1
|
Hu H, Tang J, Wang H, Guo X, Tu C, Li Z. The crosstalk between alternative splicing and circular RNA in cancer: pathogenic insights and therapeutic implications. Cell Mol Biol Lett 2024; 29:142. [PMID: 39550559 PMCID: PMC11568689 DOI: 10.1186/s11658-024-00662-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024] Open
Abstract
RNA splicing is a fundamental step of gene expression. While constitutive splicing removes introns and joins exons unbiasedly, alternative splicing (AS) selectively determines the assembly of exons and introns to generate RNA variants corresponding to the same transcript. The biogenesis of circular RNAs (circRNAs) is inextricably associated with AS. Back-splicing, the biogenic process of circRNA, is a special form of AS. In cancer, both AS and circRNA deviate from the original track. In the present review, we delve into the intricate interplay between AS and circRNAs in the context of cancer. The relationship between AS and circRNAs is intricate, where AS modulates the biogenesis of circRNAs and circRNAs in return regulate AS events. Beyond that, epigenetic and posttranscriptional modifications concurrently regulate AS and circRNAs. On the basis of this modality, we summarize current knowledge on how splicing factors and other RNA binding proteins regulate circRNA biogenesis, and how circRNAs interact with splicing factors to influence AS events. Specifically, the feedback loop regulation between circRNAs and AS events contributes greatly to oncogenesis and cancer progression. In summary, resolving the crosstalk between AS and circRNA will not only provide better insight into cancer biology but also provoke novel strategies to combat cancer.
Collapse
Affiliation(s)
- Hongkun Hu
- Department of Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Jinxin Tang
- Department of Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Hua Wang
- Department of Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Xiaoning Guo
- Department of Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| | - Chao Tu
- Department of Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Zhihong Li
- Department of Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
2
|
Wei L, Li Y, Chen J, Wang Y, Wu J, Yang H, Zhang Y. Alternative splicing in ovarian cancer. Cell Commun Signal 2024; 22:507. [PMID: 39425166 PMCID: PMC11488268 DOI: 10.1186/s12964-024-01880-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024] Open
Abstract
Ovarian cancer is the second leading cause of gynecologic cancer death worldwide, with only 20% of cases detected early due to its elusive nature, limiting successful treatment. Most deaths occur from the disease progressing to advanced stages. Despite advances in chemo- and immunotherapy, the 5-year survival remains below 50% due to high recurrence and chemoresistance. Therefore, leveraging new research perspectives to understand molecular signatures and identify novel therapeutic targets is crucial for improving the clinical outcomes of ovarian cancer. Alternative splicing, a fundamental mechanism of post-transcriptional gene regulation, significantly contributes to heightened genomic complexity and protein diversity. Increased awareness has emerged about the multifaceted roles of alternative splicing in ovarian cancer, including cell proliferation, metastasis, apoptosis, immune evasion, and chemoresistance. We begin with an overview of altered splicing machinery, highlighting increased expression of spliceosome components and associated splicing factors like BUD31, SF3B4, and CTNNBL1, and their relationships to ovarian cancer. Next, we summarize the impact of specific variants of CD44, ECM1, and KAI1 on tumorigenesis and drug resistance through diverse mechanisms. Recent genomic and bioinformatics advances have enhanced our understanding. By incorporating data from The Cancer Genome Atlas RNA-seq, along with clinical information, a series of prognostic models have been developed, which provided deeper insights into how the splicing influences prognosis, overall survival, the immune microenvironment, and drug sensitivity and resistance in ovarian cancer patients. Notably, novel splicing events, such as PIGV|1299|AP and FLT3LG|50,941|AP, have been identified in multiple prognostic models and are associated with poorer and improved prognosis, respectively. These novel splicing variants warrant further functional characterization to unlock the underlying molecular mechanisms. Additionally, experimental evidence has underscored the potential therapeutic utility of targeting alternative splicing events, exemplified by the observation that knockdown of splicing factor BUD31 or antisense oligonucleotide-induced BCL2L12 exon skipping promotes apoptosis of ovarian cancer cells. In clinical settings, bevacizumab, a humanized monoclonal antibody that specifically targets the VEGF-A isoform, has demonstrated beneficial effects in the treatment of patients with advanced epithelial ovarian cancer. In conclusion, this review constitutes the first comprehensive and detailed exposition of the intricate interplay between alternative splicing and ovarian cancer, underscoring the significance of alternative splicing events as pivotal determinants in cancer biology and as promising avenues for future diagnostic and therapeutic intervention.
Collapse
Affiliation(s)
- Liwei Wei
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China
| | - Yisheng Li
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China
| | - Jiawang Chen
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, 325101, China
| | - Yuanmei Wang
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianmin Wu
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Huanming Yang
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China.
| | - Yi Zhang
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China.
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
3
|
Supplee JG, Affronti HC, Duan R, Brooks RC, Stine ZE, Nguyen PTT, Pinheiro LV, Noji MC, Drummond JM, Huang K, Schultz K, Dang CV, Marmorstein R, Wellen KE. ACLY alternative splicing correlates with cancer phenotypes. J Biol Chem 2024; 300:107418. [PMID: 38815867 PMCID: PMC11260853 DOI: 10.1016/j.jbc.2024.107418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/23/2024] [Accepted: 05/18/2024] [Indexed: 06/01/2024] Open
Abstract
ATP-citrate lyase (ACLY) links carbohydrate and lipid metabolism and provides nucleocytosolic acetyl-CoA for protein acetylation. ACLY has two major splice isoforms: the full-length canonical "long" isoform and an uncharacterized "short" isoform in which exon 14 is spliced out. Exon 14 encodes 10 amino acids within an intrinsically disordered region and includes at least one dynamically phosphorylated residue. Both isoforms are expressed in healthy tissues to varying degrees. Analysis of human transcriptomic data revealed that the percent spliced in (PSI) of exon 14 is increased in several cancers and correlated with poorer overall survival in a pan-cancer analysis, though not in individual tumor types. This prompted us to explore potential biochemical and functional differences between ACLY isoforms. Here, we show that there are no discernible differences in enzymatic activity or stability between isoforms or phosphomutants of ACLY in vitro. Similarly, both isoforms and phosphomutants were able to rescue ACLY functions, including fatty acid synthesis and bulk histone acetylation, when re-expressed in Acly knockout cells. Deletion of Acly exon 14 in mice did not overtly impact development or metabolic physiology nor did it attenuate tumor burden in a genetic model of intestinal cancer. Notably, expression of epithelial splicing regulatory protein 1 (ESRP1) is highly correlated with ACLY PSI. We report that ACLY splicing is regulated by ESRP1. In turn, both ESRP1 expression and ACLY PSI are correlated with specific immune signatures in tumors. Despite these intriguing patterns of ACLY splicing in healthy and cancer tissues, functional differences between the isoforms remain elusive.
Collapse
Affiliation(s)
- Julianna G Supplee
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hayley C Affronti
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Richard Duan
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - Phuong T T Nguyen
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laura V Pinheiro
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael C Noji
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jack M Drummond
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kevin Huang
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kollin Schultz
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Chi V Dang
- The Wistar Institute, Philadelphia, Pennsylvania, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; The Ludwig Institute for Cancer Research, New York, New York, USA
| | - Ronen Marmorstein
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Kathryn E Wellen
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
4
|
Kwon MJ. Role of epithelial splicing regulatory protein 1 in cancer progression. Cancer Cell Int 2023; 23:331. [PMID: 38110955 PMCID: PMC10729575 DOI: 10.1186/s12935-023-03180-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023] Open
Abstract
As aberrant alternative splicing by either dysregulation or mutations of splicing factors contributes to cancer initiation and progression, splicing factors are emerging as potential therapeutic targets for cancer therapy. Therefore, pharmacological modulators targeting splicing factors have been under development. Epithelial splicing regulatory protein 1 (ESRP1) is an epithelial cell-specific splicing factor, whose downregulation is associated with epithelial-mesenchymal transition (EMT) by regulating alternative splicing of multiple genes, such as CD44, CTNND1, ENAH, and FGFR2. Consistent with the downregulation of ESRP1 during EMT, it has been initially revealed that high ESRP1 expression is associated with favorable prognosis and ESRP1 plays a tumor-suppressive role in cancer progression. However, ESRP1 has been found to promote cancer progression in some cancers, such as breast and ovarian cancers, indicating that it plays a dual role in cancer progression depending on the type of cancer. Furthermore, recent studies have reported that ESRP1 affects tumor growth by regulating the metabolism of tumor cells or immune cell infiltration in the tumor microenvironment, suggesting the novel roles of ESRP1 in addition to EMT. ESRP1 expression was also associated with response to anticancer drugs. This review describes current understanding of the roles and mechanisms of ESRP1 in cancer progression, and further discusses the emerging novel roles of ESRP1 in cancer and recent attempts to target splicing factors for cancer therapy.
Collapse
Affiliation(s)
- Mi Jeong Kwon
- Vessel-Organ Interaction Research Center (MRC), College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea.
- BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
5
|
He Y, Wang X. Identifying biomarkers associated with immunotherapy response in melanoma by multi-omics analysis. Comput Biol Med 2023; 167:107591. [PMID: 37875043 DOI: 10.1016/j.compbiomed.2023.107591] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023]
Abstract
Despite immune checkpoint inhibitors (ICIs) have shown the greatest success in melanoma treatment, only a subset of melanoma patients responds well to ICIs. Thus, identifying predictive biomarkers for immunotherapy response is crucial. In this study, we took complementary advantages of immunotherapy data and The Cancer Genome Atlas (TCGA) multi-omics data to explore the predictive biomarkers for the response to immunotherapy in melanoma. We first predicted responsive and non-responsive melanomas in the TCGA skin cutaneous melanoma (SKCM) cohort based on both somatic mutation and transcriptome datasets which involved immunotherapy data for melanoma. This method identified 170 responsive and 56 non-responsive melanomas in TCGA-SKCM. Based on the TCGA-SKCM data, we performed a comprehensive comparison of multi-omics molecular features between responsive and non-responsive melanomas. We identified the molecular features significantly associated with immunotherapy response in melanoma at the genome, transcriptome, epigenome, and proteome levels, respectively. Our analysis confirmed certain immunotherapy response-associated biomarkers, such as tumor mutation burden (TMB), copy number alteration (CNA), intratumor heterogeneity (ITH), PD-L1 expression, and tumor immunity. Moreover, we identified some novel molecular features associated with immunotherapy response: (1) the activation of mast cells and dendritic cells correlating negatively with immunotherapy response; (2) the enrichment of many oncogenic pathways correlating positively with immunotherapy response, such as JAK-STAT, RAS, MAPK, HIF-1, PI3K-Akt, and VEGF pathways; and (3) a number of microRNAs and proteins whose expression correlates with immunotherapy response. In addition, the mTOR signaling pathway has a negative association with immunotherapy response. The novel biomarkers have potential predictive values in immunotherapy response and warrant further investigation.
Collapse
Affiliation(s)
- Yin He
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
6
|
Zhang M, Huang Y, Pan J, Sang C, Lin Y, Dong L, Shen X, Wu Y, Song G, Ji S, Liu F, Wang M, Zheng Y, Zhang S, Wang Z, Ren J, Gao D, Zhou J, Fan J, Wei W, Lin J, Gao Q. An Inflammatory Checkpoint Generated by IL1RN Splicing Offers Therapeutic Opportunity for KRAS-Mutant Intrahepatic Cholangiocarcinoma. Cancer Discov 2023; 13:2248-2269. [PMID: 37486241 DOI: 10.1158/2159-8290.cd-23-0282] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/30/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
KRAS mutations are causally linked to protumor inflammation and are identified as driving factors in tumorigenesis. Here, using multiomics data gathered from a large set of patients, we showed that KRAS mutation was associated with a specific landscape of alternative mRNA splicing that connected to myeloid inflammation in intrahepatic cholangiocarcinoma (iCCA). Then, we identified a negative feedback mechanism in which the upregulation of interleukin 1 receptor antagonist (IL1RN)-201/203 due to alternative splicing confers vital anti-inflammatory effects in KRAS-mutant iCCA. In KRAS-mutant iCCA mice, both IL1RN-201/203 upregulation and anakinra treatment ignited a significant antitumor immune response by altering neutrophil recruitment and phenotypes. Furthermore, anakinra treatment synergistically enhanced anti-PD-1 therapy to activate intratumoral GZMB+ CD8+ T cells in KRAS-mutant iCCA mice. Clinically, we found that high IL1RN-201/203 levels in patients with KRAS-mutant iCCA were significantly associated with superior response to anti-PD-1 immunotherapy. SIGNIFICANCE This work describes a novel inflammatory checkpoint mediated by IL1RN alternative splicing variants that may serve as a promising basis to develop therapeutic options for KRAS-mutant iCCA and other cancers. This article is featured in Selected Articles from This Issue, p. 2109.
