1
|
Guo X, Song J, Liu M, Ou X, Guo Y. The interplay between the tumor microenvironment and tumor-derived small extracellular vesicles in cancer development and therapeutic response. Cancer Biol Ther 2024; 25:2356831. [PMID: 38767879 PMCID: PMC11110713 DOI: 10.1080/15384047.2024.2356831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 05/14/2024] [Indexed: 05/22/2024] Open
Abstract
The tumor microenvironment (TME) plays an essential role in tumor cell survival by profoundly influencing their proliferation, metastasis, immune evasion, and resistance to treatment. Extracellular vesicles (EVs) are small particles released by all cell types and often reflect the state of their parental cells and modulate other cells' functions through the various cargo they transport. Tumor-derived small EVs (TDSEVs) can transport specific proteins, nucleic acids and lipids tailored to propagate tumor signals and establish a favorable TME. Thus, the TME's biological characteristics can affect TDSEV heterogeneity, and this interplay can amplify tumor growth, dissemination, and resistance to therapy. This review discusses the interplay between TME and TDSEVs based on their biological characteristics and summarizes strategies for targeting cancer cells. Additionally, it reviews the current issues and challenges in this field to offer fresh insights into comprehending tumor development mechanisms and exploring innovative clinical applications.
Collapse
Affiliation(s)
- Xuanyu Guo
- The Affiliated Hospital, Southwest Medical University, Luzhou, PR China
| | - Jiajun Song
- Department of Clinical Laboratory Medicine, the Affiliated Hospital, Southwest Medical University, Luzhou, PR China
| | - Miao Liu
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, PR China
| | - Xinyi Ou
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, PR China
| | - Yongcan Guo
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, PR China
| |
Collapse
|
2
|
Mei J, Liu X, Tian H, Chen Y, Cao Y, Zeng J, Liu Y, Chen Y, Gao Y, Yin J, Wang P. Tumour organoids and assembloids: Patient-derived cancer avatars for immunotherapy. Clin Transl Med 2024; 14:e1656. [PMID: 38664597 PMCID: PMC11045561 DOI: 10.1002/ctm2.1656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Organoid technology is an emerging and rapidly growing field that shows promise in studying organ development and screening therapeutic regimens. Although organoids have been proposed for a decade, concerns exist, including batch-to-batch variations, lack of the native microenvironment and clinical applicability. MAIN BODY The concept of organoids has derived patient-derived tumour organoids (PDTOs) for personalized drug screening and new drug discovery, mitigating the risks of medication misuse. The greater the similarity between the PDTOs and the primary tumours, the more influential the model will be. Recently, 'tumour assembloids' inspired by cell-coculture technology have attracted attention to complement the current PDTO technology. High-quality PDTOs must reassemble critical components, including multiple cell types, tumour matrix, paracrine factors, angiogenesis and microorganisms. This review begins with a brief overview of the history of organoids and PDTOs, followed by the current approaches for generating PDTOs and tumour assembloids. Personalized drug screening has been practised; however, it remains unclear whether PDTOs can predict immunotherapies, including immune drugs (e.g. immune checkpoint inhibitors) and immune cells (e.g. tumour-infiltrating lymphocyte, T cell receptor-engineered T cell and chimeric antigen receptor-T cell). PDTOs, as cancer avatars of the patients, can be expanded and stored to form a biobank. CONCLUSION Fundamental research and clinical trials are ongoing, and the intention is to use these models to replace animals. Pre-clinical immunotherapy screening using PDTOs will be beneficial to cancer patients. KEY POINTS The current PDTO models have not yet constructed key cellular and non-cellular components. PDTOs should be expandable and editable. PDTOs are promising preclinical models for immunotherapy unless mature PDTOs can be established. PDTO biobanks with consensual standards are urgently needed.
