1
|
Ryba-Stanisławowska M. Unraveling Th subsets: insights into their role in immune checkpoint inhibitor therapy. Cell Oncol (Dordr) 2024:10.1007/s13402-024-00992-0. [PMID: 39325360 DOI: 10.1007/s13402-024-00992-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2024] [Indexed: 09/27/2024] Open
Abstract
T helper (Th) cell subsets play pivotal roles in regulating immune responses within the tumor microenvironment, influencing both tumor progression and anti-tumor immunity. Among these subsets, Th1 cells promote cytotoxic responses through the production of IFN-γ, while Th2 cells and regulatory T cells (Tregs) exert immunosuppressive effects that support tumor growth. Th9 and Th17 cells have context-dependent roles, contributing to both pro-inflammatory and regulatory processes in tumor immunity. Tumor antigen-specific T cells within the tumor microenvironment often exhibit a dysfunctional phenotype due to increased expression of inhibitory receptors such as CTLA-4 and PD-1, leading to reduced antitumor activity. Monoclonal antibodies that block these inhibitory signals-collectively known as immune checkpoint inhibitors (ICIs)-can reactivate these T cells, enhancing their ability to target and destroy cancer cells. Recent advancements have highlighted the critical role of T helper subsets in modulating responses to ICIs, with their interactions remaining a focus of ongoing research. Both positive and negative effects of ICIs have been reported in relation to Th cell subsets, with some effects depending on the type of tumor microenvironment. This review summarizes the crucial roles of different T helper cell subsets in tumor immunity and their complex relationship with immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Monika Ryba-Stanisławowska
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, Gdańsk, 80-211, Poland.
| |
Collapse
|
2
|
Geels SN, Moshensky A, Sousa RS, Murat C, Bustos MA, Walker BL, Singh R, Harbour SN, Gutierrez G, Hwang M, Mempel TR, Weaver CT, Nie Q, Hoon DSB, Ganesan AK, Othy S, Marangoni F. Interruption of the intratumor CD8 + T cell:Treg crosstalk improves the efficacy of PD-1 immunotherapy. Cancer Cell 2024; 42:1051-1066.e7. [PMID: 38861924 PMCID: PMC11285091 DOI: 10.1016/j.ccell.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 02/28/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024]
Abstract
PD-1 blockade unleashes potent antitumor activity in CD8+ T cells but can also promote immunosuppressive T regulatory (Treg) cells, which may worsen the response to immunotherapy. Tumor-Treg inhibition is a promising strategy to improve the efficacy of checkpoint blockade immunotherapy; however, our understanding of the mechanisms supporting tumor-Tregs during PD-1 immunotherapy is incomplete. Here, we show that PD-1 blockade increases tumor-Tregs in mouse models of melanoma and metastatic melanoma patients. Mechanistically, Treg accumulation is not caused by Treg-intrinsic inhibition of PD-1 signaling but depends on an indirect effect of activated CD8+ T cells. CD8+ T cells produce IL-2 and colocalize with Tregs in mouse and human melanomas. IL-2 upregulates the anti-apoptotic protein ICOS on tumor-Tregs, promoting their accumulation. Inhibition of ICOS signaling before PD-1 immunotherapy improves control over immunogenic melanoma. Thus, interrupting the intratumor CD8+ T cell:Treg crosstalk represents a strategy to enhance the therapeutic efficacy of PD-1 immunotherapy.
Collapse
Affiliation(s)
- Shannon N Geels
- Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Alexander Moshensky
- Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Rachel S Sousa
- Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
| | - Claire Murat
- Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Matias A Bustos
- Department of Translational Molecular Medicine, Saint John's Cancer Institute, Santa Monica, CA, USA
| | - Benjamin L Walker
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
| | - Rima Singh
- Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Stacey N Harbour
- Department of Pathology, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Giselle Gutierrez
- Institute for Immunology, University of California, Irvine, Irvine, CA, USA
| | - Michael Hwang
- Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Thorsten R Mempel
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Casey T Weaver
- Department of Pathology, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Qing Nie
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, Saint John's Cancer Institute, Santa Monica, CA, USA
| | - Anand K Ganesan
- Department of Dermatology, University of California, Irvine, Irvine, CA, USA
| | - Shivashankar Othy
- Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Francesco Marangoni
- Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
3
|
Sharma N, Fan X, Atolagbe OT, Ge Z, Dao KN, Sharma P, Allison JP. ICOS costimulation in combination with CTLA-4 blockade remodels tumor-associated macrophages toward an antitumor phenotype. J Exp Med 2024; 221:e20231263. [PMID: 38517331 PMCID: PMC10959121 DOI: 10.1084/jem.20231263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/19/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
We have previously demonstrated synergy between ICOS costimulation (IVAX; ICOSL-transduced B16-F10 cellular vaccine) and CTLA-4 blockade in antitumor therapy. In this study, we employed CyTOF and single-cell RNA sequencing and observed significant remodeling of the lymphoid and myeloid compartments in combination therapy. Compared with anti-CTLA-4 monotherapy, the combination therapy enriched Th1 CD4 T cells, effector CD8 T cells, and M1-like antitumor proinflammatory macrophages. These macrophages were critical to the therapeutic efficacy of anti-CTLA-4 combined with IVAX or anti-PD-1. Macrophage depletion with clodronate reduced the tumor-infiltrating effector CD4 and CD8 T cells, impairing their antitumor functions. Furthermore, the recruitment and polarization of M1-like macrophages required IFN-γ. Therefore, in this study, we show that there is a positive feedback loop between intratumoral effector T cells and tumor-associated macrophages (TAMs), in which the IFN-γ produced by the T cells polarizes the TAMs into M1-like phenotype, and the TAMs, in turn, reshape the tumor microenvironment to facilitate T cell infiltration, immune function, and tumor rejection.
Collapse
Affiliation(s)
- Naveen Sharma
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaozhou Fan
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Zhongqi Ge
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kelly N. Dao
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Padmanee Sharma
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Immunotherapy Platform, James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Parker Institute for Cancer Immunotherapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James P. Allison
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Parker Institute for Cancer Immunotherapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
4
|
Attias M, Piccirillo CA. The impact of Foxp3 + regulatory T-cells on CD8 + T-cell dysfunction in tumour microenvironments and responses to immune checkpoint inhibitors. Br J Pharmacol 2024. [PMID: 38325330 DOI: 10.1111/bph.16313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/23/2023] [Accepted: 01/01/2024] [Indexed: 02/09/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have been a breakthrough in cancer therapy, inducing durable remissions in responding patients. However, they are associated with variable outcomes, spanning from disease hyperprogression to complete responses with the onset of immune-related adverse events. The consequences of checkpoint inhibition on Foxp3+ regulatory T (Treg ) cells remain unclear but could provide key insights into these variable outcomes. In this review, we first cover the mechanisms that underlie the development of hot and cold tumour microenvironments, which determine the efficacy of immunotherapy. We then outline how differences in tumour-intrinsic immunogenicity, T-cell trafficking, local metabolic environments and inhibitory checkpoint signalling differentially impair CD8+ T-cell function in tumour microenvironments, all the while promoting Treg -cell suppressive activity. Finally, we focus on the mechanisms that enable the induction of polyfunctional CD8+ T-cells upon checkpoint blockade and discuss the role of ICI-induced Treg -cell reactivation in acquired resistance to treatment.
Collapse
Affiliation(s)
- Mikhaël Attias
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
- Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada
- Centre of Excellence in Translational Immunology (CETI), The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada
| | - Ciriaco A Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
- Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada
- Centre of Excellence in Translational Immunology (CETI), The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada
| |
Collapse
|
5
|
Adhikary S, Pathak S, Palani V, Acar A, Banerjee A, Al-Dewik NI, Essa MM, Mohammed SGAA, Qoronfleh MW. Current Technologies and Future Perspectives in Immunotherapy towards a Clinical Oncology Approach. Biomedicines 2024; 12:217. [PMID: 38255322 PMCID: PMC10813720 DOI: 10.3390/biomedicines12010217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Immunotherapy is now established as a potent therapeutic paradigm engendering antitumor immune response against a wide range of malignancies and other diseases by modulating the immune system either through the stimulation or suppression of immune components such as CD4+ T cells, CD8+ T cells, B cells, monocytes, macrophages, dendritic cells, and natural killer cells. By targeting several immune checkpoint inhibitors or blockers (e.g., PD-1, PD-L1, PD-L2, CTLA-4, LAG3, and TIM-3) expressed on the surface of immune cells, several monoclonal antibodies and polyclonal antibodies have been developed and already translated clinically. In addition, natural killer cell-based, dendritic cell-based, and CAR T cell therapies have been also shown to be promising and effective immunotherapeutic approaches. In particular, CAR T cell therapy has benefited from advancements in CRISPR-Cas9 genome editing technology, allowing the generation of several modified CAR T cells with enhanced antitumor immunity. However, the emerging SARS-CoV-2 infection could hijack a patient's immune system by releasing pro-inflammatory interleukins and cytokines such as IL-1β, IL-2, IL-6, and IL-10, and IFN-γ and TNF-α, respectively, which can further promote neutrophil extravasation and the vasodilation of blood vessels. Despite the significant development of advanced immunotherapeutic technologies, after a certain period of treatment, cancer relapses due to the development of resistance to immunotherapy. Resistance may be primary (where tumor cells do not respond to the treatment), or secondary or acquired immune resistance (where tumor cells develop resistance gradually to ICIs therapy). In this context, this review aims to address the existing immunotherapeutic technologies against cancer and the resistance mechanisms against immunotherapeutic drugs, and explain the impact of COVID-19 on cancer treatment. In addition, we will discuss what will be the future implementation of these strategies against cancer drug resistance. Finally, we will emphasize the practical steps to lay the groundwork for enlightened policy for intervention and resource allocation to care for cancer patients.