Collapse
Affiliation(s)
- Mao Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Yingying Huang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiaomeng Pan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Chen Sang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Youpei Lin
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Liangqing Dong
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Xia Shen
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yingcheng Wu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Guohe Song
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Shuyi Ji
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Fen Liu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Mengcheng Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yuyan Zheng
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sirui Zhang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zefeng Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianke Ren
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Daming Gao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wu Wei
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Lingang Laboratory, Shanghai, China
- Translational Medicine Institute of Jiangxi, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Jian Lin
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Harnessing epithelial-mesenchymal plasticity to boost cancer immunotherapy. Cell Mol Immunol 2023; 20:318-340. [PMID: 36823234 PMCID: PMC10066239 DOI: 10.1038/s41423-023-00980-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/17/2023] [Indexed: 02/25/2023] Open
Abstract
Immune checkpoint blockade (ICB) therapy is a powerful option for cancer treatment. Despite demonstrable progress, most patients fail to respond or achieve durable responses due to primary or acquired ICB resistance. Recently, tumor epithelial-to-mesenchymal plasticity (EMP) was identified as a critical determinant in regulating immune escape and immunotherapy resistance in cancer. In this review, we summarize the emerging role of tumor EMP in ICB resistance and the tumor-intrinsic or extrinsic mechanisms by which tumors exploit EMP to achieve immunosuppression and immune escape. We discuss strategies to modulate tumor EMP to alleviate immune resistance and to enhance the efficiency of ICB therapy. Our discussion provides new prospects to enhance the ICB response for therapeutic gain in cancer patients.
Collapse
|
8
|
Liu Z, Zhang X, Zhang H, Zhang H, Yi Z, Zhang Q, Liu Q, Liu X. Multi-Omics Analysis Reveals Intratumor Microbes as Immunomodulators in Colorectal Cancer. Microbiol Spectr 2023; 11:e0503822. [PMID: 36786568 PMCID: PMC10100960 DOI: 10.1128/spectrum.05038-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/19/2023] [Indexed: 02/15/2023] Open
Abstract
Recent studies indicated that intratumor microbes are an essential part of the tumor microenvironment. Here, we performed an integrated analysis of genetic, epigenetic, and intratumor microbial factors to unravel the potential remodeling mechanisms of immune-cell infiltration (ICI) and tumorigenesis of colorectal cancer (CRC). We identified the components and structure of the intratumor microbiome as primary contributors to the difference in survival between ICI subtypes. Multiple tumor-infiltrating immune cells (TIICs) and immune-related genes were associated with intratumor microbial abundance. Additionally, we found that Clostridium was enriched in CRC patients who were nonsensitive to immune checkpoint blockade (ICB) therapy. We further provided clues that the intratumor microbes might influence the response to ICB therapy by mediating TIICs, especially MAIT (mucosa-associated invariant T) cells. Finally, three ICB-related TIICs and 22 of their associated microbes showed the potential to predict the response to ICB therapy (area under the receiver operating characteristic curve [AUC] = 89%). Our findings highlight the crucial role of intratumor microbes in affecting immune-cell infiltration patterns, prognosis, and therapy response of CRC and provide insights for improving current immunotherapeutic treatment strategies and prognosis for CRC patients. IMPORTANCE Using the multi-omics data from The Cancer Genome Atlas (TCGA) colorectal cancer (CRC) cohort, we estimated the tumor microenvironment (TME) infiltration patterns of patients and unraveled the interplay of gene expression, epigenetic modification, and the intratumor microbiome. This study suggests the impact of intratumor microbes on maintaining the tumor immune microenvironment in the pathogenesis of CRC and modulating the response to immune checkpoint blockade (ICB) therapy. We identified a set of combined features, including 3 ICB-related tumor-infiltrating immune cells (TIICs) and 22 of their associated microbes, that are predictive of ICB responses.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Pathogen Biology—Microbiology Division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Xuemei Zhang
- Department of Pathogen Biology—Microbiology Division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Haoding Zhang
- Department of Pathogen Biology—Microbiology Division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Hong Zhang
- Department of Pathogen Biology—Microbiology Division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Zhongyuan Yi
- Department of Pathogen Biology—Microbiology Division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Qingqing Zhang
- Department of Pathogen Biology—Microbiology Division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Qisha Liu
- Department of Pathogen Biology—Microbiology Division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Xingyin Liu
- Department of Pathogen Biology—Microbiology Division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Yu X, Luo B, Lin J, Zhu Y. Alternative splicing event associated with immunological features in bladder cancer. Front Oncol 2023; 12:966088. [PMID: 36686818 PMCID: PMC9851621 DOI: 10.3389/fonc.2022.966088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/30/2022] [Indexed: 01/07/2023] Open
Abstract
Bladder cancer (BLCA) is the most prevalent urinary tumor with few treatments. Alternative splicing (AS) is closely related to tumor development and tumor immune microenvironment. However, the comprehensive analysis of AS and prognosis and immunological features in BLCA is still lacking. In this study, we downloaded RNA-Seq data and clinical information from The Cancer Genome Atlas (TCGA) database, and AS events were acquired from the TCGA Splice-seq. A total of eight prognostic AS events (C19orf57|47943|ES, ANK3|11845|AP, AK9|77203|AT, GRIK2|77096|AT, DYM|45472|ES, PTGER3|3415|AT, ACTG1|44120|RI, and TRMU|62711|AA) were identified by univariate analysis and least absolute shrinkage and selection operator (LASSO) regression analysis to construct a risk score model. The Kaplan-Meier analysis revealed that the high-risk group had a worse prognosis compared with the low-risk group. The area under the receiver operating characteristic (ROC) curves (AUCs) for this risk score model in 1, 3, and 5 years were 0.698, 0.742, and 0.772, respectively. One of the prognostic AS event-related genes, TRMU, was differentially expressed between tumor and normal tissues in BLCA. The single-sample gene set enrichment analysis (ssGSEA) and CIBERSORT algorithm showed that both the risk score model and TRMU were significantly associated with tumor immune microenvironment and immune status (immune cells, immune-related pathway, and immune checkpoint) in BLCA patients. The TIMER database confirmed the relationship between the expression of TRMU and immune cells and checkpoint genes. Furthermore, Cytoscape software 3.8.0 was used to construct the regulatory network between AS and splicing factors (SFs). Our study demonstrated that AS events were powerful biomarkers to predict the prognosis and immune status in BLCA, which may be potential therapeutic targets in BLCA.
Collapse
Affiliation(s)
- Xinbo Yu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bixian Luo
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianwei Lin
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Zhu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Yu Zhu,
| |
Collapse
|
10
|
Underlying mechanisms of epithelial splicing regulatory proteins in cancer progression. J Mol Med (Berl) 2022; 100:1539-1556. [PMID: 36163376 DOI: 10.1007/s00109-022-02257-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/31/2022] [Accepted: 09/12/2022] [Indexed: 12/14/2022]
Abstract
Cancer is the second-leading disease-related cause of global mortality after cardiovascular disease. Despite significant advances in cancer therapeutic strategies, cancer remains one of the major obstacles to human life extension. Cancer pathogenesis is extremely complicated and not fully understood. Epithelial splicing regulatory proteins (ESRPs), including ESRP1 and ESRP2, belong to the heterogeneous nuclear ribonucleoprotein family of RNA-binding proteins and are crucial regulators of the alternative splicing of messenger RNAs (mRNAs). The expression and activity of ESRPs are modulated by various mechanisms, including post-translational modifications and non-coding RNAs. Although a growing body of evidence suggests that ESRP dysregulation is closely associated with cancer progression, the detailed mechanisms remain inconclusive. In this review, we summarize recent findings on the structures, functions, and regulatory mechanisms of ESRPs and focus on their underlying mechanisms in cancer progression. We also highlight the clinical implications of ESRPs as prognostic biomarkers and therapeutic targets in cancer treatment. The information reviewed herein could be extremely beneficial to the development of individualized therapeutic strategies for cancer patients.
Collapse
|
11
|
Sun Z, Guo Y, Zhang D, Zhang G, Zhang Y, Wang X. FABP7 inhibits proliferation and invasion abilities of cutaneous squamous cell carcinoma cells via the Notch signaling pathway. Oncol Lett 2022; 24:254. [PMID: 35765272 PMCID: PMC9219017 DOI: 10.3892/ol.2022.13374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 05/24/2021] [Indexed: 11/15/2022] Open
Abstract
Cutaneous squamous cell carcinoma (CSCC) is one of the most common non-melanoma skin cancers worldwide. Fatty acid-binding protein 7 (FABP7) has been reported to be involved in the occurrence, development, metastasis and prognosis of various tumors. In addition, downregulated FABP7 expression was demonstrated in cutaneous malignant melanoma in a previous study. Therefore, we speculated that FABP7 may be a biomarker for CSCC diagnosis. The aim of the present study was to determine the molecular mechanism underlying the effects of FABP7 in CSCC, which may provide a new diagnostic biomarker or treatment target for CSCC. Reverse transcription-PCR, western blotting and immunohistochemistry assays were performed to detect the expression levels of FABP7 in CSCC tissues and cells. Overexpression of FABP7 was achieved in A431 and colo-16 cell lines by transfection with an overexpression vector (oeFABP7). Cell proliferation, colony formation, migration and invasion were detected by Cell Counting Kit-8, crystal violet, scratch and Transwell assays, respectively. Following FABP7 overexpression, western blotting was used to determine the expression levels of proliferation-, invasion- and Notch pathway-associated proteins, including Snail, N-cadherin, Twist, matrix metalloproteinase (MMP)-2, MMP-7, Notch 1 and Notch 3. In addition a CSCC model in nude mice was constructed. Immunohistochemistry was used to determine the expression levels of FABP7, Ki67, Notch 1 and Notch 3. It was demonstrated that FABP7 expression levels were significantly reduced in human CSCC tissues and cells compared with normal samples. Overexpression of FABP7 inhibited the proliferation, invasion and migration abilities of A431 and colo-16 cells compared with those in the negative control group. In addition, transfection with oeFABP7 reduced the expression levels of proliferation-, invasion- and Notch pathway-associated proteins compared with those in the negative control group. Overexpression of FABP7 also reduced the growth of CSCC tumors in vivo and inhibited the expression of Ki67, Notch 1 and Notch 3. Therefore, the results of the present study suggested that FABP7 may inhibit the proliferation and invasion of CSCC cells via the Notch signaling pathway.