Collapse
Affiliation(s)
- Jie Mei
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of PharmacogeneticsCentral South UniversityChangshaPeople's Republic of China
- Engineering Research Center of Applied Technology of PharmacogenomicsMinistry of EducationChangshaPeople's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
| | - Xingjian Liu
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Hui‐Xiang Tian
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of PharmacogeneticsCentral South UniversityChangshaPeople's Republic of China
| | - Yixuan Chen
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Yang Cao
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Jun Zeng
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
- Department of Thoracic Surgery, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
| | - Yung‐Chiang Liu
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Yaping Chen
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Yang Gao
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Department of Thoracic Surgery, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis and Treatment, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Xiangya Lung Cancer Center, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
| | - Ji‐Ye Yin
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of PharmacogeneticsCentral South UniversityChangshaPeople's Republic of China
- Engineering Research Center of Applied Technology of PharmacogenomicsMinistry of EducationChangshaPeople's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
| | - Peng‐Yuan Wang
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| |
Collapse
|
3
|
Krampert L, Ossner T, Schröder A, Schatz V, Jantsch J. Simultaneous Increases in Intracellular Sodium and Tonicity Boost Antimicrobial Activity of Macrophages. Cells 2023; 12:2816. [PMID: 38132136 PMCID: PMC10741518 DOI: 10.3390/cells12242816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Inflamed and infected tissues can display increased local sodium (Na+) levels, which can have various effects on immune cells. In macrophages, high salt (HS) leads to a Na+/Ca2+-exchanger 1 (NCX1)-dependent increase in intracellular Na+ levels. This results in augmented osmoprotective signaling and enhanced proinflammatory activation, such as enhanced expression of type 2 nitric oxide synthase and antimicrobial function. In this study, the role of elevated intracellular Na+ levels in macrophages was investigated. Therefore, the Na+/K+-ATPase (NKA) was pharmacologically inhibited with two cardiac glycosides (CGs), ouabain (OUA) and digoxin (DIG), to raise intracellular Na+ without increasing extracellular Na+ levels. Exposure to HS conditions and treatment with both inhibitors resulted in intracellular Na+ accumulation and subsequent phosphorylation of p38/MAPK. The CGs had different effects on intracellular Ca2+ and K+ compared to HS stimulation. Moreover, the osmoprotective transcription factor nuclear factor of activated T cells 5 (NFAT5) was not upregulated on RNA and protein levels upon OUA and DIG treatment. Accordingly, OUA and DIG did not boost nitric oxide (NO) production and showed heterogeneous effects toward eliminating intracellular bacteria. While HS environments cause hypertonic stress and ionic perturbations, cardiac glycosides only induce the latter. Cotreatment of macrophages with OUA and non-ionic osmolyte mannitol (MAN) partially mimicked the HS-boosted antimicrobial macrophage activity. These findings suggest that intracellular Na+ accumulation and hypertonic stress are required but not sufficient to mimic boosted macrophage function induced by increased extracellular sodium availability.
Collapse
Affiliation(s)
- Luka Krampert
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, 93053 Regensburg, Germany; (L.K.)
| | - Thomas Ossner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, 93053 Regensburg, Germany; (L.K.)
| | - Agnes Schröder
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, 93053 Regensburg, Germany; (L.K.)
- Institute of Orthodontics, University Hospital Regensburg and University of Regensburg, 93053 Regensburg, Germany
| | - Valentin Schatz
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, 93053 Regensburg, Germany; (L.K.)
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, 93053 Regensburg, Germany; (L.K.)
- Institute for Medical Microbiology, Immunology, and Hygiene, Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne and Faculty of Medicine, University of Cologne, 50935 Cologne, Germany
| |
Collapse
|
4
|
Hibino S, Eto S, Hangai S, Endo K, Ashitani S, Sugaya M, Osawa T, Soga T, Taniguchi T, Yanai H. Tumor cell-derived spermidine is an oncometabolite that suppresses TCR clustering for intratumoral CD8 + T cell activation. Proc Natl Acad Sci U S A 2023; 120:e2305245120. [PMID: 37276392 PMCID: PMC10268234 DOI: 10.1073/pnas.2305245120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/03/2023] [Indexed: 06/07/2023] Open
Abstract
The activation and expansion of T cells that recognize cancer cells is an essential aspect to antitumor immunity. Tumors may escape destruction by the immune system through ectopic expression of inhibitory immune ligands typically exemplified by the PD-L1/PD-1 pathway. Here, we reveal another facet of tumor evasion from T cell surveillance. By secretome profiling of necrotic tumor cells, we identified an oncometabolite spermidine as a unique inhibitor of T cell receptor (TCR) signaling. Mechanistically, spermidine causes the downregulation of the plasma membrane cholesterol levels, resulting in the suppression of TCR clustering. Using syngeneic mouse models, we show that spermidine is abundantly detected in the tumor immune microenvironment (TIME) and that administration of the polyamine synthesis inhibitor effectively enhanced CD8+ T cell-dependent antitumor responses. Further, the combination of the polyamine synthesis inhibitor with anti-PD-1 immune checkpoint antibody resulted in a much stronger antitumor immune response. This study reveals an aspect of immunosuppressive TIME, wherein spermidine functions as a metabolic T cell checkpoint that may offer a unique approach for promoting tumor immunotherapy.