Collapse
Affiliation(s)
- Subhamay Adhikary
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Surajit Pathak
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Vignesh Palani
- Faculty of Medicine, Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Ahmet Acar
- Department of Biological Sciences, Middle East Technical University, 06800 Ankara, Türkiye;
| | - Antara Banerjee
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Nader I. Al-Dewik
- Department of Pediatrics, Women’s Wellness and Research Center, Hamad Medical Corporation, Doha 00974, Qatar;
| | - Musthafa Mohamed Essa
- College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat 123, Oman
| | | | - M. Walid Qoronfleh
- Research & Policy Division, Q3 Research Institute (QRI), Ypsilanti, MI 48917, USA
| |
Collapse
|
6
|
Ralser DJ, Herr E, de Vos L, Kulcsár Z, Zarbl R, Klümper N, Gielen GH, Maas AP, Hoffmann F, Dietrich J, Kuster P, Mustea A, Glodde N, Kristiansen G, Strieth S, Landsberg J, Dietrich D. ICOS DNA methylation regulates melanoma cell-intrinsic ICOS expression, is associated with melanoma differentiation, prognosis, and predicts response to immune checkpoint blockade. Biomark Res 2023; 11:56. [PMID: 37259155 DOI: 10.1186/s40364-023-00508-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/29/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Inducible T cell costimulator ICOS is an emerging target in immuno-oncology. The aim of this study was to investigate the epigenetic regulation of ICOS in melanoma by DNA methylation. METHODS We comprehensively investigate ICOS DNA methylation of specific CpG sites and expression pattern within the melanoma microenvironment with regard to immune correlates, differentiation, clinical outcomes, and immune checkpoint blockade (ICB) response. RESULTS Our study revealed a sequence-contextual CpG methylation pattern consistent with an epigenetically regulated gene. We found a cell type-specific methylation pattern and locus-specific correlations and associations of CpG methylation with ICOS mRNA expression, immune infiltration, melanoma differentiation, prognosis, and response to ICB. High ICOS mRNA expression was identified as a surrogate for enriched immune cell infiltration and was associated with favorable overall survival (OS) in non-ICB-treated patients and predicted response and a prolonged progression-free survival (PFS) following ICB therapy initiation. ICOS hypomethylation, however, significantly correlated with poor OS in non-ICB patients but predicted higher response and prolonged PFS and OS in ICB-treated patients. Moreover, we observed cytoplasmic and sporadically nuclear tumor cell-intrinsic ICOS protein expression. Tumor cell-intrinsic ICOS protein and mRNA expression was inducible by pharmacological demethylation with decitabine. CONCLUSION Our study identified ICOS DNA methylation and mRNA expression as promising prognostic and predictive biomarkers for immunotherapy in melanoma and points towards a hitherto undescribed role of ICOS in tumor cells.
Collapse
Affiliation(s)
- Damian J Ralser
- Department of Gynaecology and Gynaecological Oncology, University Medical Center Bonn (UKB), Bonn, Germany
- Institute of Experimental Oncology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Emmanuelle Herr
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
- Department of Dermatology and Allergology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Luka de Vos
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
- Department of Dermatology and Allergology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Zsófi Kulcsár
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
| | - Romina Zarbl
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
| | - Niklas Klümper
- Institute of Experimental Oncology, University Medical Center Bonn (UKB), Bonn, Germany
- Department of Urology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Gerrit H Gielen
- Institute of Neuropathology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Alexander Philippe Maas
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
| | - Friederike Hoffmann
- Department of Dermatology and Allergology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Jörn Dietrich
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
| | - Pia Kuster
- Department of Dermatology and Allergology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Alexander Mustea
- Department of Gynaecology and Gynaecological Oncology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Nicole Glodde
- Institute of Experimental Oncology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Glen Kristiansen
- Institute of Pathology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Sebastian Strieth
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
| | - Jennifer Landsberg
- Department of Dermatology and Allergology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Dimo Dietrich
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
7
|
Geels SN, Moshensky A, Sousa RS, Walker BL, Singh R, Gutierrez G, Hwang M, Mempel TR, Nie Q, Othy S, Marangoni F. Interruption of the Intratumor CD8:Treg Crosstalk Improves the Efficacy of PD-1 Immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540889. [PMID: 37292782 PMCID: PMC10245792 DOI: 10.1101/2023.05.15.540889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
PD-1 blockade unleashes the potent antitumor activity of CD8 cells but can also promote immunosuppressive T regulatory (Treg) cells, which may worsen response to immunotherapy. Tumor Treg inhibition is a promising strategy to overcome therapeutic resistance; however, the mechanisms supporting tumor Tregs during PD-1 immunotherapy are largely unexplored. Here, we report that PD-1 blockade increases tumor Tregs in mouse models of immunogenic tumors, including melanoma, and metastatic melanoma patients. Unexpectedly, Treg accumulation was not caused by Treg-intrinsic inhibition of PD-1 signaling but instead depended on an indirect effect of activated CD8 cells. CD8 cells colocalized with Tregs within tumors and produced IL-2, especially after PD-1 immunotherapy. IL-2 upregulated the anti-apoptotic protein ICOS on tumor Tregs, causing their accumulation. ICOS signaling inhibition before PD-1 immunotherapy resulted in increased control of immunogenic melanoma. Thus, interrupting the intratumor CD8:Treg crosstalk is a novel strategy that may enhance the efficacy of immunotherapy in patients.
Collapse
|
8
|
Li DY, Chen L, Miao SY, Zhou M, Wu JH, Sun SW, Liu LL, Qi C, Xiong XZ. Inducible Costimulator-C-X-C Motif Chemokine Receptor 3 Signaling is Involved in Chronic Obstructive Pulmonary Disease Pathogenesis. Int J Chron Obstruct Pulmon Dis 2022; 17:1847-1861. [PMID: 35991707 PMCID: PMC9386059 DOI: 10.2147/copd.s371801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/31/2022] [Indexed: 11/23/2022] Open
Abstract
Background The role of inducible costimulator (ICOS) signaling in chronic obstructive pulmonary disease (COPD) has not been fully elucidated. Methods We compared the percentages of ICOS+ T cells and ICOS+ regulatory T (Treg) cells in CD4+ T cells and CD4+CD25+FOXP3+ Tregs, respectively, in the peripheral blood of smokers with or without COPD to those in healthy controls. We further characterized their phenotypes using flow cytometry. To investigate the influence of ICOS signaling on C-X-C motif chemokine receptor 3 (CXCR3) expression in COPD, we evaluated the expression levels of ICOS and CXCR3 in vivo and in vitro. Results ICOS expression was elevated on peripheral CD4+ T cells and CD4+ Tregs of COPD patients, which positively correlated with the severity of lung function impairment in patients with stable COPD (SCOPD), but not in patients with acute exacerbation of COPD (AECOPD). ICOS+CD4+ Tregs in patients with SCOPD expressed higher levels of coinhibitors, programmed cell death protein 1 (PD-1) and T-cell immunoreceptor with Ig and ITIM domains (TIGIT), than ICOS−CD4+ Tregs, whereas ICOS+CD4+ T cells mostly exhibited a central memory (CD45RA−CCR7+) or effector memory (CD45RA−CCR7−) phenotype, ensuring their superior potential to respond potently and quickly to pathogen invasion. Furthermore, increased percentages of CXCR3+CD4+ T cells and CXCR3+CD4+ Tregs were observed in the peripheral blood of patients with SCOPD, and the expression level of CXCR3 was higher in ICOS+CD4+ T cells than in ICOS−CD4+ T cells. The percentage of CXCR3+CD4+ T cells was even higher in the bronchoalveolar lavage fluid than in matched peripheral blood in SCOPD group. Lastly, in vitro experiments showed that ICOS induced CXCR3 expression on CD4+ T cells. Conclusions ICOS signaling is upregulated in COPD, which induces CXCR3 expression. This may contribute to increased numbers of CXCR3+ Th1 cells in the lungs of patients with COPD, causing inflammation and tissue damage.