Collapse
Affiliation(s)
- Zhonghui Sun
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200050, P.R. China.,Department of Dermatology, Fengxian Institute of Dermatosis Prevention and Treatment, Shanghai 201408, P.R. China
| | - Yunyi Guo
- Department of Dermatology, Fengxian Institute of Dermatosis Prevention and Treatment, Shanghai 201408, P.R. China
| | - Danlu Zhang
- Department of Dermatology, Fengxian Institute of Dermatosis Prevention and Treatment, Shanghai 201408, P.R. China
| | - Guolong Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200050, P.R. China
| | - Ying Zhang
- Department of Dermatology, Fengxian Institute of Dermatosis Prevention and Treatment, Shanghai 201408, P.R. China
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200050, P.R. China
| |
Collapse
|
12
|
Wang G, Qi W, Shen L, Wang S, Xiao R, Li W, Zhang Y, Bian X, Sun L, Qiu W. The pattern of alternative splicing in lung adenocarcinoma shows novel events correlated with tumorigenesis and immune microenvironment. BMC Pulm Med 2021; 21:400. [PMID: 34872548 PMCID: PMC8647402 DOI: 10.1186/s12890-021-01776-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the leading cause of cancer deaths worldwide due to the lack of early diagnostic markers and specific drugs. Previous studies have shown the association of LUAD growth with aberrant alternative splicing (AS). Herein, clinical data of 535 tumor tissues and 59 normal tissues were extracted from The Cancer Genome Atlas (TCGA) database. Each sample was analyzed using the ESTIMATE algorithm; a comparison between higher and lower score groups (stromal or immune) was made to determine the overall- and progression-free survival-related differentially expressed AS (DEAS) events. We then performed unsupervised clustering of these DEASs, followed by determining their relationship with survival rate, immune cells, and the tumor microenvironment (TME). Next, two prognostic signatures were developed using bioinformatics tools to explore the prognosis of cases with LUAD. Five OS- and six PFS-associated DEAS events were implemented to establish a prognostic risk score model. When compared to the high-risk group (HRG), the PFS and OS of the low-risk group (LRG) were found to be considerable. Additionally, a better prognosis was found considerably associated with the ESTIMATE score of the patients as well as immune cells infiltration. Our analysis of AS events in LUAD not only helps to clarify the tumorigenesis mechanism of AS but also provides ideas for revealing potential prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Gongjun Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.,Department of Medcine, Qingdao University, Qingdao, China
| | - Weiwei Qi
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Liwei Shen
- Department of Oncology, Women and Children's Hospital, Qingdao University, Qingdao, Shandong, China
| | - Shasha Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ruoxi Xiao
- Department of Medcine, Qingdao University, Qingdao, China
| | - Wenqian Li
- Department of Medcine, Qingdao University, Qingdao, China
| | - Yuqi Zhang
- Department of Medcine, Qingdao University, Qingdao, China
| | - Xiaoqian Bian
- Department of Medcine, Qingdao University, Qingdao, China
| | - Libin Sun
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Wensheng Qiu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
13
|
Liang T, Chen J, Xu G, Zhang Z, Xue J, Zeng H, Jiang J, Chen T, Qin Z, Li H, Ye Z, Nie Y, Liu C, Zhan X. Epithelial-mesenchymal transition interaction with CD8+ T cell, dendritic cell and immune checkpoints in the development of melanoma. Cancer Biomark 2021; 34:131-147. [PMID: 34957999 DOI: 10.3233/cbm-210329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Melanoma is fatal cancer originating from melanocytes, whose high metastatic potential leads to an extremely poor prognosis. OBJECTIVE This study aimed to reveal the relationship among EMT, TIICs, and immune checkpoints in melanoma. METHODS Gene expression data and clinical data of melanoma were downloaded from TCGA, UCSC Xena and GEO databases. EMT-related DEGs were detected for risk score calculation. "ESTIMATE" and "xCell" were used for estimating TIICs and obtaining 64 immune cell subtypes, respectively. Moreover, we evaluated the relationship between the risk score and immune cell subtypes and immune checkpoints. RESULTS Seven EMT-related genes were selected to establish a risk scoring system because of their integrated prognostic relevance. The results of GSEA revealed that most of the gene sets focused on immune-related pathways in the low-risk score group. The risk score was significantly correlated with the xCell score of some TIICs, which significantly affected the prognosis of melanoma. Patients with a low-risk score may be associated with a better response to ICI therapy. CONCLUSION The individualized risk score could effectively conduct risk stratification, overall survival prediction, ICI therapy prediction, and TME judgment for patients with melanoma, which would be conducive to patients' precise treatment.
Collapse
Affiliation(s)
- Tuo Liang
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiarui Chen
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Guoyong Xu
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zide Zhang
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiang Xue
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Haopeng Zeng
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jie Jiang
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Tianyou Chen
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhaojie Qin
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Hao Li
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhen Ye
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yunfeng Nie
- Guangxi Medical University, Nanning, Guangxi, China
| | - Chong Liu
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xinli Zhan
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
14
|
Wu J, Sun Y, Li J, Ai M, You L, Shi J, Yu F. Analysis of Prognostic Alternative Splicing Reveals the Landscape of Immune Microenvironment in Thyroid Cancer. Front Oncol 2021; 11:763886. [PMID: 34733794 PMCID: PMC8558422 DOI: 10.3389/fonc.2021.763886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/28/2021] [Indexed: 11/28/2022] Open
Abstract
Background The incidence of thyroid cancer (THCA) continues to increase in recent decades. Accumulating evidence showed that the unbalanced alternative splicing (AS) promotes the occurrence of cancers and leads to poor prognosis of patients. However, the research on alternative splicing events in THCA is lacking, and its underlying mechanism is not fully understood. This study identifies a novel prognostic signature based on AS events to reveal the relationship of AS with tumor immune microenvironment. Methods Based on the AS data, transcriptional data, and clinical information, the differentially expressed alternative splicings (DEASs) were screened out. Least absolute shrinkage and selection operator (LASSO) regression and multi-Cox regression analyses were employed to identify prognostic results related to AS events and establish a prognostic signature. The predictive ability of the signature was assessed by Kaplan-Meier (K-M) survival curve, risk plots, and receiver operating characteristic (ROC) curves. Furthermore, correlations between tumor-infiltrating immune cells, immune checkpoints, immune score and prognostic signature were analyzed. Results According to the LASSO regression analysis, a total of five AS events were selected to construct the signature. K-M survival curve showed that the higher the risk score, the worse the OS of the patients. Risk plots further confirmed this result. ROC curves indicated the high predictive efficiency of the prognostic signature. As for tumor immune microenvironment, patients in the high-risk group had a higher proportion of immune cells, including plasma cell, CD8+ T cell, macrophages (M0 and M2), and activated dendritic cell. Immune checkpoint proteins, such as PDCD1LG2, HAVCR2, CD274, etc., were significantly higher in the high-risk group. We also found that the ESTIMATE score, stromal score, and immune score were lower in the high-risk group, while the result of tumor purity was the opposite. Conclusions Collectively, a prognostic signature consisting of five AS events in THCA was established. Furthermore, there was an inextricable correlation between immune cell infiltration, immune checkpoint proteins, and AS events. This study will provide a basis for THCA immunotherapy in the future.
Collapse
Affiliation(s)
- Jian Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Yifang Sun
- Department of Ophthalmology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Junzheng Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Maomao Ai
- Department of Otorhinolaryngology-Head and Neck Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Lihua You
- Department of Otorhinolaryngology-Head and Neck Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Jianbo Shi
- Department of Otorhinolaryngology-Head and Neck Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China.,Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
| | - Feng Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
15
|
Luo D, Zhao D, Zhang M, Hu C, Li H, Zhang S, Chen X, Huttad L, Li B, Jin C, Lin C, Han B. Alternative Splicing-Based Differences Between Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma: Genes, Immune Microenvironment, and Survival Prognosis. Front Oncol 2021; 11:731993. [PMID: 34760694 PMCID: PMC8574058 DOI: 10.3389/fonc.2021.731993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/29/2021] [Indexed: 12/17/2022] Open
Abstract
Alternative splicing (AS) event is a novel biomarker of tumor tumorigenesis and progression. However, the comprehensive analysis of hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) is lacking. Differentially expressed analysis was used to identify the differentially expressed alternative splicing (DEAS) events between HCC or ICC tissues and their normal tissues. The correlation between DEAS events and functional analyses or immune features was evaluated. The cluster analysis based on DEAS can accurately reflect the differences in the immune microenvironment between HCC and ICC. Forty-five immune checkpoints and 23 immune features were considered statistically significant in HCC, while only seven immune checkpoints and one immune feature in ICC. Then, the prognostic value of DEAS events was studied, and two transcripts with different basic cell functions (proliferation, cell cycle, invasion, and migration) were produced by ADHFE1 through alternative splicing. Moreover, four nomograms were established in conjunction with relevant clinicopathological factors. Finally, we found two most significant splicing factors and further showed their protein crystal structure. The joint analysis of the AS events in HCC and ICC revealed novel insights into immune features and clinical prognosis, which might provide positive implications in HCC and ICC treatment.
Collapse
Affiliation(s)
- Dingan Luo
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Deze Zhao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Mao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chuan Hu
- Medical College, Qingdao University, Qingdao, China
| | - Haoran Li
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaowu Chen
- Asian Liver Center, Department of Surgery, Medical School of Stanford University, Stanford, CA, United States
| | - Lakshmi Huttad
- Asian Liver Center, Department of Surgery, Medical School of Stanford University, Stanford, CA, United States
| | - Bailiang Li
- Department of Radiation Oncology, Medical School of Stanford University, Stanford, CA, United States
| | - Cheng Jin
- Department of Radiation Oncology, Medical School of Stanford University, Stanford, CA, United States
| | - Changwei Lin
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Bing Han
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
16
|
Wu T, Wang W, Wang Y, Yao M, Du L, Zhang X, Huang Y, Wang J, Yu H, Bian X. Comprehensive analysis of alternative splicing profiling reveals novel events associated with prognosis and the infiltration of immune cells in prostate cancer. Transl Androl Urol 2021; 10:3056-3068. [PMID: 34430408 PMCID: PMC8350246 DOI: 10.21037/tau-21-585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/16/2021] [Indexed: 11/17/2022] Open
Abstract
Background Alternative splicing (AS) is believed to play a vital role in tumor development. Therefore, comprehensive investigation of AS and its biological function in prostate cancer (PCa) is crucial. Methods The AS profiling of 489 patients with PCa was obtained from The Cancer Genome Atlas (TCGA) SpliceSeq database. Bioinformatics tools were used to describe splicing associations and build prognostic models. Unsupervised clustering of the determined prognostic AS events and the relationship with immune characteristics were also explored. Results In total, 20,723 AS events were detected and 2,805 were identified in PCa. In the regulatory networks, the data suggested a significant correlation between splicing factor (SF) expression and AS events. To stratify the progression risk of PCa patients, prognostic models were constructed using splicing patterns. Six AS events were screened out as independent prognostic factors for progression-free survival. Based on the gene features, we constructed the combined prognostic predictors model, and the receiver operating characteristic (ROC) curve for this model reached a high area under the ROC curve (AUC) of 0.729793, indicating a favorable ability to predict patient outcomes. Through unsupervised clustering analysis, the correlations between AS-based clusters and prognosis as well as immune characteristics were revealed. The correlation analysis on TIMER revealed the relationship between gene expression and immune cell infiltration. Conclusions This in-depth genome-wide analysis of the AS profiling in PCa revealed unique AS events associated with cancer progression and the infiltration of immune cells, with potential for predicting outcomes and therapeutic responses.
Collapse
Affiliation(s)
- Tianqi Wu
- Shanghai Urological Cancer Institute, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Radiotherapy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenfeng Wang
- Shanghai Urological Cancer Institute, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yanhao Wang
- Shanghai Urological Cancer Institute, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Mengfei Yao
- Shanghai Urological Cancer Institute, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Leilei Du
- Shanghai Urological Cancer Institute, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xingming Zhang
- Shanghai Urological Cancer Institute, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yongqiang Huang
- Shanghai Urological Cancer Institute, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jianhua Wang
- Shanghai Urological Cancer Institute, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,School of Medicine, Anhui University of Science & Technology, Huainan, China
| | - Hongbo Yu
- Department of Urology, Affiliated Mingji Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaojie Bian
- Shanghai Urological Cancer Institute, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
17
|
The RNA-Binding Protein ESRP1 Modulates the Expression of RAC1b in Colorectal Cancer Cells. Cancers (Basel) 2021; 13:cancers13164092. [PMID: 34439247 PMCID: PMC8392041 DOI: 10.3390/cancers13164092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Colorectal cancer (CRC) ranks third for incidence and second for number of deaths among cancer types worldwide. Poor patient survival due to inadequate response to currently available treatment regimens points to the urgent requirement for personalized therapy in CRC patients. Our aim was to provide mechanistic insights into the pro-tumorigenic role of the RNA-binding protein ESRP1, which is highly expressed in a subset of CRC patients. We show that, in CRC cells, ESRP1 binds to and has the same trend in expression as RAC1b, a well-known tumor promoter. Thus, RAC1b may be a potential therapeutic target in ESRP1-overexpressing CRC. Abstract RNA binding proteins are well recognized as critical regulators of tumorigenic processes through their capacity to modulate RNA biogenesis, including alternative splicing, RNA stability and mRNA translation. The RNA binding protein Epithelial Splicing Regulatory Protein 1 (ESRP1) can act as a tumor suppressor or promoter in a cell type- and disease context-dependent manner. We have previously shown that elevated expression of ESRP1 in colorectal cancer cells can drive tumor progression. To gain further insights into the pro-tumorigenic mechanism of action of ESRP1, we performed cDNA microarray analysis on two colorectal cells lines modulated for ESRP1 expression. Intriguingly, RAC1b was highly expressed, both at mRNA and protein levels, in ESRP1-overexpressing cells, while the opposite trend was observed in ESRP1-silenced CRC cells. Moreover, RAC1 and RAC1b mRNA co-immunoprecipitate with ESRP1 protein. Silencing of RAC1b expression significantly reduced the number of soft agar colonies formed by ESRP1-overexpressing cells, suggesting that ESRP1 acted, at least partially, through RAC1b in its tumor-promoting activities in CRC cells. Thus, our data provide molecular cues on targetable candidates in CRC cases with high ESRP1 expression.