Collapse
Affiliation(s)
- Sana Hibino
- Department of Inflammology, Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo153-0041, Japan
| | - Shotaro Eto
- Department of Inflammology, Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo153-0041, Japan
| | - Sho Hangai
- Department of Inflammology, Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo153-0041, Japan
| | - Keiko Endo
- Institute for Advanced Biosciences, Keio University, Yamagata997-0052, Japan
| | - Sanae Ashitani
- Institute for Advanced Biosciences, Keio University, Yamagata997-0052, Japan
| | - Maki Sugaya
- Division of Nutriomics and Oncology, Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo153-8904, Japan
| | - Tsuyoshi Osawa
- Division of Nutriomics and Oncology, Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo153-8904, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Yamagata997-0052, Japan
| | - Tadatsugu Taniguchi
- Department of Inflammology, Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo153-0041, Japan
| | - Hideyuki Yanai
- Department of Inflammology, Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo153-0041, Japan
| |
Collapse
|
5
|
Li Q, Liu X, Yan C, Zhao B, Zhao Y, Yang L, Shi M, Yu H, Li X, Luo K. Polysaccharide-Based Stimulus-Responsive Nanomedicines for Combination Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206211. [PMID: 36890780 DOI: 10.1002/smll.202206211] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/09/2023] [Indexed: 06/08/2023]
Abstract
Cancer immunotherapy is a promising antitumor approach, whereas nontherapeutic side effects, tumor microenvironment (TME) intricacy, and low tumor immunogenicity limit its therapeutic efficacy. In recent years, combination immunotherapy with other therapies has been proven to considerably increase antitumor efficacy. However, achieving codelivery of the drugs to the tumor site remains a major challenge. Stimulus-responsive nanodelivery systems show controlled drug delivery and precise drug release. Polysaccharides, a family of potential biomaterials, are widely used in the development of stimulus-responsive nanomedicines due to their unique physicochemical properties, biocompatibility, and modifiability. Here, the antitumor activity of polysaccharides and several combined immunotherapy strategies (e.g., immunotherapy combined with chemotherapy, photodynamic therapy, or photothermal therapy) are summarized. More importantly, the recent progress of polysaccharide-based stimulus-responsive nanomedicines for combination cancer immunotherapy is discussed, with the focus on construction of nanomedicine, targeted delivery, drug release, and enhanced antitumor effects. Finally, the limitations and application prospects of this new field are discussed.
Collapse
Affiliation(s)
- Qiuxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Xing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Bolin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Yuxin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Lu Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Mingyi Shi
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hua Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao SAR, 999078, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| |
Collapse
|
6
|
Chen Y, Wang J, Zhang F, Liu P. A perspective of immunotherapy for acute myeloid leukemia: Current advances and challenges. Front Pharmacol 2023; 14:1151032. [PMID: 37153761 PMCID: PMC10154606 DOI: 10.3389/fphar.2023.1151032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/24/2023] [Indexed: 05/10/2023] Open
Abstract
During the last decade, the underlying pathogenic mechanisms of acute myeloid leukemia (AML) have been the subject of extensive study which has considerably increased our understanding of the disease. However, both resistance to chemotherapy and disease relapse remain the principal obstacles to successful treatment. Because of acute and chronic undesirable effects frequently associated with conventional cytotoxic chemotherapy, consolidation chemotherapy is not feasible, especially for elderly patients, which has attracted a growing body of research to attempt to tackle this problem. Immunotherapies for acute myeloid leukemia, including immune checkpoint inhibitors, monoclonal antibodies, dendritic cell (DC) vaccines, together with T-cell therapy based on engineered antigen receptor have been developed recently. Our review presents the recent progress in immunotherapy for the treatment of AML and discusses effective therapies that have the most potential and major challenges.