Collapse
Affiliation(s)
- Dan-Yang Li
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of National Health Commission of the People's Republic of China, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Long Chen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of National Health Commission of the People's Republic of China, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Shuai-Ying Miao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of National Health Commission of the People's Republic of China, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Department of Critical Care Medicine, General Hospital of Pingmei Shenma Medical Group, Pingdingshan, 467000, People's Republic of China
| | - Mei Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of National Health Commission of the People's Republic of China, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Jiang-Hua Wu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of National Health Commission of the People's Republic of China, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Sheng-Wen Sun
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of National Health Commission of the People's Republic of China, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Lan-Lan Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of National Health Commission of the People's Republic of China, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Chang Qi
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of National Health Commission of the People's Republic of China, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Xian-Zhi Xiong
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of National Health Commission of the People's Republic of China, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| |
Collapse
|
9
|
Sanjabi S, Lear S. New cytometry tools for immune monitoring during cancer immunotherapy. CYTOMETRY PART B-CLINICAL CYTOMETRY 2021; 100:10-18. [PMID: 33432667 DOI: 10.1002/cyto.b.21984] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/23/2022]
Abstract
The success of cancer immunotherapy (CIT) in the past decade has brought renewed excitement and the need to better understand how the human immune system functions during health and disease. Advances in single cell technologies have also inspired the creation of a Human Cell Atlas to identify and describe every cell in the human body with the intention of elucidating how to "fix" the ones that fail normal function. For example, treatment of cancer patients with immune checkpoint blockade (ICB) antibodies can reinvigorate their T cells and produce durable clinical benefit in a subset of patients, but a number of resistance mechanisms exist that prohibit full benefit to all treated patients. Early detection of biomarkers of response and mechanisms of resistance are needed to identify the patients who can benefit most from ICB. A noninvasive approach to predict treatment outcomes early after immunotherapies is a longitudinal analysis of peripheral blood immune cells using flow cytometry. Here we review some of the advances in our understanding of how ICB antibodies can re-invigorate tumor-specific T cells and also highlight the recent advances in high complexity flow cytometry, including spectral cytometers, that allow longitudinal sampling and deep immune phenotyping in clinical settings. We encourage the scientific community to utilize advanced cytometry platforms and analyses for immune monitoring in order to optimize CIT treatments for maximum clinical benefit.
Collapse
Affiliation(s)
- Shomyseh Sanjabi
- Department of Oncology Biomarker Development, Genentech Developmental Sciences, South San Francisco, California, USA
| | - Sean Lear
- Department of OMNI Biomarker Development, Genentech Developmental Sciences, South San Francisco, California, USA
| |
Collapse
|
10
|
Kong K, Zhao Y, Xia L, Jiang H, Xu M, Zheng J. B3GNT3: A prognostic biomarker associated with immune cell infiltration in pancreatic adenocarcinoma. Oncol Lett 2020; 21:159. [PMID: 33552277 PMCID: PMC7798085 DOI: 10.3892/ol.2020.12420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/28/2020] [Indexed: 12/23/2022] Open
Abstract
Pancreatic cancer, one of the most malignant gastrointestinal tumors, is prone to liver metastasis. However, due to the lack of appropriate and comprehensive diagnostic methods, it is difficult to accurately predict the survival outcomes. Therefore, there is a need to identify effective biomarkers, such as UDP-GlcNAc: βGal β-1,3-N-acetylglucosaminyltransferase 3 (B3GNT3), that predict the survival outcome of patients with pancreatic cancer. In the present study, based on data from 171 cases of pancreatic cancer obtained from The Cancer Genome Atlas portal, the differential expression of mRNAs was screened by comparing cancerous tissues with adjacent tissues. Univariate Cox regression analysis demonstrated that B3GNT3 had prognostic capability and could be an independent prognostic factor for pancreatic adenocarcinoma (PAAD). Using the Tumor Immune Estimation Resource tool and Tumor-Immune System Interaction Database, a potential relationship between B3GNT3 expression and immune cell infiltration was identified in pancreatic carcinoma. Furthermore, 177 samples of pancreatic carcinoma were collected and the association of CD68 expression with B3GNT3 was assessed by immunohistochemical staining. B3GNT3 expression was associated with clinical outcomes in pancreatic carcinoma and related to infiltrating levels of immune cells, which indicated that B3GNT3 could be used as an immunotherapy target for PAAD.
Collapse
Affiliation(s)
- Kaiwen Kong
- Department of Pathology, Changhai Hospital, Navy Medical University, Shanghai 200433, P.R. China
| | - Yuanyu Zhao
- Department of Organ Transplantation, Changzheng Hospital, Navy Medical University, Shanghai 200433, P.R. China
| | - Leilei Xia
- Department of Obstetrics and Gynecology, Changhai Hospital, Navy Medical University, Shanghai 200433, P.R. China
| | - Hui Jiang
- Department of Pathology, Changhai Hospital, Navy Medical University, Shanghai 200433, P.R. China
| | - Mingjuan Xu
- Department of Obstetrics and Gynecology, Changhai Hospital, Navy Medical University, Shanghai 200433, P.R. China
| | - Jianming Zheng
- Department of Pathology, Changhai Hospital, Navy Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
11
|
Sainson RCA, Thotakura AK, Kosmac M, Borhis G, Parveen N, Kimber R, Carvalho J, Henderson SJ, Pryke KL, Okell T, O'Leary S, Ball S, Van Krinks C, Gamand L, Taggart E, Pring EJ, Ali H, Craig H, Wong VWY, Liang Q, Rowlands RJ, Lecointre M, Campbell J, Kirby I, Melvin D, Germaschewski V, Oelmann E, Quaratino S, McCourt M. An Antibody Targeting ICOS Increases Intratumoral Cytotoxic to Regulatory T-cell Ratio and Induces Tumor Regression. Cancer Immunol Res 2020; 8:1568-1582. [PMID: 32999002 DOI: 10.1158/2326-6066.cir-20-0034] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/01/2020] [Accepted: 09/18/2020] [Indexed: 11/16/2022]
Abstract
The immunosuppressive tumor microenvironment constitutes a significant hurdle to immune checkpoint inhibitor responses. Both soluble factors and specialized immune cells, such as regulatory T cells (Treg), are key components of active intratumoral immunosuppression. Inducible costimulatory receptor (ICOS) can be highly expressed in the tumor microenvironment, especially on immunosuppressive Treg, suggesting that it represents a relevant target for preferential depletion of these cells. Here, we performed immune profiling of samples from tumor-bearing mice and patients with cancer to demonstrate differential expression of ICOS in immune T-cell subsets in different tissues. ICOS expression was higher on intratumoral Treg than on effector CD8 T cells. In addition, by immunizing an Icos knockout transgenic mouse line expressing antibodies with human variable domains, we selected a fully human IgG1 antibody called KY1044 that bound ICOS from different species. We showed that KY1044 induced sustained depletion of ICOShigh T cells but was also associated with increased secretion of proinflammatory cytokines from ICOSlow effector T cells (Teff). In syngeneic mouse tumor models, KY1044 depleted ICOShigh Treg and increased the intratumoral TEff:Treg ratio, resulting in increased secretion of IFNγ and TNFα by TEff cells. KY1044 demonstrated monotherapy antitumor efficacy and improved anti-PD-L1 efficacy. In summary, we demonstrated that using KY1044, one can exploit the differential expression of ICOS on T-cell subtypes to improve the intratumoral immune contexture and restore an antitumor immune response.
Collapse
Affiliation(s)
| | | | - Miha Kosmac
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | | | - Nahida Parveen
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Rachael Kimber
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Joana Carvalho
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | | | - Kerstin L Pryke
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Tracey Okell
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Siobhan O'Leary
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Stuart Ball
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | | | - Lauriane Gamand
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Emma Taggart
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Eleanor J Pring
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Hanif Ali
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Hannah Craig
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Vivian W Y Wong
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Qi Liang
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | | | | | - Jamie Campbell
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Ian Kirby
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - David Melvin
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | | | | | - Sonia Quaratino
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Matthew McCourt
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| |
Collapse
|
12
|
Li DY, Xiong XZ. ICOS + Tregs: A Functional Subset of Tregs in Immune Diseases. Front Immunol 2020; 11:2104. [PMID: 32983168 PMCID: PMC7485335 DOI: 10.3389/fimmu.2020.02104] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/04/2020] [Indexed: 01/02/2023] Open
Abstract
Recent studies have reported the pathological effect of ICOS+ T cells, but ICOS signals also widely participate in anti-inflammatory responses, particularly ICOS+ regulatory T (Treg) cells. The ICOS signaling pathway endows Tregs with increased generation, proliferation, and survival abilities. Furthermore, there is enough evidence to suggest a superior capacity of ICOS+ Tregs, which is partly attributable to IL-10 induced by ICOS, yet the associated mechanism needs further investigation. In this review, we discuss the complicated role of ICOS+ Tregs in several classical autoimmune diseases, allergic diseases, and cancers and investigate the related therapeutic applications in these diseases. Moreover, we identify ICOS as a potential biomarker for disease treatment and prognostic prediction. In addition, we believe that anti-ICOS/ICOSL monoclonal antibodies exhibit excellent clinical application potential. A thorough understanding of the effect of ICOS+ Tregs and the holistic role of ICOS toward the immune system will help to improve the therapeutic schedule of diseases.