Collapse
|
18
|
Crosstalk between RNA-Binding Proteins and Immune Microenvironment Revealed Two RBP Regulatory Patterns with Distinct Immunophenotypes in Periodontitis. J Immunol Res 2021; 2021:5588429. [PMID: 34285922 PMCID: PMC8275429 DOI: 10.1155/2021/5588429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is an inflammatory disease whose pathogenesis is closely related with immunology. RNA-binding proteins (RBPs) were found to play crucial roles in immunity. Therefore, we aimed to investigate the potential impact of RBPs in the immune microenvironment in periodontitis. The differential expressions of RBPs in periodontitis and healthy samples were determined and were used to construct an RBP-based classifier for periodontitis using logistic regression. The correlations between RBPs and immune characteristics were investigated by the Spearman correlation. Unsupervised clustering was conducted to identify the RBP regulatory patterns. RBP-related genes were identified by WGCNA, while biological distinctions were revealed by GSVA and GO. 24 dysregulated RBPs were identified, from which a 12-RBP classifier was established to distinguish periodontitis with AUC of 0.942. Close protein-protein interactions and expression correlations were observed especially between SPATS2 and ISG20. ISG20 and ESRP1 were found to be highly correlated with immunocyte infiltration, immune signaling activation, and HLA expressions in periodontitis. Two distinct RBP regulatory patterns were identified with different immune and other biological characteristics in periodontitis. Our findings indicate a significant impact of RBPs in shaping the immune microenvironment in periodontitis, which might bring new insights into the understanding of immune mechanisms in the pathogenesis of periodontitis.
Collapse
|
19
|
The pan-cancer landscape of crosstalk between epithelial-mesenchymal transition and immune evasion relevant to prognosis and immunotherapy response. NPJ Precis Oncol 2021; 5:56. [PMID: 34158591 PMCID: PMC8219790 DOI: 10.1038/s41698-021-00200-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
An emerging body of evidence has recently recognized the coexistence of epithelial-mesenchymal transition (EMT) and immune response. However, a systems-level view and survey of the interplay between EMT and immune escape program, and their impact on tumor behavior and clinical outcome across various types of cancer is lacking. Here, we performed comprehensive multi-omics analyses to characterize the landscape of crosstalk between EMT and immune evasion and their clinical relevance across 17 types of solid cancer. Our study showed the presence of complex and dynamic immunomodulatory crosstalk between EMT and immune evasion shared by pan-cancer, and the crosstalk was significantly associated with cancer prognosis and immunotherapy response. Integrative quantitative analyses of genomics and immunogenomics revealed that cellular composition of immune infiltrates, non-synonymous mutation burden, chromosomal instability and oncogenic gene alterations are associated with the balance between EMT and immune evasion. Finally, we proposed a scoring model termed EMT-CYT Index (ECI) to quantify the EMT-immunity axis, which was a superior predictor of prognosis and immunotherapy response across different malignancies. By providing a systematic overview of crosstalk between EMT and immune evasion, our study highlights the potential of pan-cancer EMT-immunity crosstalk as a paradigm for dissecting molecular mechanisms underlying cancer progression and guiding more effective and generalized immunotherapy strategies.
Collapse
|
20
|
Deng Y, Zhao H, Ye L, Hu Z, Fang K, Wang J. Correlations Between the Characteristics of Alternative Splicing Events, Prognosis, and the Immune Microenvironment in Breast Cancer. Front Genet 2021; 12:686298. [PMID: 34194482 PMCID: PMC8236959 DOI: 10.3389/fgene.2021.686298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/17/2021] [Indexed: 12/28/2022] Open
Abstract
Objective Alternative splicing (AS) is the mechanism by which a few genes encode numerous proteins, and it redefines the concept of gene expression regulation. Recent studies showed that dysregulation of AS was an important cause of tumorigenesis and microenvironment formation. Therefore, we performed a systematic analysis to examine the role of AS in breast cancer (Breast Cancer, BrCa) progression. Methods The present study included 993 BrCa patients from The Cancer Genome Atlas (TCGA) database in the genome-wide analysis of AS events. We used differential and prognostic analyses and found differentially expressed alternative splicing (DEAS) events and independent prognostic factors related to patients' overall survival (OS) and disease-free survival (DFS). We divided the patients into two groups based on these AS events and analyzed their clinical features, molecular subtyping and immune characteristics. We also constructed a splicing factor (SF) regulation network for key AS events and verified the existence of AS events in tissue samples using real-time quantitative PCR. Results A total of 678 AS events were identified as differentially expressed, of which 13 and 10 AS events were independent prognostic factors of patients' OS and DFS, respectively. Unsupervised clustering analysis based on these prognostic factors indicated that the Cluster 1 group had a better prognosis and more immune cell infiltration. SFs were significantly related to the expression of AS events, and AA-RPS21 was significantly upregulated in tumors. Conclusion Alternative splicing expands the mechanism of breast cancer progression from a new perspective. Notably, alternative splicing may affect the patient's prognosis by affecting the infiltration of immune cells. Our research provides important guidance for subsequent studies of AS in breast cancer.
Collapse
Affiliation(s)
- Youyuan Deng
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, China
| | - Hongjun Zhao
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, China
| | - Lifen Ye
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, China
| | - Zhiya Hu
- Department of Pharmacy, Third Hospital of Changsha, Changsha, China
| | - Kun Fang
- Department of Surgery, Yinchuan Maternal and Child Health Hospital, Yinchuan, China
| | - Jianguo Wang
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, China
| |
Collapse
|
21
|
Yu S, Cai L, Liu C, Gu R, Cai L, Zhuo L. Identification of prognostic alternative splicing events related to the immune microenvironment of hepatocellular carcinoma. Mol Med 2021; 27:36. [PMID: 33832428 PMCID: PMC8034091 DOI: 10.1186/s10020-021-00294-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/17/2021] [Indexed: 12/24/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world, and its 5-year survival rate is less than 20%, despite various treatments being available. Increasing evidence indicates that alternative splicing (AS) plays a nonnegligible role in the formation and development of the tumor microenvironment (TME). However, the comprehensive analysis of the impact on prognostic AS events on immune-related perspectives in HCC is lacking but urgently needed. Methods The transcriptional data and clinical information of HCC patients were downloaded from TCGA (The Cancer Genome Atlas) database for calculating immune and stromal scores by ESTIMATE algorithm. We then divided patients into high/low score groups and explored their prognostic significance using Kaplan–Meier curves. Based on stromal and immune scores, differentially expressed AS events (DEASs) were screened and evaluated with functional enrichment analysis. Additionally, a risk score model was established by applying univariate and multivariate Cox regression analyses. Finally, gene set variation analysis (GSVA) was adopted to explore differences in biological behaviors between the high- and low-risk subgroups. Results A total of 370 HCC patients with complete and qualified corresponding data were included in the subsequent analysis. According to the results of ESTIMATE analysis, we observed that the high immune/stromal score group had a longer survival probability, which was significantly correlated with prognosis in HCC patients. In addition, 467 stromal/immune score-related DEASs were identified, and enrichment analysis revealed that DEASs were significantly enriched in pathways related to HCC tumorigenesis and the immune microenvironment. More importantly, the final prognostic signature containing 16 DEASs showed powerful predictive ability. Finally, GSVA demonstrated that activation of carcinogenic pathways and immune-related pathways in the high-risk group may lead to poor prognosis. Conclusions Collectively, these outcomes revealed prognostic AS events related to carcinogenesis and the immune microenvironment, which may yield new directions for HCC immunotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00294-3.
Collapse
Affiliation(s)
- Shanshan Yu
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Luya Cai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Chuan Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Ruihong Gu
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Lingyi Cai
- Department of Hematology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Leying Zhuo
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Southern White Elephant Town, Ouhai, Wenzhou, Zhejiang, 325000, People's Republic of China.
| |
Collapse
|
22
|
Bleomycin induces epithelial-to-mesenchymal transition via bFGF/PI3K/ESRP1 signaling in pulmonary fibrosis. Biosci Rep 2021; 40:221712. [PMID: 31868203 PMCID: PMC6960066 DOI: 10.1042/bsr20190756] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 11/06/2019] [Accepted: 11/22/2019] [Indexed: 12/22/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal and chronic disease with a high rate of infection and mortality; however, its etiology and pathogenesis remain unclear. Studies have revealed that epithelial–mesenchymal transition (EMT) is a crucial cellular event in IPF. Here, we identified that the pulmonary fibrosis inducer bleomycin simultaneously increased the expression of bFGF and TGF-β1 and inhibited epithelial-specific regulatory protein (ESRP1) expression in vivo and in vitro. In addition, in vitro experiments showed that bFGF and TGF-β1 down-regulated the expression of ESRP1 and that silencing ESRP1 promoted EMT in A549 cells. Notably, we determined that bFGF activates PI3K/Akt signaling, and treatment with the PI3K/Akt inhibitor LY294002 inhibited bleomycin-induced cell morphology changes and EMT. In addition, the effects of LY294002 on bleomycin-induced EMT were inhibited by ESRP1 silencing in A549 cells. Taken together, these findings suggest that bleomycin induced EMT through down-regulating ESRP1 by simultaneously increasing bFGF and TGF-β1 in pulmonary fibrosis. Additionally, our findings indicated that bFGF inhibits ESRP1 by activating PI3K/Akt signaling.
Collapse
|
23
|
Chen B, Sun D, Qin X, Gao XH. Screening and identification of potential biomarkers and therapeutic drugs in melanoma via integrated bioinformatics analysis. Invest New Drugs 2021; 39:928-948. [PMID: 33501609 DOI: 10.1007/s10637-021-01072-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022]
Abstract
Melanoma is a highly aggressive malignant skin tumor with a high rate of metastasis and mortality. In this study, a comprehensive bioinformatics analysis was used to clarify the hub genes and potential drugs. Download the GSE3189, GSE22301, and GSE35388 microarray datasets from the Gene Expression Omnibus (GEO), which contains a total of 33 normal samples and 67 melanoma samples. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) approach analyze DEGs based on the DAVID. Use STRING to construct protein-protein interaction network, and use MCODE and cytoHubba plug-ins in Cytoscape to perform module analysis and identified hub genes. Use Gene Expression Profile Interactive Analysis (GEPIA) to assess the prognosis of genes in tumors. Finally, use the Drug-Gene Interaction Database (DGIdb) to screen targeted drugs related to hub genes. A total of 140 overlapping DEGs were identified from the three microarray datasets, including 59 up-regulated DEGs and 81 down-regulated DEGs. GO enrichment analysis showed that these DEGs are mainly involved in the biological process such as positive regulation of gene expression, positive regulation of cell proliferation, positive regulation of MAP kinase activity, cell migration, and negative regulation of the apoptotic process. The cellular components are concentrated in the membrane, dendritic spine, the perinuclear region of cytoplasm, extracellular exosome, and membrane raft. Molecular functions include protein homodimerization activity, calmodulin-binding, transcription factor binding, protein binding, and cytoskeletal protein binding. KEGG pathway analysis shows that these DEGs are mainly related to protein digestion and absorption, PPAR signaling pathway, signaling pathways regulating stem cells' pluripotency, and Retinol metabolism. The 23 most closely related DEGs were identified from the PPI network and combined with the GEPIA prognostic analysis, CDH3, ESRP1, FGF2, GBP2, KCNN4, KIT, SEMA4D, and ZEB1 were selected as hub genes, which are considered to be associated with poor prognosis of melanoma closely related. Besides, ten related drugs that may have therapeutic effects on melanoma were also screened. These newly discovered genes and drugs provide new ideas for further research on melanoma.