Collapse
Affiliation(s)
- Ying Chen
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Guiyang, China
| | - Jishi Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Guiyang, China
- *Correspondence: Jishi Wang,
| | - Fengqi Zhang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Guiyang, China
| | - Ping Liu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Guiyang, China
| |
Collapse
|
7
|
Boesch M, Horvath L, Baty F, Pircher A, Wolf D, Spahn S, Straussman R, Tilg H, Brutsche MH. Compartmentalization of the host microbiome: how tumor microbiota shapes checkpoint immunotherapy outcome and offers therapeutic prospects. J Immunother Cancer 2022; 10:jitc-2022-005401. [PMID: 36343977 PMCID: PMC9644363 DOI: 10.1136/jitc-2022-005401] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
The host microbiome is polymorphic, compartmentalized, and composed of distinctive tissue microbiomes. While research in the field of cancer immunotherapy has provided an improved understanding of the interaction with the gastrointestinal microbiome, the significance of the tumor-associated microbiome has only recently been grasped. This article provides a state-of-the-art review about the tumor-associated microbiome and sheds light on how local tumor microbiota shapes anticancer immunity and influences checkpoint immunotherapy outcome. The direct route of interaction between cancer cells, immune cells, and microbiota in the tumor microenvironment is emphasized and advocates a focus on the tumor-associated microbiome in addition to the spatially separated gut compartment. Since the mechanisms underlying checkpoint immunotherapy modulation by tumor-associated microbiota remain largely elusive, future research should dissect the pathways involved and outline strategies to therapeutically modulate microbes and their products within the tumor microenvironment. A more detailed knowledge about the mechanisms governing the composition and functional quality of the tumor microbiome will improve cancer immunotherapy and advance precision medicine for solid tumors.
Collapse
Affiliation(s)
| | - Lena Horvath
- Department of Internal Medicine V (Hematology and Oncology) and Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - Florent Baty
- Lung Center, Cantonal Hospital St.Gallen, St.Gallen, Switzerland
| | - Andreas Pircher
- Department of Internal Medicine V (Hematology and Oncology) and Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Wolf
- Department of Internal Medicine V (Hematology and Oncology) and Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - Stephan Spahn
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ravid Straussman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Herbert Tilg
- Department of Internal Medicine I (Gastroenterology, Hepatology, Endocrinology & Metabolism), Medical University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
8
|
Yao A, Liu Z, Rao H, Shen Y, Wang C, Xie S. Exploration of the optimal number of regional lymph nodes removed for resected N0 NSCLC patients: A population-based study. Front Oncol 2022; 12:1011091. [PMID: 36249000 PMCID: PMC9557931 DOI: 10.3389/fonc.2022.1011091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
Background The aim of our study was to explore the optimal number of regional lymph nodes removed (LNRs) in resected N0 non-small cell lung cancer (NSCLC) patients and identify potential risk factors. Methods Included in this study were 55,024 N0 NSCLC patients between 2004 and 2015 based on the Surveillance, Epidemiology, and End Results database (SEER). All the patients were divided into No LNR group (57.8%), 1-3 LNRs group (8.1%) and ≥4 LNRs group (31.4%). Relevant clinical and patient parameters including overall survival (OS), lung cancer-specific survival (LCSS), gender, race, year of diagnosis, primary site, T stage, AJCC stage, laterality, histological type, lymphadenectomy, radiation, chemotherapy, age at diagnosis, insurance status, marital status, family income. Results Kaplan-Meier analysis demonstrated LNRs had significantly better OS and LCSS than No LNRs in all the N0 NSCLC patients with different T stages (Logrank p<.001). Univariate and multivariate analysis showed that both OS and LCSS in ≥ 4 LNRs group were better than those in <1-3 LNRs group (OS: ≥4 LNRs group: HR, 0.583; 95%CI, 0.556-0.610; P<.001 vs.1-3 LNRs group: HR, 0.726; 95%CI, 0.687-0.769; P<.001; LCSS: ≥4 LNRs group: HR, 0.514; 95%CI, 0.480-0.550; P<.001 vs.1-3 LNRs group: HR, 0.647; 95%CI, 0.597-0.702; P<.001). In addition, whites, males, not upper lobe, large cell carcinoma and others, advance T stage or AJCC stage, no surgery, no LNR, no radiation, no chemotherapy, elder age at diagnosis, singled marital status and low family income had negative impact on prognosis of N0 NSCLC patients. Conclusions Our study suggests that ≥ 4 LNRs can yield better survival outcomes compared with 1-3 LNRs in N0 NSCLC patients.