Collapse
Affiliation(s)
- Dan-Yang Li
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xian-Zhi Xiong
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Harnessing the Complete Repertoire of Conventional Dendritic Cell Functions for Cancer Immunotherapy. Pharmaceutics 2020; 12:pharmaceutics12070663. [PMID: 32674488 PMCID: PMC7408110 DOI: 10.3390/pharmaceutics12070663] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023] Open
Abstract
The onset of checkpoint inhibition revolutionized the treatment of cancer. However, studies from the last decade suggested that the sole enhancement of T cell functionality might not suffice to fight malignancies in all individuals. Dendritic cells (DCs) are not only part of the innate immune system, but also generals of adaptive immunity and they orchestrate the de novo induction of tolerogenic and immunogenic T cell responses. Thus, combinatorial approaches addressing DCs and T cells in parallel represent an attractive strategy to achieve higher response rates across patients. However, this requires profound knowledge about the dynamic interplay of DCs, T cells, other immune and tumor cells. Here, we summarize the DC subsets present in mice and men and highlight conserved and divergent characteristics between different subsets and species. Thereby, we supply a resource of the molecular players involved in key functional features of DCs ranging from their sentinel function, the translation of the sensed environment at the DC:T cell interface to the resulting specialized T cell effector modules, as well as the influence of the tumor microenvironment on the DC function. As of today, mostly monocyte derived dendritic cells (moDCs) are used in autologous cell therapies after tumor antigen loading. While showing encouraging results in a fraction of patients, the overall clinical response rate is still not optimal. By disentangling the general aspects of DC biology, we provide rationales for the design of next generation DC vaccines enabling to exploit and manipulate the described pathways for the purpose of cancer immunotherapy in vivo. Finally, we discuss how DC-based vaccines might synergize with checkpoint inhibition in the treatment of malignant diseases.
Collapse
|
14
|
Tran L, Theodorescu D. Determinants of Resistance to Checkpoint Inhibitors. Int J Mol Sci 2020; 21:ijms21051594. [PMID: 32111080 PMCID: PMC7084564 DOI: 10.3390/ijms21051594] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/22/2020] [Accepted: 02/23/2020] [Indexed: 12/12/2022] Open
Abstract
The development of immune checkpoint inhibitors (ICIs) has drastically altered the landscape of cancer treatment. Since approval of the first ICI for the treatment of advanced melanoma in 2011, several therapeutic agents have been Food and Drug Administration (FDA)-approved for multiple cancers, and hundreds of clinical trials are currently ongoing. These antibodies disrupt T-cell inhibitory pathways established by tumor cells and thus re-activate the host’s antitumor immune response. While successful in many cancers, several types remain relatively refractory to treatment or patients develop early recurrence. Hence, there is a great need to further elucidate mechanisms of resistant disease and determine novel, effective, and tolerable combination therapies to enhance efficacy of ICIs.
Collapse
Affiliation(s)
- Linda Tran
- Department of Surgery (Urology), Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA
| | - Dan Theodorescu
- Department of Surgery (Urology), Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Cedars-Sinai Health System, 8700 Beverly Blvd., OCC Mezz C2002, Los Angeles, CA 90048, USA
- Correspondence: ; Tel.: +1-310-423-8431
| |
Collapse
|
15
|
Amatore F, Gorvel L, Olive D. Role of Inducible Co-Stimulator (ICOS) in cancer immunotherapy. Expert Opin Biol Ther 2019; 20:141-150. [PMID: 31738626 DOI: 10.1080/14712598.2020.1693540] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Introduction: The promotion of antitumor response by targeting co-stimulatory B7 superfamily members has become evident to create a new wave of cancer immunotherapy. Inducible Co-Stimulator (ICOS), which is expressed on activated T cells, gained interest in the translational medicine community.Areas covered: We performed an extensive literature review using the keywords 'ICOS' and 'cancer', and the Clinicaltrials.gov database for early phase clinical trials targeting ICOS. In this review, we highlight the dual role of ICOS in oncogenesis in different malignancies. We summarize the current state of knowledge about ICOS/ICOSL pathway targeting by immunotherapies.Expert opinion: Due to its multifaceted link with anti-tumor immunity, both antagonist and agonist antibodies might be of interest to target the ICOS/ICOSL pathway for tumor treatment. Indeed, ICOS activation might potentiate the effect of an inhibitory checkpoint blockade, while its neutralization could decrease the function of immunosuppressive Tregs and inhibit lymphoid tumor cells expressing Tfh markers.
Collapse
Affiliation(s)
- Florent Amatore
- Centre de recherche en Cancérologie de Marseille, INSERM U1068, CNRS U7258, Aix Marseille Université, Institut Paoli - Calmettes, Marseille, France
| | - Laurent Gorvel
- Centre de recherche en Cancérologie de Marseille, INSERM U1068, CNRS U7258, Aix Marseille Université, Institut Paoli - Calmettes, Marseille, France
| | - Daniel Olive
- Centre de recherche en Cancérologie de Marseille, INSERM U1068, CNRS U7258, Aix Marseille Université, Institut Paoli - Calmettes, Marseille, France
| |
Collapse
|
16
|
Shi LZ, Goswami S, Fu T, Guan B, Chen J, Xiong L, Zhang J, Ng Tang D, Zhang X, Vence L, Blando J, Allison JP, Collazo R, Gao J, Sharma P. Blockade of CTLA-4 and PD-1 Enhances Adoptive T-cell Therapy Efficacy in an ICOS-Mediated Manner. Cancer Immunol Res 2019; 7:1803-1812. [PMID: 31466995 DOI: 10.1158/2326-6066.cir-18-0873] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/02/2019] [Accepted: 08/22/2019] [Indexed: 11/16/2022]
Abstract
Adoptive transfer of tumor-reactive T cells (ACT) has led to modest clinical benefit in the treatment of solid tumors. Failures with this therapy are primarily due to inadequate infiltration and poor function of adoptively transferred cells in the tumor microenvironment. To improve the efficacy of ACT, we combined ACT with dual blockade of CTLA-4 and PD-1. Treatment with anti-CTLA-4 plus anti-PD-1 compared with monotherapy resulted in durable antitumor responses, enhanced effector function of ACT, utilizing PMEL-1 transgenic (Tg+) CD8+ T cells, and improved survival. Using PMEL-1ICOS-/- mice, we showed that deletion of the inducible T-cell costimulator (ICOS) receptor abolished the therapeutic benefits, with selective downregulation of Eomesodermin (Eomes), interferon gamma (IFNγ), and perforin. Higher expression of IFNγ and Eomes was noted in human ICOShi CD8+ T cells compared with ICOSlow counterparts. Together, our data provide direct evidence that ACT combined with immune-checkpoint therapy confers durable antitumor responses, which largely depended on CD8+ T-cell-intrinsic expression of ICOS. Our study provides a foundation of testing combinatorial therapy of ACT of CD8 T cells and dual blocking of CTLA-4 and PD-1 in patients with melanoma.
Collapse
Affiliation(s)
- Lewis Zhichang Shi
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sangeeta Goswami
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tihui Fu
- Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Baoxiang Guan
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jianfeng Chen
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Liangwen Xiong
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jan Zhang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Derek Ng Tang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xuejun Zhang
- Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Luis Vence
- Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jorge Blando
- Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - James P Allison
- Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Renata Collazo
- Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
17
|
Connolly A, Gagnon E. Electrostatic interactions: From immune receptor assembly to signaling. Immunol Rev 2019; 291:26-43. [DOI: 10.1111/imr.12769] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Audrey Connolly
- Institut de Recherche en Immunologie et Cancérologie/Institute for Research in Immunology and Cancer Montréal Québec Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine Université de Montréal Montréal Québec Canada
| | - Etienne Gagnon
- Institut de Recherche en Immunologie et Cancérologie/Institute for Research in Immunology and Cancer Montréal Québec Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine Université de Montréal Montréal Québec Canada
| |
Collapse
|
18
|
Panneton V, Chang J, Witalis M, Li J, Suh W. Inducible T‐cell co‐stimulator: Signaling mechanisms in T follicular helper cells and beyond. Immunol Rev 2019; 291:91-103. [DOI: 10.1111/imr.12771] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 04/30/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Vincent Panneton
- IRCM (Institut de recherches cliniques de Montréal) Montreal Quebec Canada
- Department of Microbiology, Infectiology, and Immunology University of Montreal Montreal Quebec Canada
| | - Jinsam Chang
- IRCM (Institut de recherches cliniques de Montréal) Montreal Quebec Canada
- Molecular Biology Program University of Montreal Montreal Quebec Canada
| | - Mariko Witalis
- IRCM (Institut de recherches cliniques de Montréal) Montreal Quebec Canada
- Molecular Biology Program University of Montreal Montreal Quebec Canada
| | - Joanna Li
- IRCM (Institut de recherches cliniques de Montréal) Montreal Quebec Canada
- Department of Microbiology and Immunology McGill University Montreal Quebec Canada
| | - Woong‐Kyung Suh
- IRCM (Institut de recherches cliniques de Montréal) Montreal Quebec Canada
- Department of Microbiology, Infectiology, and Immunology University of Montreal Montreal Quebec Canada
- Molecular Biology Program University of Montreal Montreal Quebec Canada
- Department of Microbiology and Immunology McGill University Montreal Quebec Canada
| |
Collapse
|
19
|
Lim EL, Okkenhaug K. Phosphoinositide 3-kinase δ is a regulatory T-cell target in cancer immunotherapy. Immunology 2019; 157:210-218. [PMID: 31107985 PMCID: PMC6587315 DOI: 10.1111/imm.13082] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/02/2019] [Accepted: 05/16/2019] [Indexed: 12/15/2022] Open
Abstract
Tumour infiltration by regulatory T (Treg) cells contributes to suppression of the anti-tumour immune response, which limits the efficacy of immune-mediated cancer therapies. The phosphoinositide 3-kinase (PI3K) pathway has key roles in mediating the function of many immune cell subsets, including Treg cells. Treg function is context-dependent and depends on input from different cell surface receptors, many of which can activate the PI3K pathway. In this review, we explore how PI3Kδ contributes to signalling through several major immune cell receptors, including the T-cell receptor and co-stimulatory receptors such as CD28 and ICOS, but is antagonized by the immune checkpoint receptors CTLA-4 and PD-1. Understanding how PI3Kδ inhibition affects Treg signalling events will help to inform how best to use PI3Kδ inhibitors in clinical cancer treatment.