Collapse
Affiliation(s)
- Bo Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| | - Donghong Sun
- Department of Dermatology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, China
| | - Xiuni Qin
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xing-Hua Gao
- Department of Dermatology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
24
|
Zhao L, Zhang J, Liu Z, Wang Y, Xuan S, Zhao P. Comprehensive Characterization of Alternative mRNA Splicing Events in Glioblastoma: Implications for Prognosis, Molecular Subtypes, and Immune Microenvironment Remodeling. Front Oncol 2021; 10:555632. [PMID: 33575206 PMCID: PMC7870873 DOI: 10.3389/fonc.2020.555632] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 12/09/2020] [Indexed: 12/31/2022] Open
Abstract
Alternative splicing (AS) of pre-mRNA has been widely reported to be associated with the progression of malignant tumors. However, a systematic investigation into the prognostic value of AS events in glioblastoma (GBM) is urgently required. The gene expression profile and matched AS events data of GBM patients were obtained from The Cancer Genome Atlas Project (TCGA) and TCGA SpliceSeq database, respectively. 775 AS events were identified as prognostic factors using univariate Cox regression analysis. The least absolute shrinkage and selection operator (LASSO) cox model was performed to narrow down candidate AS events, and a risk score model based on several AS events were developed subsequently. The risk score-based signature was proved as an efficient predictor of overall survival and was closely related to the tumor purity and immunosuppression in GBM. Combined similarity network fusion and consensus clustering (SNF-CC) analysis revealed two distinct GBM subtypes based on the prognostic AS events, and the associations between this novel molecular classification and clinicopathological factors, immune cell infiltration, as well as immunogenic features were further explored. We also constructed a regulatory network to depict the potential mechanisms that how prognostic splicing factors (SFs) regulate splicing patterns in GBM. Finally, a nomogram incorporating AS events signature and other clinical-relevant covariates was built for clinical application. This comprehensive analysis highlights the potential implications for predicting prognosis and clinical management in GBM.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiayue Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiyuan Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shurui Xuan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Peng Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
25
|
Lin Z, Gong J, Zhong G, Hu J, Cai D, Zhao L, Zhao Z. Identification of Mutator-Derived Alternative Splicing Signatures of Genomic Instability for Improving the Clinical Outcome of Cholangiocarcinoma. Front Oncol 2021; 11:666847. [PMID: 34055632 PMCID: PMC8160381 DOI: 10.3389/fonc.2021.666847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/26/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Cholangiocarcinoma is an aggressive carcinoma with increasing incidence and poor outcomes worldwide. Genomic instability and alternative splicing (AS) events are hallmarks of carcinoma development and progression. The relationship between genomic instability, AS events, and tumor immune microenvironment remain unclear. METHODS The splicing profiles of patients with cholangiocarcinoma were obtained from The Cancer Genome Atlas (TCGA) spliceSeq database. The transcriptomics, simple nucleotide variation (SNP) and clinical data of patients with cholangiocarcinoma were obtained from TCGA database. Patients were divided into genomic unstable (GU-like) and genomic stable (GS-like) groups according to their somatic mutations. Survival-related differential AS events were identified through integrated analysis of splicing profiling and clinical data. Kyoto Encyclopedia of Genes and Genomes enrichment analysis was used to identify AS events occurring in genes enriched in cancer pathways. Pearson correlation was applied to analyze the splicing factors regulating AS events. CIBERSORT was used identify differentially infiltrating immune cells. RESULTS A prognostic signature was constructed with six AS events. Using this signature, the hazard ratio of risk score for overall survival is 2.362. For TCGA patients with cholangiocarcinoma, the area under the receiver operating characteristic curve is 0.981. CDK11A is a negative regulator of survival associated AS events. Additionally, the CD8+ T cell proportion and PD-L1 expression are upregulated in patients with cholangiocarcinoma and high splicing signatures. CONCLUSION We provide a prognostic signature for cholangiocarcinoma overall survival. The CDK11A splicing factor and SLC46A1-39899-ES and IARS-86836-ES AS events may be potential targets for cholangiocarcinoma therapy. Patients with high AS risk score may be more sensitive to anti-PD-L1/PD1 immunotherapy.
Collapse
Affiliation(s)
- Zijing Lin
- Department of Breast and Thyroid Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Guochao Zhong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jiejun Hu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Dong Cai
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lei Zhao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital & Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, China
- *Correspondence: Zhibo Zhao, ; Lei Zhao,
| | - Zhibo Zhao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- *Correspondence: Zhibo Zhao, ; Lei Zhao,
| |
Collapse
|
26
|
Liu C, Hu C, Li Z, Feng J, Huang J, Yang B, Wen T. Systematic profiling of alternative splicing in Helicobacter pylori-negative gastric cancer and their clinical significance. Cancer Cell Int 2020; 20:279. [PMID: 32617077 PMCID: PMC7325377 DOI: 10.1186/s12935-020-01368-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022] Open
Abstract
Background Alternative splicing (AS) may cause structural and functional variations in the protein to promote the proliferation of tumor cells. However, there is no comprehensive analysis of the clinical significance of AS in Helicobacter pylori-negative gastric cancer (HP− GC). Methods The clinical, gene expression profile data and AS events of 138 HP− GC patients were obtained from the database named the cancer genome atlas. Differently expressed AS (DEAS) events were determined by a comparison of the PSI values between HP− GC samples and adjacent normal samples. Unsupervised clustering analysis, proportional regression and Kaplan–Meier analysis were used to explore the association between clinical data and immune features and to establish two nomograms about the prognosis of HP− GC. Finally, splicing networks were constructed using Cytoscape. Results A total of 48141 AS events and 1041 DEAS events were found in HP− GC. Various functions and pathways of DEAS events parent genes were enriched, such as cell-substrate junction, cell leading edge, focal adhension, and AMPK signaling. Seven overall survival (OS)-related and seven disease-free survival (DFS)-related AS events were used to construct the prognostic signatures. Based on the independent prognostic factors, two nomograms were established and showed excellent performance. Then, splicing regulatory networks among the correlations suggested that splicing factors were significantly associated with prognostic DEASs. Finally, the unsupervised clustering analysis revealed that DEAS-based clusters were associated with clinical characteristics, tumor microenvironment, tumor mutation burden, and immune features. Conclusion Seven OS-related and seven DFS-related AS events have been found to be correlated with the prognosis of HP− GC and can be used as prognostic factors to establish an effective nomogram.
Collapse
Affiliation(s)
- Chuan Liu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001 Liaoning China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001 Liaoning China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001 Liaoning China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, 110001 Liaoning China
| | - Chuan Hu
- Qingdao University Medical College, Qingdao, 266071 Shandong China
| | - Zhi Li
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001 Liaoning China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001 Liaoning China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001 Liaoning China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, 110001 Liaoning China
| | - Jing Feng
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001 Liaoning China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001 Liaoning China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001 Liaoning China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, 110001 Liaoning China
| | - Jiale Huang
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001 Liaoning China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001 Liaoning China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001 Liaoning China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, 110001 Liaoning China
| | - Bowen Yang
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001 Liaoning China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001 Liaoning China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001 Liaoning China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, 110001 Liaoning China
| | - Ti Wen
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001 Liaoning China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001 Liaoning China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001 Liaoning China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, 110001 Liaoning China
| |
Collapse
|
27
|
Deng G, Zhou X, Chen L, Yao Y, Li J, Zhang Y, Luo C, Sun L, Tang J. High expression of ESRP1 regulated by circ-0005585 promotes cell colonization in ovarian cancer. Cancer Cell Int 2020; 20:174. [PMID: 32467669 PMCID: PMC7236301 DOI: 10.1186/s12935-020-01254-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/10/2020] [Indexed: 12/24/2022] Open
Abstract
Background Ovarian cancer is the third most common gynecological cancer in the world but the leading cause of death among gynecological malignancies. Epithelial splicing regulatory protein-1 (ESRP1), a key negative splicing regulator in epithelial-mesenchymal transition (EMT), has been proven to be overexpressed and may plays a role in epithelial ovarian cancer (EOC) progression. However, the functional roles of ESRP1 and the underlying mechanisms in this process still remain unclear. Methods Tumor invasion, migration, colony formation and animal experiments were used to study the malignant biological behavior of ESRP1. A vector-based system expressing circ-0005585 was established to investigate circRNA as a microRNAs sponge. RNA-Seq and cytoskeleton staining explored underlying mechanisms of ESRP1. Results Our results demonstrated that circ-0005585 regulates ESRP1 overexpression via sponging miR-23a/b and miR-15a/15b/16. Overexpression of ESRP1 suppresses EOC cell migration, but promotes colonization and drives a switch from mesenchymal to epithelial phenotype (MET) in association with actin cytoskeleton reorganization, mainly by alternative splicing EPB41L5 and RAC1. Furthermore, we have shown that high ESRP1 expression may be associated with immune-suppression in tumor immune microenvironment in vivo. Conclusions ESRP1 overexpression promotes MET status and correlates with actin cytoskeleton reorganization in EOC. ESRP1 plays an important role in EOC colonization. In addition, a miRs panel from two miR families can inhibit ESRP1, may provide an innovative approach for cancer theranostics.
Collapse
Affiliation(s)
- Guanming Deng
- 1Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital Of Xiangya School of Medicine, Central South University, Yuelu District, 283 Tongzipo Road, Changsha, Hunan 410013 People's Republic of China
| | - Xiaofang Zhou
- 1Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital Of Xiangya School of Medicine, Central South University, Yuelu District, 283 Tongzipo Road, Changsha, Hunan 410013 People's Republic of China
| | - Le Chen
- 2Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022 China
| | - Ying Yao
- Department of Gynecology and Obstetrics, The First People's Hospital of Yueyang, Yueyang, Hunan 414000 China
| | - Junjun Li
- 4Department of Pathology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013 China
| | - Yun Zhang
- 4Department of Pathology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013 China
| | - Chenhui Luo
- 5Department of Animal Lab, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013 China
| | - Lijuan Sun
- Department of Gynecology and Obstetrics, Shaoyang Central Hospital, Shaoyang, Hunan 422000 China
| | - Jie Tang
- 1Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital Of Xiangya School of Medicine, Central South University, Yuelu District, 283 Tongzipo Road, Changsha, Hunan 410013 People's Republic of China.,7Hunan Gynecologic Cancer Research Center, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013 China
| |
Collapse
|
28
|
Identification and Validation of Prognostically Relevant Gene Signature in Melanoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5323614. [PMID: 32462000 PMCID: PMC7238332 DOI: 10.1155/2020/5323614] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 12/19/2022]
Abstract
Background Currently, effective genetic markers are limited to predict the clinical outcome of melanoma. High-throughput multiomics sequencing data have provided a valuable approach for the identification of genes associated with cancer prognosis. Method The multidimensional data of melanoma patients, including clinical, genomic, and transcriptomic data, were obtained from The Cancer Genome Atlas (TCGA). These samples were then randomly divided into two groups, one for training dataset and the other for validation dataset. In order to select reliable biomarkers, we screened prognosis-related genes, copy number variation genes, and SNP variation genes and integrated these genes to further select features using random forests in the training dataset. We screened for robust biomarkers and established a gene-related prognostic model. Finally, we verified the selected biomarkers in the test sets (GSE19234 and GSE65904) and on clinical samples extracted from melanoma patients using qRT-PCR and immunohistochemistry analysis. Results We obtained 1569 prognostic-related genes and 1101 copy-amplification, 1093 copy-deletions, and 92 significant mutations in genomic variants. These genomic variant genes were closely related to the development of tumors and genes that integrate genomic variation. A total of 141 candidate genes were obtained from prognosis-related genes. Six characteristic genes (IQCE, RFX6, GPAA1, BAHCC1, CLEC2B, and AGAP2) were selected by random forest feature selection, many of which have been reported to be associated with tumor progression. Cox regression analysis was used to establish a 6-gene signature. Experimental verification with qRT-PCR and immunohistochemical staining proved that these selected genes were indeed expressed at a significantly higher level compared with the normal tissues. This signature comprised an independent prognostic factor for melanoma patients. Conclusions We constructed a 6-gene signature (IQCE, RFX6, GPAA1, BAHCC1, CLEC2B, and AGAP2) as a novel prognostic marker for predicting the survival of melanoma patients.
Collapse
|
29
|
Identification of a Gene-Related Risk Signature in Melanoma Patients Using Bioinformatic Profiling. JOURNAL OF ONCOLOGY 2020; 2020:7526204. [PMID: 32411243 PMCID: PMC7206882 DOI: 10.1155/2020/7526204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/21/2020] [Indexed: 01/15/2023]
Abstract
Introduction Gene signature has been used to predict prognosis in melanoma patients. Meanwhile, the efficacy of immunotherapy was correlated with particular genes expression or mutation. In this study, we systematically explored the gene expression pattern in the melanoma-immune microenvironment and its relationship with prognosis. Methods A cohort of 122 melanoma cases with whole-genome microarray expression data were enrolled from the Gene Expression Omnibus (GEO) database. The findings were validated using The Cancer Genome Atlas (TCGA) database. A principal component analysis (PCA), gene set enrichment analysis (GSEA), and gene oncology (GO) analysis were performed to explore the bioinformatic implications. Results Different gene expression patterns were identified according to the clinical stage. All eligible gene sets were analyzed, and the 8 genes (GPR87, KIT, SH3GL3, PVRL1, ATP1B1, CDAN1, FAU, and TNFSF14) with the greatest prognostic impact on melanoma. A gene-related risk signature was developed to distinguish patients with a high or low risk of an unfavorable outcome, and this signature was validated using the TCGA database. Furthermore, the prognostic significance of the signature between the classified subgroups was verified as an independent prognostic predictor of melanoma. Additionally, the low-risk melanoma patients presented an enhanced immune phenotype compared to that of the high-risk gene signature patients. Conclusions The gene pattern differences in melanoma were profiled, and a gene signature that could independently predict melanoma patients with a high risk of poor survival was established, highlighting the relationship between prognosis and the local immune response.
