. R. China
| |
Collapse
|