Collapse
Affiliation(s)
- Ee Lyn Lim
- Laboratory of Experimental ImmunologyImmunology Frontier Research CentreOsaka UniversitySuitaJapan
| | - Klaus Okkenhaug
- Division of ImmunologyDepartment of PathologyUniversity of CambridgeCambridgeUK
| |
Collapse
|
20
|
Molecular Interactions of Antibody Drugs Targeting PD-1, PD-L1, and CTLA-4 in Immuno-Oncology. Molecules 2019; 24:molecules24061190. [PMID: 30917623 PMCID: PMC6470598 DOI: 10.3390/molecules24061190] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 12/23/2022] Open
Abstract
Cancer cells can evade immune surveillance through the molecular interactions of immune checkpoint proteins, including programmed death 1 (PD-1), PD-L1, and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4). Since 2011, the FDA-approved antibody drugs ipilimumab (Yervoy®), nivolumab (Opdivo®), pembrolizumab (Keytruda®), cemiplimab (Libtayo®), atezolizumab (Tecentriq®), durvalumab (Imfinzi®), and avelumab (Bavencio®), which block the immune checkpoint proteins, have brought about a significant breakthrough in the treatment of a wide range of cancers, as they can induce durable therapeutic responses. In recent years, crystal structures of the antibodies against PD-1, PD-L1, and CTLA-4 have been reported. In this review, we describe the latest structural studies of these monoclonal antibodies and their interactions with the immune checkpoint proteins. A comprehensive analysis of the interactions of these immune checkpoint blockers can provide a better understanding of their therapeutic mechanisms of action. The accumulation of these structural studies would provide a basis that is essential for the rational design of next-generation therapies in immuno-oncology.
Collapse
|
21
|
Beadnell T, Borriello L, Christenson J, Fornetti J, Guldner I, Hanna A, Kyjacova L, Marinak-Whately K, de Melo Martins PC, Rotinen M, Te Boekhorst V, Cox TR. Meeting report: Metastasis Research Society (MRS) 17th Biennial conference and associated Young Investigator Satellite Meeting (YISM) on cancer metastasis. Clin Exp Metastasis 2019; 36:119-137. [PMID: 30673912 DOI: 10.1007/s10585-018-09953-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 12/31/2018] [Indexed: 11/24/2022]
Abstract
The Metastasis Research Society (MRS) 17th Biennial conference on metastasis was held on the 1st to the 5th of August 2018 at Princeton University, NJ, USA. The meeting was held around themes addressing notable aspects of the understanding and treatment of metastasis and metastatic disease covering basic, translational, and clinical research. Importantly, the meeting was largely supported by our patient advocate partners including Susan G. Komen for the Cure, Theresa's Research Foundation and METAvivor. There were a total of 85 presentations from invited and selected speakers spread across the main congress and presentations from the preceding Young Investigator Satellite Meeting. Presentations are summarized in this report by session topic.
Collapse
Affiliation(s)
- Thomas Beadnell
- Department of Cancer Biology, The Kansas University Medical Center, and The University of Kansas Cancer Center, Kansas City, KS, 66160, USA
| | - Lucia Borriello
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Jessica Christenson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jaime Fornetti
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Ian Guldner
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN, USA
| | - Ann Hanna
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lenka Kyjacova
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 681 67, Mannheim, Germany
| | - Kristina Marinak-Whately
- WVU Cancer Institute, Cancer Cell Biology, West Virginia School of Medicine, Morgantown, WV, USA
| | | | - Mirja Rotinen
- Division of Cancer Biology and Therapeutics, Departments of Surgery & Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Veronika Te Boekhorst
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, 77030, Houston, TX, USA.,Department of Cell Biology, Radboud University Medical Centre, 6525GA, Nijmegen, The Netherlands
| | - Thomas R Cox
- Cancer Division, Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, Australia. .,Faculty of Medicine, St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
22
|
Immune checkpoint blockade and its combination therapy with small-molecule inhibitors for cancer treatment. Biochim Biophys Acta Rev Cancer 2018; 1871:199-224. [PMID: 30605718 DOI: 10.1016/j.bbcan.2018.12.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 02/05/2023]
Abstract
Initially understood for its physiological maintenance of self-tolerance, the immune checkpoint molecule has recently been recognized as a promising anti-cancer target. There has been considerable interest in the biology and the action mechanism of the immune checkpoint therapy, and their incorporation with other therapeutic regimens. Recently the small-molecule inhibitor (SMI) has been identified as an attractive combination partner for immune checkpoint inhibitors (ICIs) and is becoming a novel direction for the field of combination drug design. In this review, we provide a systematic discussion of the biology and function of major immune checkpoint molecules, and their interactions with corresponding targeting agents. With both preclinical studies and clinical trials, we especially highlight the ICI + SMI combination, with its recent advances as well as its application challenges.
Collapse
|
23
|
Darvin P, Toor SM, Sasidharan Nair V, Elkord E. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med 2018; 50:1-11. [PMID: 30546008 PMCID: PMC6292890 DOI: 10.1038/s12276-018-0191-1] [Citation(s) in RCA: 1345] [Impact Index Per Article: 224.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/22/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023] Open
Abstract
Cancer growth and progression are associated with immune suppression. Cancer cells have the ability to activate different immune checkpoint pathways that harbor immunosuppressive functions. Monoclonal antibodies that target immune checkpoints provided an immense breakthrough in cancer therapeutics. Among the immune checkpoint inhibitors, PD-1/PD-L1 and CTLA-4 inhibitors showed promising therapeutic outcomes, and some have been approved for certain cancer treatments, while others are under clinical trials. Recent reports have shown that patients with various malignancies benefit from immune checkpoint inhibitor treatment. However, mainstream initiation of immune checkpoint therapy to treat cancers is obstructed by the low response rate and immune-related adverse events in some cancer patients. This has given rise to the need for developing sets of biomarkers that predict the response to immune checkpoint blockade and immune-related adverse events. In this review, we discuss different predictive biomarkers for anti-PD-1/PD-L1 and anti-CTLA-4 inhibitors, including immune cells, PD-L1 overexpression, neoantigens, and genetic and epigenetic signatures. Potential approaches for further developing highly reliable predictive biomarkers should facilitate patient selection for and decision-making related to immune checkpoint inhibitor-based therapies.
Collapse
Affiliation(s)
- Pramod Darvin
- Cancer Research Center, Qatar Biomedical Research Institute, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Salman M Toor
- Cancer Research Center, Qatar Biomedical Research Institute, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Varun Sasidharan Nair
- Cancer Research Center, Qatar Biomedical Research Institute, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Eyad Elkord
- Cancer Research Center, Qatar Biomedical Research Institute, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
- Institute of Cancer Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
24
|
Emerson DA, Redmond WL. Overcoming Tumor-Induced Immune Suppression: From Relieving Inhibition to Providing Costimulation with T Cell Agonists. BioDrugs 2018; 32:221-231. [PMID: 29637478 DOI: 10.1007/s40259-018-0277-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent advancements in T-cell biology and antibody engineering have opened doors to significant improvements in cancer immunotherapy. Initial success with monoclonal antibodies targeting key receptors that inhibit T-cell function such as cytotoxic T lymphocyte antigen 4 (CTLA-4) and programmed death-ligand 1 (PD-1) have demonstrated the potency of this new class of therapy, highlighted by long-term complete responses for metastatic cancers once thought incurable. However, only a subset of patients responds to checkpoint blockade because of a multitude of factors, including an immunosuppressive tumor microenvironment and the mutational burden of the cancer. Novel antibodies, as well as ligand-immunoglobulin fusion proteins that target costimulatory immune receptors, are being developed and tested in clinical trials to further enhance the anti-tumor immune response. Many of these costimulatory receptors are in the tumor necrosis factor receptor superfamily (TNFRSF) and are expressed on multiple immune cell types, including inhibitory cells. While TNFRSFs signal through common pathways, the outcome of targeting different receptors depends on the functional status of the cell types expressing the relevant receptors. In this review, we discuss the current state of targeted costimulatory immunotherapy.