Collapse
|
30
|
Ala U, Manco M, Mandili G, Tolosano E, Novelli F, Provero P, Altruda F, Fagoonee S. Proteomics-Based Evidence for a Pro-Oncogenic Role of ESRP1 in Human Colorectal Cancer Cells. Int J Mol Sci 2020; 21:ijms21020575. [PMID: 31963158 PMCID: PMC7014300 DOI: 10.3390/ijms21020575] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
The RNA-binding protein, Epithelial Splicing Regulatory Protein 1 (ESRP1) can promote or suppress tumorigenesis depending on the cell type and disease context. In colorectal cancer, we have previously shown that aberrantly high ESRP1 expression can drive tumor progression. In order to unveil the mechanisms by which ESRP1 can modulate cancer traits, we searched for proteins affected by modulation of Esrp1 in two human colorectal cancer cell lines, HCA24 and COLO320DM, by proteomics analysis. Proteins hosted by endogenous ESRP1 ribonucleoprotein complex in HCA24 cells were also analyzed following RNA-immunoprecipitation. Proteomics data were complemented with bioinformatics approach to exploit publicly available data on protein-protein interaction (PPI). Gene Ontology was analysed to identify a common molecular signature possibly explaining the pro-tumorigenic role of ESRP1. Interestingly, proteins identified herein support a role for ESRP1 in response to external stimulus, regulation of cell cycle and hypoxia. Our data provide further insights into factors affected by and entwined with ESRP1 in colorectal cancer.
Collapse
Affiliation(s)
- Ugo Ala
- Department of Veterinary Science, University of Turin, 10126 Turin, Italy;
| | - Marta Manco
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (M.M.); (E.T.); (P.P.)
| | - Giorgia Mandili
- Center for Experimental Research and Medical Studies, Azienda Universitaria Ospedaliera Città della Salute e della Scienza, 10126 Turin, Italy; (G.M.); (F.N.)
| | - Emanuela Tolosano
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (M.M.); (E.T.); (P.P.)
| | - Francesco Novelli
- Center for Experimental Research and Medical Studies, Azienda Universitaria Ospedaliera Città della Salute e della Scienza, 10126 Turin, Italy; (G.M.); (F.N.)
| | - Paolo Provero
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (M.M.); (E.T.); (P.P.)
- Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute IRCCS, 20132 Milan, Italy
| | - Fiorella Altruda
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (M.M.); (E.T.); (P.P.)
- Correspondence: (F.A.); (S.F.)
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging, CNR c/o Molecular Biotechnology Centre, 10126 Turin, Italy
- Correspondence: (F.A.); (S.F.)
| |
Collapse
|
31
|
Jia J, Shi E, Zhou X, Zhu S, Li J, Zhang J, Yu J, Wang S, Feng L. Expression of ESRP1 at human fetomaternal interface and involvement in trophoblast migration and invasion. Placenta 2020; 90:18-26. [PMID: 32056547 DOI: 10.1016/j.placenta.2019.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/24/2019] [Accepted: 11/28/2019] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Studies have reported that villous cytotrophoblasts (CTBs) undergo a partial epithelial to mesenchymal transition (EMT) when differentiating into extravillous cytotrophoblasts (EVTs). Epithelial splicing-regulatory protein 1 (ESRP1), an alternative splicing regulator, has been demonstrated to play important roles in the EMT process. Nevertheless, the roles of ESRP1 in the placentation remain undefined. METHODS ESRP1 expression in placental tissues throughout pregnancy was determined by immunohistochemistry and western blotting. The effect of ESRP1 knockdown by using small-interfering RNAs (siRNAs) on the phenotype of trophoblast cell line (HTR-8/SVneo) and villous explants was evaluated. RESULTS ESRP1 was localized within the CTBs, trophoblast columns, and EVTs located in the decidua. ESRP1 expression was changed during pregnancy, with the highest expression level in term placentae. ESRP1 knockdown significantly increased the migration and invasion of HTR-8/SVneo cells, as well as the outgrowth of EVTs from villous explants, without affecting cell proliferation. This enhanced effect was associated with the increased expression of N-cadherin, vimentin and CD44. DISCUSSION Our results suggested an important role for ESRP1 in regulating trophoblast migration and invasion during placentation.
Collapse
Affiliation(s)
- Jing Jia
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Erjiao Shi
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuan Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shenglan Zhu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiaqi Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingyi Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Yu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shaoshuai Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Ling Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
32
|
Williams ED, Gao D, Redfern A, Thompson EW. Controversies around epithelial-mesenchymal plasticity in cancer metastasis. Nat Rev Cancer 2019; 19:716-732. [PMID: 31666716 PMCID: PMC7055151 DOI: 10.1038/s41568-019-0213-x] [Citation(s) in RCA: 267] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2019] [Indexed: 02/07/2023]
Abstract
Experimental evidence accumulated over decades has implicated epithelial-mesenchymal plasticity (EMP), which collectively encompasses epithelial-mesenchymal transition and the reverse process of mesenchymal-epithelial transition, in tumour metastasis, cancer stem cell generation and maintenance, and therapeutic resistance. However, the dynamic nature of EMP processes, the apparent need to reverse mesenchymal changes for the development of macrometastases and the likelihood that only minor cancer cell subpopulations exhibit EMP at any one time have made such evidence difficult to accrue in the clinical setting. In this Perspectives article, we outline the existing preclinical and clinical evidence for EMP and reflect on recent controversies, including the failure of initial lineage-tracing experiments to confirm a major role for EMP in dissemination, and discuss accumulating data suggesting that epithelial features and/or a hybrid epithelial-mesenchymal phenotype are important in metastasis. We also highlight strategies to address the complexities of therapeutically targeting the EMP process that give consideration to its spatially and temporally divergent roles in metastasis, with the view that this will yield a potent and broad class of therapeutic agents.
Collapse
Affiliation(s)
- Elizabeth D Williams
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- Translational Research Institute (TRI), Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland (APCRC-Q) and Queensland Bladder Cancer Initiative (QBCI), Brisbane, Queensland, Australia
| | - Dingcheng Gao
- Department of Cardiothoracic Surgery, Department of Cell and Developmental Biology and Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Andrew Redfern
- Department of Medicine, School of Medicine, University of Western Australia, Fiona Stanley Hospital Campus, Perth, Western Australia, Australia
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.
- Translational Research Institute (TRI), Brisbane, Queensland, Australia.
| |
Collapse
|
33
|
Li ZX, Zheng ZQ, Wei ZH, Zhang LL, Li F, Lin L, Liu RQ, Huang XD, Lv JW, Chen FP, He XJ, Guan JL, Kou J, Ma J, Zhou GQ, Sun Y. Comprehensive characterization of the alternative splicing landscape in head and neck squamous cell carcinoma reveals novel events associated with tumorigenesis and the immune microenvironment. Am J Cancer Res 2019; 9:7648-7665. [PMID: 31695792 PMCID: PMC6831462 DOI: 10.7150/thno.36585] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 09/04/2019] [Indexed: 12/18/2022] Open
Abstract
Alternative splicing (AS) has emerged as a key event in tumor development and microenvironment formation. However, comprehensive analysis of AS and its clinical significance in head and neck squamous cell carcinoma (HNSC) is urgently required. Methods: Genome-wide profiling of AS events using RNA-Seq data from The Cancer Genome Atlas (TCGA) program was performed in a cohort of 464 patients with HNSC. Cancer-associated AS events (CASEs) were identified between paired HNSC and adjacent normal tissues and evaluated in functional enrichment analysis. Splicing networks and prognostic models were constructed using bioinformatics tools. Unsupervised clustering of the CASEs identified was conducted and associations with clinical, molecular and immune features were analyzed. Results: We detected a total of 32,309 AS events and identified 473 CASEs in HNSC; among these, 91 were validated in an independent cohort (n = 15). Functional protein domains were frequently altered, especially by CASEs affecting cancer drivers, such as PCSK5. CASE parent genes were significantly enriched in pathways related to HNSC and the tumor immune microenvironment, such as the viral carcinogenesis (FDR < 0.001), Human Papillomavirus infection (FDR < 0.001), chemokine (FDR < 0.001) and T cell receptor (FDR < 0.001) signaling pathways. CASEs enriched in immune-related pathways were closely associated with immune cell infiltration and cytolytic activity. AS regulatory networks suggested a significant association between splicing factor (SF) expression and CASEs and might be regulated by SF methylation. Eighteen CASEs were identified as independent prognostic factors for overall and disease-free survival. Unsupervised clustering analysis revealed distinct correlations between AS-based clusters and prognosis, molecular characteristics and immune features. Immunogenic features and immune subgroups cooperatively depict the immune features of AS-based clusters. Conclusion: This comprehensive genome-wide analysis of the AS landscape in HNSC revealed novel AS events related to carcinogenesis and immune microenvironment, with implications for prognosis and therapeutic responses.
Collapse
|
34
|
Gene Expression Analyses in Non Muscle Invasive Bladder Cancer Reveals a Role for Alternative Splicing and Tp53 Status. Sci Rep 2019; 9:10362. [PMID: 31316092 PMCID: PMC6637137 DOI: 10.1038/s41598-019-46652-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/28/2019] [Indexed: 12/22/2022] Open
Abstract
Non-muscle invasive bladder cancer (NMIBC) represents a crucial problem for the national health care systems due to its high rates of recurrence and the consequent need of frequent follow-ups. Here, gene expression analyses in patients diagnosed as NMIBC were performed to determine those molecular pathways involved in tumor initiation, finding that both MYC and E2F are up regulated and helps to tumor initiation and progression. Our results also support an important involvement of alternative splicing events, modifying key pathways to favour bladder tumor evolution. Finally, since MDM2 showed differential exon usage, mutations in TP53 and its protein expression have been also studied in the same patients. Our data support that recurrence is epigenetically mediated and favoured by an increase protein expression of TP53, which appears more frequently mutated in advanced stages and grades, being associated to a worse prognosis. Therefore, TP53 mutational status could be used as a potential biomarker in the first stages of NMIBC to predict recurrence and prognosis.
Collapse
|
35
|
Mohibi S, Chen X, Zhang J. Cancer the'RBP'eutics-RNA-binding proteins as therapeutic targets for cancer. Pharmacol Ther 2019; 203:107390. [PMID: 31302171 DOI: 10.1016/j.pharmthera.2019.07.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022]
Abstract
RNA-binding proteins (RBPs) play a critical role in the regulation of various RNA processes, including splicing, cleavage and polyadenylation, transport, translation and degradation of coding RNAs, non-coding RNAs and microRNAs. Recent studies indicate that RBPs not only play an instrumental role in normal cellular processes but have also emerged as major players in the development and spread of cancer. Herein, we review the current knowledge about RNA binding proteins and their role in tumorigenesis as well as the potential to target RBPs for cancer therapeutics.
Collapse
Affiliation(s)
- Shakur Mohibi
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States
| | - Jin Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States.
| |
Collapse
|
36
|
Jia D, Li X, Bocci F, Tripathi S, Deng Y, Jolly MK, Onuchic JN, Levine H. Quantifying Cancer Epithelial-Mesenchymal Plasticity and its Association with Stemness and Immune Response. J Clin Med 2019; 8:E725. [PMID: 31121840 PMCID: PMC6572429 DOI: 10.3390/jcm8050725] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/14/2019] [Accepted: 05/20/2019] [Indexed: 12/19/2022] Open
Abstract
Cancer cells can acquire a spectrum of stable hybrid epithelial/mesenchymal (E/M) states during epithelial-mesenchymal transition (EMT). Cells in these hybrid E/M phenotypes often combine epithelial and mesenchymal features and tend to migrate collectively commonly as small clusters. Such collectively migrating cancer cells play a pivotal role in seeding metastases and their presence in cancer patients indicates an adverse prognostic factor. Moreover, cancer cells in hybrid E/M phenotypes tend to be more associated with stemness which endows them with tumor-initiation ability and therapy resistance. Most recently, cells undergoing EMT have been shown to promote immune suppression for better survival. A systematic understanding of the emergence of hybrid E/M phenotypes and the connection of EMT with stemness and immune suppression would contribute to more effective therapeutic strategies. In this review, we first discuss recent efforts combining theoretical and experimental approaches to elucidate mechanisms underlying EMT multi-stability (i.e., the existence of multiple stable phenotypes during EMT) and the properties of hybrid E/M phenotypes. Following we discuss non-cell-autonomous regulation of EMT by cell cooperation and extracellular matrix. Afterwards, we discuss various metrics that can be used to quantify EMT spectrum. We further describe possible mechanisms underlying the formation of clusters of circulating tumor cells. Last but not least, we summarize recent systems biology analysis of the role of EMT in the acquisition of stemness and immune suppression.