Collapse
Affiliation(s)
- Anjie Yao
- Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zixuan Liu
- Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Tongji University School of Medicine, Shanghai, China
| | - Hanyu Rao
- Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Tongji University School of Medicine, Shanghai, China
| | - Yilun Shen
- Department of General Medicine, Jiuting Town Community Healthcare Cancer, Shanghai, China
| | - Changhui Wang
- Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Changhui Wang, ; Shuanshuan Xie,
| | - Shuanshuan Xie
- Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Changhui Wang, ; Shuanshuan Xie,
| |
Collapse
|
9
|
Obstacles for T-lymphocytes in the tumour microenvironment: Therapeutic challenges, advances and opportunities beyond immune checkpoint. EBioMedicine 2022; 83:104216. [PMID: 35986950 PMCID: PMC9403334 DOI: 10.1016/j.ebiom.2022.104216] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 02/08/2023] Open
Abstract
The tumour microenvironment (TME) imposes a major obstacle to infiltrating T-lymphocytes and suppresses their function. Several immune checkpoint proteins that interfere with ligand/receptor interactions and impede T-cell anti-tumour responses have been identified. Immunotherapies that block immune checkpoints have revolutionized the treatment paradigm for many patients with advanced-stage tumours. However, metabolic constraints and soluble factors that exist within the TME exacerbate the functional exhaustion of tumour-infiltrating T-cells. Here we review these multifactorial constraints and mechanisms – elevated immunosuppressive metabolites and enzymes, nutrient insufficiency, hypoxia, increased acidity, immense amounts of extracellular ATP and adenosine, dysregulated bioenergetic and purinergic signalling, and ionic imbalance - that operate in the TME and collectively suppress T-cell function. We discuss how scientific advances could help overcome the complex TME obstacles for tumour-infiltrating T-lymphocytes, aiming to stimulate further research for developing new therapeutic strategies by harnessing the full potential of the immune system in combating cancer.
Collapse
|
10
|
Fan Z, Jiang C, Wang Y, Wang K, Marsh J, Zhang D, Chen X, Nie L. Engineered extracellular vesicles as intelligent nanosystems for next-generation nanomedicine. NANOSCALE HORIZONS 2022; 7:682-714. [PMID: 35662310 DOI: 10.1039/d2nh00070a] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Extracellular vesicles (EVs), as natural carriers of bioactive cargo, have a unique micro/nanostructure, bioactive composition, and characteristic morphology, as well as fascinating physical, chemical and biochemical features, which have shown promising application in the treatment of a wide range of diseases. However, native EVs have limitations such as lack of or inefficient cell targeting, on-demand delivery, and therapeutic feedback. Recently, EVs have been engineered to contain an intelligent core, enabling them to (i) actively target sites of disease, (ii) respond to endogenous and/or exogenous signals, and (iii) provide treatment feedback for optimal function in the host. These advances pave the way for next-generation nanomedicine and offer promise for a revolution in drug delivery. Here, we summarise recent research on intelligent EVs and discuss the use of "intelligent core" based EV systems for the treatment of disease. We provide a critique about the construction and properties of intelligent EVs, and challenges in their commercialization. We compare the therapeutic potential of intelligent EVs to traditional nanomedicine and highlight key advantages for their clinical application. Collectively, this review aims to provide a new insight into the design of next-generation EV-based theranostic platforms for disease treatment.