Collapse
Affiliation(s)
- Dana A Emerson
- Earle A. Chiles Research Institute, Providence Portland Medical Center, 4805 NE Glisan St., 2N35, Portland, OR, 97213, USA
- Molecular Microbiology and Immunology Department, Oregon Health and Science University, Portland, OR, 97239, USA
| | - William L Redmond
- Earle A. Chiles Research Institute, Providence Portland Medical Center, 4805 NE Glisan St., 2N35, Portland, OR, 97213, USA.
| |
Collapse
|
25
|
Immune Profiling of Cancer Patients Treated with Immunotherapy: Advances and Challenges. Biomedicines 2018; 6:biomedicines6030076. [PMID: 30004433 PMCID: PMC6163220 DOI: 10.3390/biomedicines6030076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/23/2018] [Accepted: 06/25/2018] [Indexed: 12/16/2022] Open
Abstract
The recent advances in immunotherapy and the availability of novel drugs to target the tumor microenvironment have dramatically changed the paradigm of cancer treatment. Nevertheless, a significant proportion of cancer patients are unresponsive or develop resistance to these treatments. With the aim to increase the clinical efficacy of immunotherapy, combinations of agents and standard therapies with complementary actions have been developed mostly on an empirical base, since their mechanisms of actions are not yet fully dissected. The characterization of immune responsiveness and its monitoring along with the treatment of cancer patients with immunotherapy can provide insights into the mechanisms of action of these therapeutic regimens and contribute to the optimization of patients’ stratification and of combination strategies and to the prediction of treatment-related toxicities. Thus far, none of the immunomonitoring strategies has been validated for routine clinical practice. Moreover, it is becoming clear that the genomic and molecular make-up of tumors and of the infiltrating immune system represent important determinants of the clinical responses to immunotherapy. This review provides an overview of different approaches for the immune profiling of cancer patients and discusses their advantages and limitations. Recent advances in genomic-based assays and in the identification of host genomic relationships with immune responses represent promising approaches to identify molecular determinants and biomarkers to improve the clinical efficacy of cancer immunotherapy.
Collapse
|
26
|
Jogdand GM, Sengupta S, Bhattacharya G, Singh SK, Barik PK, Devadas S. Inducible Costimulator Expressing T Cells Promote Parasitic Growth During Blood Stage Plasmodium berghei ANKA Infection. Front Immunol 2018; 9:1041. [PMID: 29892278 PMCID: PMC5985291 DOI: 10.3389/fimmu.2018.01041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/26/2018] [Indexed: 12/14/2022] Open
Abstract
The lethality of blood stage Plasmodium berghei ANKA (PbA) infection is associated with the expression of T-bet and production of cytokine IFN-γ. Expression of inducible costimulator (ICOS) and its downstream signaling has been shown to play a critical role in the T-bet expression and IFN-γ production. Although earlier studies have examined the role of ICOS in the control of acute blood-stage infection of Plasmodium chabaudi chabaudi AS (a non-lethal model of malaria infection), its significance in the lethal blood-stage of PbA infection remains unclear. Thus, to address the seminal role of ICOS in lethal blood-stage of PbA infection, we treated PbA-infected mice with anti-ICOS antibody and observed that these mice survived longer than their infected counterparts with significantly lower parasitemia. Anti-ICOS treatment notably depleted ICOS expressing CD4+ and CD8+ T cells with a concurrent reduction in plasma IFN-γ, which strongly indicated that ICOS expressing T cells are major IFN-γ producers. Interestingly, we observed that while ICOS expressing CD4+ and CD8+ T cells produced IFN-γ, ICOS-CD8+ T cells were also found to be producers of IFN-γ. However, we report that ICOS+CD8+ T cells were higher producers of IFN-γ than ICOS-CD8+ T cells. Moreover, correlation of ICOS expression with IFN-γ production in ICOS+IFN-γ+ T cell population (CD4+ and CD8+ T cells) suggested that ICOS and IFN-γ could positively regulate each other. Further, master transcription factor T-bet importantly involved in regulating IFN-γ production was also found to be expressed by ICOS expressing CD4+ and CD8+ T cells during PbA infection. As noted above with IFN-γ and ICOS, a positive correlation of expression of ICOS with the transcription factor T-bet suggested that both of them could regulate each other. Taken together, our results depicted the importance of ICOS expressing CD4+ and CD8+ T cells in malaria parasite growth and lethality through IFN-γ production and T-bet expression.
Collapse
Affiliation(s)
- Gajendra M Jogdand
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Soumya Sengupta
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | | | | | | | - Satish Devadas
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
27
|
Jang BS, Kim IA. A radiosensitivity gene signature and PD-L1 predict the clinical outcomes of patients with lower grade glioma in TCGA. Radiother Oncol 2018; 128:245-253. [PMID: 29784449 DOI: 10.1016/j.radonc.2018.05.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 12/22/2022]
Abstract
PURPOSE Identifying predictive factors for the clinical outcome of patients with lower grade gliomas following radiotherapy could help optimize patient treatments. Here, we investigate the predictive efficacy of both a previously identified "31-gene signature" and programmed death ligand-1 (PD-L1) expression. MATERIAL AND METHODS We identified 511 patients with lower grade glioma (Grade 2 and 3) in The Cancer Genome Atlas dataset and divided them into two clusters: radiosensitive (RS) and radioresistant (RR). Patients were also classified as PD-L1-high or PD-L1-low based on CD274 mRNA expression. Five-year survival rates were compared across patient groups, and differentially expressed genes were identified via a gene enrichment analysis. RESULTS Among 511 patients with lower grade glioma in The Cancer Genome Atlas dataset, we identified a group that was characterized by radioresistant and high PD-L1 (the PD-L1-high-RR group). Multivariate Cox models demonstrated that the membership in the PD-L1-high-RR can predict overall survival regarding to RT. Differentially expressed genes associated with the PD-L1-high-RR group were found to play a role in the immune response, including the T-cell receptor signaling pathway. CONCLUSION We tested the predictive value of a "31-gene signature" and PD-L1 expression status in a dataset of patients with lower grade glioma. Our results suggest that the patient population classified as the PD-L1-high-RR may benefit most from radiotherapy combined with anti-PD-1/PD-L1 treatment. Prospective clinical trial is necessary to validate the findings in a homogenous treated patient cohort.
Collapse
Affiliation(s)
- Bum-Sup Jang
- Department of Radiation Oncology, Seoul National University Hospital, Republic of Korea
| | - In Ah Kim
- Department of Radiation Oncology and Cancer Research Institute, Seoul National University, College of Medicine, Republic of Korea; Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnamsi, Republic of Korea.
| |
Collapse
|
28
|
Stereotactic Ablative Radiation Therapy Induces Systemic Differences in Peripheral Blood Immunophenotype Dependent on Irradiated Site. Int J Radiat Oncol Biol Phys 2018; 101:1259-1270. [PMID: 29891204 DOI: 10.1016/j.ijrobp.2018.04.038] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/07/2018] [Accepted: 04/16/2018] [Indexed: 01/13/2023]
Abstract
PURPOSE Despite the strong interest in combining stereotactic ablative radiation therapy (SAR) with immunotherapy, limited data characterizing the systemic immune response after SAR are available. We hypothesized that the systemic immune response to SAR would differ by irradiated site owing to inherent differences in the microenvironment of various organs. METHODS AND MATERIALS Patients receiving SAR to any organ underwent prospective blood banking before and 1 to 2 weeks after SAR. Peripheral blood mononuclear cells (PBMCs) and serum were isolated. PBMCs were stained with fluorophore-conjugated antibodies against T and natural killer (NK) cell markers. Cells were interrogated by flow cytometry, and the results were analyzed using FlowJo software. Serum cytokine and chemokine levels were measured using Luminex. We analyzed the changes from before to after therapy using paired t tests or 1-way analysis of variance (ANOVA) with Bonferroni's post-test. RESULTS A total of 31 patients had evaluable PBMCs for flow cytometry and 37 had evaluable serum samples for Luminex analysis. The total number of NK cells and cytotoxic (CD56dimCD16+) NK cells decreased (P = .02) and T-cell immunoglobulin- and mucin domain-containing molecule-3-positive (TIM3+) NK cells increased (P = .04) after SAR to parenchymal sites (lung and liver) but not to bone or brain. The total memory CD4+ T cells, activated inducible co-stimulator-positive and CD25+CD4+ memory T cells, and activated CD25+CD8+ memory T cells increased after SAR to parenchymal sites but not bone or brain. The circulating levels of tumor necrosis factor-α (P = .04) and multiple chemokines, including RANTES (P = .04), decreased after SAR to parenchymal sites but not bone or brain. CONCLUSIONS Our data suggest SAR to parenchymal sites induces systemic immune changes, including a decrease in total and cytotoxic NK cells, an increase in TIM3+ NK cells, and an increase in activated memory CD4+ and CD8+ T cells. SAR to nonparenchymal sites did not induce these changes. By comparing the immune response after radiation to different organs, our data suggest SAR induces systemic immunologic changes that are dependent on the irradiated site.