Collapse
Affiliation(s)
- Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
| | - Xuefei Li
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
| | - Federico Bocci
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
- Department of Chemistry, Rice University, Houston, TX 77005, USA.
| | - Shubham Tripathi
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX 77005, USA.
| | - Youyuan Deng
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
- Applied Physics Graduate Program, Rice University, Houston, TX 77005, USA.
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
- Department of Chemistry, Rice University, Houston, TX 77005, USA.
- Department of Biosciences, Rice University, Houston, TX 77005, USA.
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA.
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA.
- Department of Physics, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
37
|
Harvey SE, Xu Y, Lin X, Gao XD, Qiu Y, Ahn J, Xiao X, Cheng C. Coregulation of alternative splicing by hnRNPM and ESRP1 during EMT. RNA (NEW YORK, N.Y.) 2018; 24:1326-1338. [PMID: 30042172 PMCID: PMC6140460 DOI: 10.1261/rna.066712.118] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
The epithelial-mesenchymal transition (EMT) is a fundamental developmental process that is abnormally activated in cancer metastasis. Dynamic changes in alternative splicing occur during EMT. ESRP1 and hnRNPM are splicing regulators that promote an epithelial splicing program and a mesenchymal splicing program, respectively. The functional relationships between these splicing factors in the genome scale remain elusive. Comparing alternative splicing targets of hnRNPM and ESRP1 revealed that they coregulate a set of cassette exon events, with the majority showing discordant splicing regulation. Discordant splicing events regulated by hnRNPM show a positive correlation with splicing during EMT; however, concordant events do not, indicating the role of hnRNPM in regulating alternative splicing during EMT is more complex than previously understood. Motif enrichment analysis near hnRNPM-ESRP1 coregulated exons identifies guanine-uridine rich motifs downstream from hnRNPM-repressed and ESRP1-enhanced exons, supporting a general model of competitive binding to these cis-elements to antagonize alternative splicing. The set of coregulated exons are enriched in genes associated with cell migration and cytoskeletal reorganization, which are pathways associated with EMT. Splicing levels of coregulated exons are associated with breast cancer patient survival and correlate with gene sets involved in EMT and breast cancer subtyping. This study identifies complex modes of interaction between hnRNPM and ESRP1 in regulation of splicing in disease-relevant contexts.
Collapse
Affiliation(s)
- Samuel E Harvey
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Yilin Xu
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Xiaodan Lin
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Xin D Gao
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Yushan Qiu
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Jaegyoon Ahn
- Department of Integrative Biology and Physiology and the Molecular Biology Institute, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology and the Molecular Biology Institute, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Chonghui Cheng
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
38
|
Li L, Qi L, Qu T, Liu C, Cao L, Huang Q, Song W, Yang L, Qi H, Wang Y, Gao B, Guo Y, Sun B, Meng B, Zhang B, Cao W. Epithelial Splicing Regulatory Protein 1 Inhibits the Invasion and Metastasis of Lung Adenocarcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1882-1894. [DOI: 10.1016/j.ajpath.2018.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 04/03/2018] [Accepted: 04/17/2018] [Indexed: 12/27/2022]
|
39
|
Chatterjee A, Rodger EJ, Ahn A, Stockwell PA, Parry M, Motwani J, Gallagher SJ, Shklovskaya E, Tiffen J, Eccles MR, Hersey P. Marked Global DNA Hypomethylation Is Associated with Constitutive PD-L1 Expression in Melanoma. iScience 2018; 4:312-325. [PMID: 30240750 PMCID: PMC6147024 DOI: 10.1016/j.isci.2018.05.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/08/2018] [Accepted: 05/29/2018] [Indexed: 12/24/2022] Open
Abstract
Constitutive expression of the immune checkpoint, PD-L1, inhibits anti-tumor immune responses in cancer, although the factors involved in PD-L1 regulation are poorly understood. Here we show that loss of global DNA methylation, particularly in intergenic regions and repeat elements, is associated with constitutive (PD-L1CON), versus inducible (PD-L1IND), PD-L1 expression in melanoma cell lines. We further show this is accompanied by transcriptomic up-regulation. De novo epigenetic regulators (e.g., DNMT3A) are strongly correlated with PD-L1 expression and methylome status. Accordingly, decitabine-mediated inhibition of global methylation in melanoma cells leads to increased PD-L1 expression. Moreover, viral mimicry and immune response genes are highly expressed in lymphocyte-negative plus PD-L1-positive melanomas, versus PD-L1-negative melanomas in The Cancer Genome Atlas (TCGA). In summary, using integrated genomic analysis we identified that global DNA methylation influences PD-L1 expression in melanoma, and hence melanoma's ability to evade anti-tumor immune responses. These results have implications for combining epigenetic therapy with immunotherapy.
Collapse
Affiliation(s)
- Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand.
| | - Euan J Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Antonio Ahn
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand
| | - Peter A Stockwell
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand
| | - Matthew Parry
- Department of Mathematics & Statistics, University of Otago, 710 Cumberland Street, Dunedin 9054, New Zealand
| | - Jyoti Motwani
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand
| | - Stuart J Gallagher
- Melanoma Immunology and Oncology Group, The Centenary Institute, University of Sydney, Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW 2050, Australia
| | - Elena Shklovskaya
- Melanoma Immunology and Oncology Group, The Centenary Institute, University of Sydney, Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW 2050, Australia
| | - Jessamy Tiffen
- Melanoma Immunology and Oncology Group, The Centenary Institute, University of Sydney, Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW 2050, Australia
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand.
| | - Peter Hersey
- Melanoma Immunology and Oncology Group, The Centenary Institute, University of Sydney, Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW 2050, Australia.
| |
Collapse
|
40
|
Redfern AD, Spalding LJ, Thompson EW. The Kraken Wakes: induced EMT as a driver of tumour aggression and poor outcome. Clin Exp Metastasis 2018; 35:285-308. [PMID: 29948647 DOI: 10.1007/s10585-018-9906-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023]
Abstract
Epithelial mesenchymal transition (EMT) describes the shift of cells from an epithelial form to a contact independent, migratory, mesenchymal form. In cancer the change is linked to invasion and metastasis. Tumour conditions, including hypoxia, acidosis and a range of treatments can trigger EMT, which is implicated in the subsequent development of resistance to those same treatments. Consequently, the degree to which EMT occurs may underpin the entire course of tumour progression and treatment response in a patient. In this review we look past the protective effect of EMT against the initial treatment, to the role of the mesenchymal state, once triggered, in promoting disease growth, spread and future treatment insensitivity. In patients a correlation was found between the propensity of a treatment to induce EMT and failure of that treatment to provide a survival benefit, implicating EMT induction in accelerated tumour progression after treatment cessation. Looking to the mechanisms driving this detrimental effect; increased proliferation, suppressed apoptosis, stem cell induction, augmented angiogenesis, enhanced metastatic dissemination, and immune tolerance, can all result from treatment-induced EMT and could worsen outcome. Evidence also suggests EMT induction with earlier therapies attenuates benefits of later treatments. Looking beyond epithelial tumours, de-differentiation also has therapy-attenuating effects and reversal thereof may yield similar rewards. A range of potential therapies are in development that may address the diverse mechanisms and molecular control systems involved in EMT-induced accelerated progression. Considering the broad reaching effects of mesenchymal shift identified, successful deployment of such treatments could substantially improve patient outcomes.
Collapse
Affiliation(s)
- Andrew D Redfern
- School of Medicine, University of Western Australia (UWA), Harry Perkins Building, Fiona Stanley Hospital Campus, Robin Warren Drive, Murdoch, WA, 6150, Australia.
| | - Lisa J Spalding
- School of Medicine, University of Western Australia (UWA), Harry Perkins Building, Fiona Stanley Hospital Campus, Robin Warren Drive, Murdoch, WA, 6150, Australia
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Australia.,Translational Research Institute, Woolloongabba, Australia.,Department of Surgery, University of Melbourne, Melbourne, Australia
| |
Collapse
|
41
|
Deloria AJ, Höflmayer D, Kienzl P, Łopatecka J, Sampl S, Klimpfinger M, Braunschmid T, Bastian F, Lu L, Marian B, Stättner S, Holzmann K. Epithelial splicing regulatory protein 1 and 2 paralogues correlate with splice signatures and favorable outcome in human colorectal cancer. Oncotarget 2018; 7:73800-73816. [PMID: 27650542 PMCID: PMC5342015 DOI: 10.18632/oncotarget.12070] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/02/2016] [Indexed: 12/21/2022] Open
Abstract
ESRPs are master splice regulators implicated in alternative mRNA splicing programs important for epithelial-mesenchymal transition (EMT) and tumor progression. ESRP1 was identified in some tumors as good or worse predictor of outcome, but in colorectal cancer (CRC) the prognostic value of ESRPs and relation with mesenchymal splice variants is not clear. Here, we studied 68 CRC cases, compared tissue expression of ESRPs with clinical data and with EMT gene splice patterns of conditional CRC cells with deficient ESRP1 expression.Around 72% of patients showed global decreased transcript expression of both ESRPs in tumor as compared to matched non-neoplastic colorectal epithelium. Reduction of ESRP1 in tumor cells was evaluated by immunohistochemistry, associated with microsatellite stability and switch to mesenchymal splice signatures of FGFRs, CD44, ENAH and CTNND1(p120-catenin). Expression of ESRPs was significantly associated with favorable overall survival (log-rank test, P=0.0186 and 0.0408), better than prognostic stratification by tumor staging; and for ESRP1 confirmed with second TCGA cohort (log-rank test, P=0.0435). Prognostic value is independent of the pathological stage and microsatellite instability (ESRP1: HR=0.36, 95%CI 0.15-0.91, P=0.032; ESRP2: HR=0.23, 95%CI 0.08-0.65, P=0.006).Our study supports the role of ESRP1 as tumor suppressor and strongly suggests that ESRPs are candidate markers for early detection, diagnosis, and prognosis of CRC.
Collapse
Affiliation(s)
- Abigail J Deloria
- Division of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University Vienna, Austria
| | - Doris Höflmayer
- Department of Pathology and Bacteriology, Social Medical Center South, Kaiser Franz Josef Hospital, Vienna, Austria.,Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Philip Kienzl
- Division of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University Vienna, Austria
| | - Justyna Łopatecka
- Division of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University Vienna, Austria
| | - Sandra Sampl
- Division of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University Vienna, Austria
| | - Martin Klimpfinger
- Department of Pathology and Bacteriology, Social Medical Center South, Kaiser Franz Josef Hospital, Vienna, Austria
| | - Tamara Braunschmid
- Department of Surgery, Social Medical Center South, Kaiser Franz Josef Hospital, Vienna, Austria
| | - Fabienne Bastian
- Department of Surgery, Social Medical Center South, Kaiser Franz Josef Hospital, Vienna, Austria
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, School of Medicine, Yale Cancer Center, Yale University, New Haven, USA
| | - Brigitte Marian
- Division of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University Vienna, Austria
| | - Stefan Stättner
- Department of Surgery, Social Medical Center South, Kaiser Franz Josef Hospital, Vienna, Austria.,Department of Visceral, Transplantation and Thoracic Surgery, Innsbruck, Austria
| | - Klaus Holzmann
- Division of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University Vienna, Austria
| |
Collapse
|
42
|
Cifdaloz M, Osterloh L, Graña O, Riveiro-Falkenbach E, Ximénez-Embún P, Muñoz J, Tejedo C, Calvo TG, Karras P, Olmeda D, Miñana B, Gómez-López G, Cañon E, Eyras E, Guo H, Kappes F, Ortiz-Romero PL, Rodríguez-Peralto JL, Megías D, Valcárcel J, Soengas MS. Systems analysis identifies melanoma-enriched pro-oncogenic networks controlled by the RNA binding protein CELF1. Nat Commun 2017; 8:2249. [PMID: 29269732 PMCID: PMC5740069 DOI: 10.1038/s41467-017-02353-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 11/23/2017] [Indexed: 12/19/2022] Open
Abstract
Melanomas are well-known for their altered mRNA expression profiles. Yet, the specific contribution of mRNA binding proteins (mRBPs) to melanoma development remains unclear. Here we identify a cluster of melanoma-enriched genes under the control of CUGBP Elav-like family member 1 (CELF1). CELF1 was discovered with a distinct prognostic value in melanoma after mining the genomic landscape of the 692 known mRBPs across different cancer types. Genome-wide transcriptomic, proteomic, and RNA-immunoprecipitation studies, together with loss-of-function analyses in cell lines, and histopathological evaluation in clinical biopsies, revealed an intricate repertoire of CELF1-RNA interactors with minimal overlap with other malignancies. This systems approach uncovered the oncogene DEK as an unexpected target and downstream effector of CELF1. Importantly, CELF1 and DEK were found to represent early-induced melanoma genes and adverse indicators of overall patient survival. These results underscore novel roles of CELF1 in melanoma, illustrating tumor type-restricted functions of RBPs in cancer.