Collapse
Affiliation(s)
- Zhijin Fan
- School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, P. R. China
| | - Cheng Jiang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Yichao Wang
- Department of Clinical Laboratory Medicine, Tai Zhou Central Hospital (Taizhou University Hospital), Taizhou 318000, P. R. China
| | - Kaiyuan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Jade Marsh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
| | - Xin Chen
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiao Tong University, Xi'an 710049, P. R. China.
| | - Liming Nie
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, P. R. China
- School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
| |
Collapse
|
11
|
Combination therapy with CAR T cells and oncolytic viruses: a new era in cancer immunotherapy. Cancer Gene Ther 2022; 29:647-660. [PMID: 34158626 DOI: 10.1038/s41417-021-00359-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/16/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is an encouraging and fast-growing platform used for the treatment of various types of tumors in human body. Despite the recent success of CAR T-cell therapy in hematologic malignancies, especially in B-cell lymphoma and acute lymphoblastic leukemia, the application of this treatment approach in solid tumors faced several obstacles resulted from the heterogeneous expression of antigens as well as the induction of immunosuppressive tumor microenvironment. Oncolytic virotherapy (OV) is a new cancer treatment modality by the use of competent or genetically engineered viruses to replicate in tumor cells selectively. OVs represent potential candidates to synergize the current setbacks of CAR T-cell application in solid tumors and then and overcome them. As well, the application of OVs gives researches the ability to engineer the virus with payloads in the way that it selectively deliver a specific therapeutic agents in tumor milieu to reinforce the cytotoxic activity of CAR T cells. Herein, we made a comprehensive review on the outcomes resulted from the combination of CAR T-cell immunotherapy and oncolytic virotherapy for the treatment of solid cancers. In the current study, we also provided brief details on some challenges that remained in this field and attempted to shed a little light on the future perspectives.
Collapse
|
12
|
Mardi A, Shirokova AV, Mohammed RN, Keshavarz A, Zekiy AO, Thangavelu L, Mohamad TAM, Marofi F, Shomali N, Zamani A, Akbari M. Biological causes of immunogenic cancer cell death (ICD) and anti-tumor therapy; Combination of Oncolytic virus-based immunotherapy and CAR T-cell therapy for ICD induction. Cancer Cell Int 2022; 22:168. [PMID: 35488303 PMCID: PMC9052538 DOI: 10.1186/s12935-022-02585-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/11/2022] [Indexed: 12/22/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a promising and rapidly expanding therapeutic option for a wide range of human malignancies. Despite the ongoing progress of CAR T-cell therapy in hematologic malignancies, the application of this therapeutic strategy in solid tumors has encountered several challenges due to antigen heterogeneity, suboptimal CAR T-cell trafficking, and the immunosuppressive features of the tumor microenvironment (TME). Oncolytic virotherapy is a novel cancer therapy that employs competent or genetically modified oncolytic viruses (OVs) to preferentially proliferate in tumor cells. OVs in combination with CAR T-cells are promising candidates for overcoming the current drawbacks of CAR T-cell application in tumors through triggering immunogenic cell death (ICD) in cancer cells. ICD is a type of cellular death in which danger-associated molecular patterns (DAMPs) and tumor-specific antigens are released, leading to the stimulation of potent anti-cancer immunity. In the present review, we discuss the biological causes of ICD, different types of ICD, and the synergistic combination of OVs and CAR T-cells to reach potent tumor-specific immunity.