Collapse
|
29
|
Amatore F, Gorvel L, Olive D. Inducible Co-Stimulator (ICOS) as a potential therapeutic target for anti-cancer therapy. Expert Opin Ther Targets 2018; 22:343-351. [PMID: 29468927 DOI: 10.1080/14728222.2018.1444753] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION The recent success of checkpoint-inhibitors in cancer treatment paved the way for the development of new strategies of agonist and antagonist agents against B7 superfamily members. Inducible Co-Stimulator (ICOS), a co-stimulatory receptor for T-cell enhancement, arouses interest. Areas covered: We performed an extensive literature search with PUBMED using the keywords 'ICOS' and 'cancer' to discuss its involvement in oncogenesis, its expression in different malignancies, and its targeting in relevant preclinical studies. We also searched the Clinicaltrials.gov database for recent updates on early phase clinical trials. Expert opinion: ICOS/ICOSL axis has a dual effect and might participate in anti-tumour T cell response as well as a pro-tumour response due to its connection with regulatory T-cells (Tregs) suppressive activity. Therefore, both antagonist and agonist antibodies might be of interest in the targeting ICOS/ICOSL pathway for cancer treatment. In preclinical studies, ICOS agonist monoclonal antibodies (mAbs) have shown to potentiate the effect of inhibitory checkpoint blockade. In contrast, antagonistic anti-ICOS mAbs could not only inhibit lymphoid tumour cells expressing ICOS, but also dampen immunosuppressive Tregs. Two agonist and one antagonist mAbs are evaluated in phase I/II trials. Efficacy, safety, and combination strategies with anti-ICOS agonist or antagonist have yet to be specified.
Collapse
Affiliation(s)
- Florent Amatore
- a Centre de recherche en Cancérologie de Marseille, INSERM U1068, CNRS U7258 , Aix Marseille Université, Institut Paoli - Calmettes , Marseille , France
| | - Laurent Gorvel
- a Centre de recherche en Cancérologie de Marseille, INSERM U1068, CNRS U7258 , Aix Marseille Université, Institut Paoli - Calmettes , Marseille , France
| | - Daniel Olive
- a Centre de recherche en Cancérologie de Marseille, INSERM U1068, CNRS U7258 , Aix Marseille Université, Institut Paoli - Calmettes , Marseille , France
| |
Collapse
|
30
|
Ariyan CE, Brady MS, Siegelbaum RH, Hu J, Bello DM, Rand J, Fisher C, Lefkowitz RA, Panageas KS, Pulitzer M, Vignali M, Emerson R, Tipton C, Robins H, Merghoub T, Yuan J, Jungbluth A, Blando J, Sharma P, Rudensky AY, Wolchok JD, Allison JP. Robust Antitumor Responses Result from Local Chemotherapy and CTLA-4 Blockade. Cancer Immunol Res 2018; 6:189-200. [PMID: 29339377 DOI: 10.1158/2326-6066.cir-17-0356] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/26/2017] [Accepted: 12/21/2017] [Indexed: 12/18/2022]
Abstract
Clinical responses to immunotherapy have been associated with augmentation of preexisting immune responses, manifested by heightened inflammation in the tumor microenvironment. However, many tumors have a noninflamed microenvironment, and response rates to immunotherapy in melanoma have been <50%. We approached this problem by utilizing immunotherapy (CTLA-4 blockade) combined with chemotherapy to induce local inflammation. In murine models of melanoma and prostate cancer, the combination of chemotherapy and CTLA-4 blockade induced a shift in the cellular composition of the tumor microenvironment, with infiltrating CD8+ and CD4+ T cells increasing the CD8/Foxp3 T-cell ratio. These changes were associated with improved survival of the mice. To translate these findings into a clinical setting, 26 patients with advanced melanoma were treated locally by isolated limb infusion with the nitrogen mustard alkylating agent melphalan followed by systemic administration of CTLA-4 blocking antibody (ipilimumab) in a phase II trial. This combination of local chemotherapy with systemic checkpoint blockade inhibitor resulted in a response rate of 85% at 3 months (62% complete and 23% partial response rate) and a 58% progression-free survival at 1 year. The clinical response was associated with increased T-cell infiltration, similar to that seen in the murine models. Together, our findings suggest that local chemotherapy combined with checkpoint blockade-based immunotherapy results in a durable response to cancer therapy. Cancer Immunol Res; 6(2); 189-200. ©2018 AACR.
Collapse
Affiliation(s)
- Charlotte E Ariyan
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Mary Sue Brady
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Robert H Siegelbaum
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jian Hu
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Danielle M Bello
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jamie Rand
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charles Fisher
- Department of Anesthesia, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Robert A Lefkowitz
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kathleen S Panageas
- Department of Statistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Melissa Pulitzer
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | | | | | - Taha Merghoub
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jianda Yuan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Achim Jungbluth
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jorge Blando
- Department of Immunology, MD Anderson Cancer Center, Houston, Texas
| | - Padmanee Sharma
- Department of Immunology, MD Anderson Cancer Center, Houston, Texas
| | - Alexander Y Rudensky
- Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jedd D Wolchok
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - James P Allison
- Department of Immunology, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
31
|
Slovin SF. The need for immune biomarkers for treatment prognosis and response in genitourinary malignancies. Biomark Med 2017; 11:1149-1159. [PMID: 29186979 DOI: 10.2217/bmm-2017-0138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Immune biomarkers encompass a wide range of blood-borne and cell-associated molecules whose detection or expression may change in response to an immune therapy. These immune therapies encompass a range of platforms including autologous cellular products, in other words, dendritic cells, prime boost DNA vaccines, chimeric antigen receptor (CAR) T cells and checkpoint inhibitors. The response to checkpoint inhibitors by a particular cancer may not be necessarily associated with a change in a particular immune biomarker; other immune biomarkers are needed to assess their association with treatment response or a change in the biology that can impact on the immunologic milieu. How these potential biomarkers can be incorporated into clinical trial design, and their role in interrogating the immunologic milieu will be discussed.
Collapse
Affiliation(s)
- Susan F Slovin
- Genitourinary Oncology Service, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
32
|
Majchrzak K, Nelson MH, Bowers JS, Bailey SR, Wyatt MM, Wrangle JM, Rubinstein MP, Varela JC, Li Z, Himes RA, Chan SS, Paulos CM. β-catenin and PI3Kδ inhibition expands precursor Th17 cells with heightened stemness and antitumor activity. JCI Insight 2017; 2:90547. [PMID: 28422756 PMCID: PMC5396523 DOI: 10.1172/jci.insight.90547] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 03/14/2017] [Indexed: 12/30/2022] Open
Abstract
ICOS costimulation generates Th17 cells with durable memory responses to tumor. Herein, we found that ICOS induces PI3K/p110δ/Akt and Wnt/β-catenin pathways in Th17 cells. Coinhibiting PI3Kδ and β-catenin altered the biological fate of Th17 cells. Th17 cells inhibited of both pathways expressed less RORγt, which, in turn, reduced their ability to secrete IL-17. Unexpectedly, these cells were more effective (than uninhibited cells) at regressing tumor when infused into mice, leading to long-term curative responses. PI3Kδ inhibition expanded precursor Th17 cells with a central memory phenotype that expressed nominal regulatory properties (low FoxP3), while β-catenin inhibition enhanced Th17 multifunctionality in vivo. Remarkably, upon TCR restimulation, RORγt and IL-17 rebounded in Th17 cells treated with PI3Kδ and β-catenin inhibitors. Moreover, these cells regained β-catenin, Tcf7, and Akt expression, licensing them to secrete heightened IL-2, persist, and eradicate solid tumors without help from endogenous NK and CD8 T cells. This finding shines a light on ways to repurpose FDA-approved drugs to augment T cell-based cancer immunotherapies.
Collapse
Affiliation(s)
- Kinga Majchrzak
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
- Department of Surgery
- Department of Dermatology and Dermatologic Surgery, and
| | - Michelle H. Nelson
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Surgery
- Department of Dermatology and Dermatologic Surgery, and
| | - Jacob S. Bowers
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Surgery
- Department of Dermatology and Dermatologic Surgery, and
| | - Stefanie R. Bailey
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Surgery
- Department of Dermatology and Dermatologic Surgery, and
| | - Megan M. Wyatt
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Surgery
- Department of Dermatology and Dermatologic Surgery, and
| | - John M. Wrangle
- Department of Hematology and Oncology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Mark P. Rubinstein
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Surgery
| | - Juan C. Varela
- Department of Hematology and Oncology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Zihai Li
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Richard A. Himes
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, South Carolina, USA
- Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
- Neuroene Therapeutics, Mount Pleasant, South Carolina, USA
| | - Sherine S.L. Chan
- Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
- Neuroene Therapeutics, Mount Pleasant, South Carolina, USA
| | - Chrystal M. Paulos
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Surgery
- Department of Dermatology and Dermatologic Surgery, and
| |
Collapse
|
33
|
MiR-21 is required for anti-tumor immune response in mice: an implication for its bi-directional roles. Oncogene 2017; 36:4212-4223. [PMID: 28346427 DOI: 10.1038/onc.2017.62] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 12/29/2016] [Accepted: 02/08/2017] [Indexed: 12/17/2022]
Abstract
Here we show that miR-21, a microRNA known for its oncogenic activity, is also essential for mediating immune responses against tumor. Knockout of miR-21 in mice slowed the proliferation of both CD4+ and CD8+ cells, reduced their cytokine production and accelerated the grafted tumor growth. Further investigations indicated that miR-21 could activate CD4+ and CD8+ T cells via the PTEN/Akt pathway in response to stimulations. Taken together, these data suggest the key functions of miR-21 in mediating anti-tumor immune response and thereby uncover a bi-directional role of this traditionally known 'oncomiR' in tumorigenesis. Our study may provide new insights for the design of cancer therapies targeting microRNAs, with an emphasis on the dynamic and possibly unexpected role of these molecules.