Collapse
Affiliation(s)
- Metehan Cifdaloz
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | - Lisa Osterloh
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | | | - Erica Riveiro-Falkenbach
- Instituto de Investigación i+12, Hospital 12 de Octubre Medical School, Universidad Complutense, 28041, Madrid, Spain
| | | | | | - Cristina Tejedo
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | - Tonantzin G Calvo
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | - Panagiotis Karras
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | - David Olmeda
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | - Belén Miñana
- Centre de Regulació Genòmica (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
| | | | - Estela Cañon
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | - Eduardo Eyras
- Department of Experimental and Health Sciences, Universidad Pompeu Fabra, Barcelona, 08002, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
| | - Haihong Guo
- Institute of Biochemistry and Molecular Biology; Medical School, RWTH Aachen University, Aachen, 52074, Germany
| | - Ferdinand Kappes
- Institute of Biochemistry and Molecular Biology; Medical School, RWTH Aachen University, Aachen, 52074, Germany
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, No. 111, Ren Ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park (SIP), Suzhou, 215123, China
| | - Pablo L Ortiz-Romero
- Instituto de Investigación i+12, Hospital 12 de Octubre Medical School, Universidad Complutense, 28041, Madrid, Spain
| | - Jose L Rodríguez-Peralto
- Instituto de Investigación i+12, Hospital 12 de Octubre Medical School, Universidad Complutense, 28041, Madrid, Spain
| | - Diego Megías
- Confocal Microscopy Unit, (CNIO), Madrid, 28029, Spain
| | - Juan Valcárcel
- Centre de Regulació Genòmica (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
| | - María S Soengas
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain.
| |
Collapse
|
43
|
ESRP1 is overexpressed in ovarian cancer and promotes switching from mesenchymal to epithelial phenotype in ovarian cancer cells. Oncogenesis 2017; 6:e389. [PMID: 28991261 PMCID: PMC5668885 DOI: 10.1038/oncsis.2017.87] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/07/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022] Open
Abstract
Epithelial splicing regulatory protein 1 (ESRP1) and 2 (ESRP2), epithelial cell-specific regulators of alternative splicing, are downregulated during the epithelial-mesenchymal transition (EMT). These factors have roles in tumor progression and metastasis in some cancers; however, their expression and function in ovarian cancer (OC) remain unclear. We found that ESRP1 and ESRP2 mRNAs were expressed at higher levels in OC cells than in immortalized ovarian surface epithelial (IOSE) cells, and confirmed their overexpression in OC tissues at the protein level. The Cancer Genome Atlas (TCGA) data analysis revealed frequent gene amplification of ESRP1 in OC tissues; however, we detected no significant correlation between ESRP1 gene copy number and gene expression in OC cells. Importantly, expression of ESRP1 and ESRP2 was inversely correlated with DNA methylation in OC cells, and ESRP2 overexpression in OC tissues was significantly associated with DNA hypomethylation. Notably, survival analysis using TCGA data from 541 OC tissues revealed that high ESRP1 expression was significantly associated with shorter 5-year survival of patients. Ectopic ESRP1 expression in mesenchymal OC cells promoted cell proliferation but suppressed cell migration. Furthermore, we found that ESRP1 drives a switch from mesenchymal to epithelial phenotype characterized by reduced cell migration in association with induction of epithelial cell-specific variant of CD44 and ENAH. Taken together, our findings suggest that an epigenetic mechanism is involved in ESRP1 overexpression, and that ESRP1 has a role in OC progression.
Collapse
|
44
|
Terry S, Savagner P, Ortiz-Cuaran S, Mahjoubi L, Saintigny P, Thiery JP, Chouaib S. New insights into the role of EMT in tumor immune escape. Mol Oncol 2017; 11:824-846. [PMID: 28614624 PMCID: PMC5496499 DOI: 10.1002/1878-0261.12093] [Citation(s) in RCA: 280] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/27/2017] [Accepted: 06/02/2017] [Indexed: 01/02/2023] Open
Abstract
Novel immunotherapy approaches have provided durable remission in a significant number of cancer patients with cancers previously considered rapidly lethal. Nonetheless, the high degree of nonresponders, and in some cases the emergence of resistance in patients who do initially respond, represents a significant challenge in the field of cancer immunotherapy. These issues prompt much more extensive studies to better understand how cancer cells escape immune surveillance and resist immune attacks. Here, we review the current knowledge of how cellular heterogeneity and plasticity could be involved in shaping the tumor microenvironment (TME) and in controlling antitumor immunity. Indeed, recent findings have led to increased interest in the mechanisms by which cancer cells undergoing epithelial‐mesenchymal transition (EMT), or oscillating within the EMT spectrum, might contribute to immune escape through multiple routes. This includes shaping of the TME and decreased susceptibility to immune effector cells. Although much remains to be learned on the mechanisms at play, cancer cell clones with mesenchymal features emerging from the TME seem to be primed to face immune attacks by specialized killer cells of the immune system, the natural killer cells, and the cytotoxic T lymphocytes. Recent studies investigating patient tumors have suggested EMT as a candidate predictive marker to be explored for immunotherapy outcome. Promising data also exist on the potential utility of targeting these cancer cell populations to at least partly overcome such resistance. Research is now underway which may lead to considerable progress in optimization of treatments.
Collapse
Affiliation(s)
- Stéphane Terry
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine - Univ. Paris-Sud, University Paris-Saclay, Villejuif, France
| | - Pierre Savagner
- Institut de Recherche en Cancérologie de Montpellier, France.,U1194, INSERM, Montpellier, France.,Université Montpellier, France.,Institut du Cancer Montpellier, France
| | - Sandra Ortiz-Cuaran
- INSERM U1052, CNRS UMR 5286, Cancer Research Center of Lyon, France.,Université de Lyon, France.,Centre Léon Bérard, Lyon, France.,Faculté de Pharmacie de Lyon, ISPB, Université Lyon 1, France.,LabEx DEVweCAN, Université de Lyon, France
| | - Linda Mahjoubi
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine - Univ. Paris-Sud, University Paris-Saclay, Villejuif, France
| | - Pierre Saintigny
- INSERM U1052, CNRS UMR 5286, Cancer Research Center of Lyon, France.,Université de Lyon, France.,Centre Léon Bérard, Lyon, France.,Faculté de Pharmacie de Lyon, ISPB, Université Lyon 1, France.,LabEx DEVweCAN, Université de Lyon, France
| | - Jean-Paul Thiery
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine - Univ. Paris-Sud, University Paris-Saclay, Villejuif, France.,CNRS UMR 7057, Matter and Complex Systems, Paris, France.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Salem Chouaib
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine - Univ. Paris-Sud, University Paris-Saclay, Villejuif, France
| |
Collapse
|
45
|
Pereira B, Billaud M, Almeida R. RNA-Binding Proteins in Cancer: Old Players and New Actors. Trends Cancer 2017; 3:506-528. [PMID: 28718405 DOI: 10.1016/j.trecan.2017.05.003] [Citation(s) in RCA: 480] [Impact Index Per Article: 68.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 12/15/2022]
Abstract
RNA-binding proteins (RBPs) are key players in post-transcriptional events. The combination of versatility of their RNA-binding domains with structural flexibility enables RBPs to control the metabolism of a large array of transcripts. Perturbations in RBP-RNA networks activity have been causally associated with cancer development, but the rational framework describing these contributions remains fragmented. We review here the evidence that RBPs modulate multiple cancer traits, emphasize their functional diversity, and assess future trends in the study of RBPs in cancer.
Collapse
Affiliation(s)
- Bruno Pereira
- i3S - Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-465 Porto, Portugal.
| | - Marc Billaud
- Clinical and Experimental Model of Lymphomagenesis, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1052, Centre National de la Recherche Scientifique (CNRS) Unité 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Raquel Almeida
- i3S - Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-465 Porto, Portugal; Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; Biology Department, Faculty of Sciences of the University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
46
|
Lowdon RF, Wang T. Epigenomic annotation of noncoding mutations identifies mutated pathways in primary liver cancer. PLoS One 2017; 12:e0174032. [PMID: 28333948 PMCID: PMC5363827 DOI: 10.1371/journal.pone.0174032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/02/2017] [Indexed: 11/19/2022] Open
Abstract
Evidence that noncoding mutation can result in cancer driver events is mounting. However, it is more difficult to assign molecular biological consequences to noncoding mutations than to coding mutations, and a typical cancer genome contains many more noncoding mutations than protein-coding mutations. Accordingly, parsing functional noncoding mutation signal from noise remains an important challenge. Here we use an empirical approach to identify putatively functional noncoding somatic single nucleotide variants (SNVs) from liver cancer genomes. Annotation of candidate variants by publicly available epigenome datasets finds that 40.5% of SNVs fall in regulatory elements. When assigned to specific regulatory elements, we find that the distribution of regulatory element mutation mirrors that of nonsynonymous coding mutation, where few regulatory elements are recurrently mutated in a patient population but many are singly mutated. We find potential gain-of-binding site events among candidate SNVs, suggesting a mechanism of action for these variants. When aggregating noncoding somatic mutation in promoters, we find that genes in the ERBB signaling and MAPK signaling pathways are significantly enriched for promoter mutations. Altogether, our results suggest that functional somatic SNVs in cancer are sporadic, but occasionally occur in regulatory elements and may affect phenotype by creating binding sites for transcriptional regulators. Accordingly, we propose that noncoding mutation should be formally accounted for when determining gene- and pathway-mutation burden in cancer.
Collapse
Affiliation(s)
- Rebecca F. Lowdon
- Center for Genome Sciences and Systems Biology, Department of Genetics, Washington University in St. Louis, Saint Louis, Missouri, United States of America
| | - Ting Wang
- Center for Genome Sciences and Systems Biology, Department of Genetics, Washington University in St. Louis, Saint Louis, Missouri, United States of America
| |
Collapse
|
47
|
Kumar D, Gorain M, Kundu G, Kundu GC. Therapeutic implications of cellular and molecular biology of cancer stem cells in melanoma. Mol Cancer 2017; 16:7. [PMID: 28137308 PMCID: PMC5282877 DOI: 10.1186/s12943-016-0578-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/25/2016] [Indexed: 01/04/2023] Open
Abstract
Melanoma is a form of cancer that initiates in melanocytes. Melanoma has multiple phenotypically distinct subpopulation of cells, some of them have embryonic like plasticity which are involved in self-renewal, tumor initiation, metastasis and progression and provide reservoir of therapeutically resistant cells. Cancer stem cells (CSCs) can be identified and characterized based on various unique cell surface and intracellular markers. CSCs exhibit different molecular pattern with respect to non-CSCs. They maintain their stemness and chemoresistant features through specific signaling cascades. CSCs are weak in immunogenicity and act as immunosupressor in the host system. Melanoma treatment becomes difficult and survival is greatly reduced when the patient develop metastasis. Standard conventional oncology treatments such as chemotherapy, radiotherapy and surgical resection are only responsible for shrinking the bulk of the tumor mass and tumor tends to relapse. Thus, targeting CSCs and their microenvironment niche addresses the alternative of traditional cancer therapy. Combined use of CSCs targeted and traditional therapies may kill the bulk tumor and CSCs and offer a promising therapeutic strategy for the management of melanoma.
Collapse
Affiliation(s)
- Dhiraj Kumar
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, 411007, India
| | - Mahadeo Gorain
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, 411007, India
| | - Gautam Kundu
- Deapartment of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Gopal C Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, 411007, India.
| |
Collapse
|