Collapse
Affiliation(s)
- Amirhossein Mardi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anastasia V Shirokova
- Department of Prosthetic Dentistry, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Rebar N Mohammed
- Medical Laboratory Analysis Department, College of Health Science, Cihan University of Sulaimaniya, Suleimanyah, Kurdistan region, Iraq.,College of. Veterinary Medicine, University of Sulaimani, Suleimanyah, Iraq
| | - Ali Keshavarz
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Angelina O Zekiy
- Department of Prosthetic Dentistry, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Talar Ahmad Merza Mohamad
- Department of Pharmacology and Toxicology, Clinical Pharmacy, Hawler Medical University, College of Pharmacy, Kurdistan Region-Erbil, Iraq
| | - Faroogh Marofi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zamani
- Shiraz Transplant Center, Abu Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Wang YM, Qiu JJ, Qu XY, Peng J, Lu C, Zhang M, Zhang MX, Qi XL, Lv B, Guo JJ, Guo CY, Li GL, Hua KQ. Accumulation of dysfunctional tumor-infiltrating PD-1+ DCs links PD-1/PD-L1 blockade immunotherapeutic response in cervical cancer. Oncoimmunology 2022; 11:2034257. [PMID: 35154907 PMCID: PMC8837238 DOI: 10.1080/2162402x.2022.2034257] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Various predictive biomarkers are needed to select candidates for optimal and individualized treatments. Tumor‐infiltrating immune cells have gained increasing interest in cancer research for the prediction of therapeutic response and survival. However, the role of dendritic cells (DCs) in PD-1 blockade immunotherapy remains unclear. In this study, we identified a population of PD-1+ DCs in the tumor microenvironment (TME) of cervical cancer (CC). The accumulation of PD-1+ DCs in cervical tumors was correlated with advanced stages, elevated preoperative squamous cell carcinoma antigen levels and lymph-vascular space invasion. PD-1 expression was induced on activated tumor-associated DCs (TADCs) in vitro compared with their resting counterparts. This PD-1+ DC population was characterized by reduced secretion of cytokines (IL-12, TNF-α, and IL-1β) and dysfunctional induction of T cell proliferation and cytotoxic reaction. PD-1 blockade significantly reinvigorated PD-1+ DCs to release IL-12, TNF-α, and IL-1β compared with PD-1- DCs. TILs from samples with higher PD-1+ DC infiltration could be induced to achieve a greater killing effect of PD-1 blockade treatment. Our findings suggested a role for PD-1+ DCs in immune surveillance dysfunction and CC progression. PD-1+ DC density in the TME may serve as a diagnostic factor for predicting the optimal beneficiaries of PD-1/PD-L1 blockade immunotherapy in CC.
Collapse
Affiliation(s)
- Yu-meng Wang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jun-jun Qiu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Xin-yu Qu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jing Peng
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Chong Lu
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Meng Zhang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Ming-Xing Zhang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Xing-ling Qi
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Bin Lv
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jing-Jing Guo
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Chen-yan Guo
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Gui-ling Li
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Ke-qin Hua
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
14
|
Zhou J, Bai J, Yue Y, Chen X, Lange T, You D, Zhao Y. Association of Hypokalemia Incidence and Better Treatment Response in NSCLC Patients: A Meta-Analysis and Systematic Review on Anti-EGFR Targeted Therapy Clinical Trials. Front Oncol 2022; 11:757456. [PMID: 35070968 PMCID: PMC8766730 DOI: 10.3389/fonc.2021.757456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/02/2021] [Indexed: 12/02/2022] Open
Abstract
Background This meta-analysis was designed to explore the relationship between the level of serum potassium and the treatment effect of epidermal growth factor receptor (EGFR) antagonist in advanced non-small cell lung cancer (aNSCLC). Methods We searched phase II/III prospective clinical trials on treatment with EGFR antagonists for aNSCLC patients. The objective response rate (ORR) and/or the disease control rate (DCR) and the incidence of hypokalemia of high grade (equal to or greater than grade 3) were summarized from all eligible trials. Heterogeneity, which was evaluated by Cochran’s Q-test and the I2 statistics, was used to determine whether a random effects model or a fixed effects model will be used to calculate pooled proportions. Subgroup analysis was performed on different interventions, line types, phases, and drug numbers. Results From 666 potentially relevant articles, 36 clinical trials with a total of 9,761 participants were included in this meta-analysis. The pooled ORR was 16.25% (95%CI = 12.45–21.19) when the incidence of hypokalemia was 0%–5%, and it increased to 34.58% (95%CI = 24.09–45.07) when the incidence of hypokalemia was greater than 5%. The pooled DCR were 56.03% (95%CI = 45.03–67.03) and 64.38% (95%CI = 48.60–80.17) when the incidence rates of hypokalemia were 0%–5% and greater than 5%, respectively. The results of the subgroup analysis were consistent with the results of the whole population, except for not first-line treatment, which may have been confounded by malnutrition or poor quality of life in long-term survival. Conclusion The efficacy of anti-EGFR targeted therapy was positively associated with the hypokalemia incidence rate. Treatment effects on the different serum potassium strata need to be considered in future clinical trials with targeted therapy.