Collapse
|
34
|
Nowak EC, Lines JL, Varn FS, Deng J, Sarde A, Mabaera R, Kuta A, Le Mercier I, Cheng C, Noelle RJ. Immunoregulatory functions of VISTA. Immunol Rev 2017; 276:66-79. [PMID: 28258694 PMCID: PMC5702497 DOI: 10.1111/imr.12525] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Utilization of negative checkpoint regulators (NCRs) for cancer immunotherapy has garnered significant interest with the completion of clinical trials demonstrating efficacy. While the results of monotherapy treatments are compelling, there is increasing emphasis on combination treatments in an effort to increase response rates to treatment. One of the most recently discovered NCRs is VISTA (V-domain Ig-containing Suppressor of T cell Activation). In this review, we describe the functions of this molecule in the context of cancer immunotherapy. We also discuss factors that may influence the use of anti-VISTA antibody in combination therapy and how genomic analysis may assist in providing indications for treatment.
Collapse
Affiliation(s)
- Elizabeth C. Nowak
- Department of Microbiology and Immunology, Norris Cotton Cancer Center Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - J. Louise Lines
- Department of Microbiology and Immunology, Norris Cotton Cancer Center Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Frederick S. Varn
- Department of Biomedical Data Science and Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Jie Deng
- Department of Microbiology and Immunology, Norris Cotton Cancer Center Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Aurelien Sarde
- Department of Microbiology and Immunology, Norris Cotton Cancer Center Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Rodwell Mabaera
- Department of Microbiology and Immunology, Norris Cotton Cancer Center Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Anna Kuta
- Department of Microbiology and Immunology, Norris Cotton Cancer Center Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | | | - Chao Cheng
- Department of Biomedical Data Science and Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Randolph J. Noelle
- Department of Microbiology and Immunology, Norris Cotton Cancer Center Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
35
|
Mise au point sur l’Immunoscore et ses potentielles implications cliniques. Ann Pathol 2017; 37:29-38. [DOI: 10.1016/j.annpat.2016.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 12/08/2016] [Indexed: 12/17/2022]
|
36
|
Mao M, Qian Y, Sun J. Morphine Suppresses T helper Lymphocyte Differentiation to Th1 Type Through PI3K/AKT Pathway. Inflammation 2017; 39:813-21. [PMID: 26883517 DOI: 10.1007/s10753-016-0310-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To investigate the effect of morphine on T helper lymphocyte differentiation and PI3K/AKT pathway mechanism, CD4+ lymphocytes were treated by phorbol-myristate-acetate (25 ng/ml) (PMA) plus ionomycin (1 μg/ml) in the presence of various concentrations of morphine (25, 50, 100, 200 ng/ml) for 4 h. Th1 and Th2 subsets, supernatant cytokines, and PI3K, AKT, and protein kinase C-theta (PKC-θ) levels were detected. The Th1 cell percentage, Th1-derived cytokines, and ratio of Th1/Th2 decreased in the presence of morphine in a concentration-dependent manner. However, Th2 cell percentage kept stable after morphine treatment. The phosphorylation of PI3K and AKT decreased, but the phosphorylation of PKC-θ did not change in the presence of morphine. The decreased percentage of Th1 cells and ratio of Th1/Th2 was recovered by naloxone concentration-dependently. Morphine can inhibit the differentiation of Th1 lymphocytes and decrease the ratio of Th1/Th2 via the pathway of PI3K/AKT. The effect can be inhibited by naloxone.
Collapse
Affiliation(s)
- Mao Mao
- Department of Anesthesiology, Nanjing Maternal and Child Health Hospital, Nanjing, China
| | - Yanning Qian
- Department of Anesthesiology, the First Affiliated Hospital with Nanjing Medical University, No. 300, Guangzhou road, Nanjing, 210029, People's Republic of China
| | - Jie Sun
- Department of Anesthesiology, the First Affiliated Hospital with Nanjing Medical University, No. 300, Guangzhou road, Nanjing, 210029, People's Republic of China.
| |
Collapse
|
37
|
Hu X, Wu J, An J, Hu Y, Shen Y, Liu C, Zhang X. Development of a novel monoclonal antibody to human inducible co-stimulator ligand (ICOSL): Biological characteristics and application for enzyme-linked immunosorbent assay. Int Immunopharmacol 2016; 36:151-157. [PMID: 27138044 DOI: 10.1016/j.intimp.2016.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 12/28/2022]
Abstract
ICOSL (B7-H2, CD275), a co-stimulatory molecule of the B7 superfamily, functions as a positive signal in immune response. To investigate whether ICOSL could be released into sera and the possible biological function of soluble ICOS (sICOSL), we generated and characterized a functional anti-human ICOSL monoclonal antibody (mAb), 20B10, and developed a novel enzyme-linked immunosorbent assay (ELISA) based on two anti-human ICOSL antibodies with different epitope specificities. Using the ELISA system, we found that sICOSL in the serum of healthy donors increases in an age-dependent manner and that the matrix metalloproteinase inhibitor (MMPI) could suppress sICOSL production. Together, these data demonstrate that the existence of circulating sICOSL in human serum might play an important role in immunoregulation.
Collapse
Affiliation(s)
- Xiaohan Hu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Department of Immunology, Medical College of Soochow University, Suzhou 215006, China
| | - Jian Wu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jingnan An
- Department of Immunology, Medical College of Soochow University, Suzhou 215006, China
| | - Yumin Hu
- Department of Immunology, Medical College of Soochow University, Suzhou 215006, China
| | - Yu Shen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Cuiping Liu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Xueguang Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Department of Immunology, Medical College of Soochow University, Suzhou 215006, China.
| |
Collapse
|
38
|
Abstract
Immune checkpoint therapy has started a revolution in the field of oncology. The concept that the immune system plays a critical role in antitumor responses, which has been around for decades, has finally been proven and firmly established with elegant preclinical studies and dramatic clinical responses in patients as a result of antibodies that block inhibitory T-cell pathways. However, the clinical responses being achieved are only in a subset of patients, and more work is needed to provide a better understanding of the mechanisms that elicit tumor rejection, which will enable identification of appropriate biomarkers, reveal new targets, provide data to guide combination studies, and eventually dictate a platform that allows more patients to derive clinical benefit, including cures, with immune checkpoint therapy.
Collapse
Affiliation(s)
- Padmanee Sharma
- From the Departments of Immunology and Genitourinary Medical Oncology, M. D. Anderson Cancer Center, Houston, TX.P.S.'s work was supported by the SU2C-CRI Dream Team Cancer Immunotherapy Grant, PCF Challenge Grant in Immunology, NCI/NIH 1-R01 CA1633793-01, and Cancer Prevention Research in Texas (grant RP120108)
| |
Collapse
|
39
|
Page DB, Bourla AB, Daniyan A, Naidoo J, Smith E, Smith M, Friedman C, Khalil DN, Funt S, Shoushtari AN, Overwijk WW, Sharma P, Callahan MK. Tumor immunology and cancer immunotherapy: summary of the 2014 SITC primer. J Immunother Cancer 2015. [PMCID: PMC4469248 DOI: 10.1186/s40425-015-0072-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
40
|
Raval RR, Sharabi AB, Walker AJ, Drake CG, Sharma P. Tumor immunology and cancer immunotherapy: summary of the 2013 SITC primer. J Immunother Cancer 2014; 2:14. [PMID: 24883190 PMCID: PMC4039332 DOI: 10.1186/2051-1426-2-14] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 04/10/2014] [Indexed: 01/05/2023] Open
Abstract
Knowledge of the basic mechanisms of the immune system as it relates to cancer has been increasing rapidly. These developments have accelerated the translation of these advancements into medical breakthroughs for many cancer patients. The immune system is designed to discriminate between self and non-self, and through genetic recombination there is virtually no limit to the number of antigens it can recognize. Thus, mutational events, translocations, and other genetic abnormalities within cancer cells may be distinguished as “altered-self” and these differences may play an important role in preventing the development or progression of cancer. However, tumors may utilize a variety of mechanisms to evade the immune system as well. Cancer biologists are aiming to both better understand the relationship between tumors and the normal immune system, and to look for ways to alter the playing field for cancer immunotherapy. Summarized in this review are discussions from the 2013 SITC Primer, which focused on reviewing current knowledge and future directions of research related to tumor immunology and cancer immunotherapy, including sessions on innate immunity, adaptive immunity, therapeutic approaches (dendritic cells, adoptive T cell therapy, anti-tumor antibodies, cancer vaccines, and immune checkpoint blockade), challenges to driving an anti-tumor immune response, monitoring immune responses, and the future of immunotherapy clinical trial design.
Collapse
Affiliation(s)
- Raju R Raval
- Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew B Sharabi
- Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amanda J Walker
- Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles G Drake
- Department of Medical Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA ; The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA ; Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|