Collapse
Affiliation(s)
- Jiawei Zhou
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jianling Bai
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuanping Yue
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xin Chen
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Theis Lange
- Section of Biostatistics, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dongfang You
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yang Zhao
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Ginefra P, Carrasco Hope H, Spagna M, Zecchillo A, Vannini N. Ionic Regulation of T-Cell Function and Anti-Tumour Immunity. Int J Mol Sci 2021; 22:ijms222413668. [PMID: 34948472 PMCID: PMC8705279 DOI: 10.3390/ijms222413668] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/02/2022] Open
Abstract
The capacity of T cells to identify and kill cancer cells has become a central pillar of immune-based cancer therapies. However, T cells are characterized by a dysfunctional state in most tumours. A major obstacle for proper T-cell function is the metabolic constraints posed by the tumour microenvironment (TME). In the TME, T cells compete with cancer cells for macronutrients (sugar, proteins, and lipid) and micronutrients (vitamins and minerals/ions). While the role of macronutrients in T-cell activation and function is well characterized, the contribution of micronutrients and especially ions in anti-tumour T-cell activities is still under investigation. Notably, ions are important for most of the signalling pathways regulating T-cell anti-tumour function. In this review, we discuss the role of six biologically relevant ions in T-cell function and in anti-tumour immunity, elucidating potential strategies to adopt to improve immunotherapy via modulation of ion metabolism.
Collapse
|
16
|
Krampert L, Bauer K, Ebner S, Neubert P, Ossner T, Weigert A, Schatz V, Toelge M, Schröder A, Herrmann M, Schnare M, Dorhoi A, Jantsch J. High Na + Environments Impair Phagocyte Oxidase-Dependent Antibacterial Activity of Neutrophils. Front Immunol 2021; 12:712948. [PMID: 34566968 PMCID: PMC8461097 DOI: 10.3389/fimmu.2021.712948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/04/2021] [Indexed: 01/21/2023] Open
Abstract
Infection and inflammation can augment local Na+ abundance. These increases in local Na+ levels boost proinflammatory and antimicrobial macrophage activity and can favor polarization of T cells towards a proinflammatory Th17 phenotype. Although neutrophils play an important role in fighting intruding invaders, the impact of increased Na+ on the antimicrobial activity of neutrophils remains elusive. Here we show that, in neutrophils, increases in Na+ (high salt, HS) impair the ability of human and murine neutrophils to eliminate Escherichia coli and Staphylococcus aureus. High salt caused reduced spontaneous movement, degranulation and impaired production of reactive oxygen species (ROS) while leaving neutrophil viability unchanged. High salt enhanced the activity of the p38 mitogen-activated protein kinase (p38/MAPK) and increased the interleukin (IL)-8 release in a p38/MAPK-dependent manner. Whereas inhibition of p38/MAPK did not result in improved neutrophil defense, pharmacological blockade of the phagocyte oxidase (PHOX) or its genetic ablation mimicked the impaired antimicrobial activity detected under high salt conditions. Stimulation of neutrophils with phorbol-12-myristate-13-acetate (PMA) overcame high salt-induced impairment in ROS production and restored antimicrobial activity of neutrophils. Hence, we conclude that high salt-impaired PHOX activity results in diminished antimicrobial activity. Our findings suggest that increases in local Na+ represent an ionic checkpoint that prevents excessive ROS production of neutrophils, which decreases their antimicrobial potential and could potentially curtail ROS-mediated tissue damage.
Collapse
Affiliation(s)
- Luka Krampert
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Katharina Bauer
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Stefan Ebner
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany.,Max Planck Institute (MPI) of Biochemistry, Martinsried, Germany
| | - Patrick Neubert
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Thomas Ossner
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Anna Weigert
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Valentin Schatz
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Martina Toelge
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Agnes Schröder
- Institute of Orthodontics, University Hospital of Regensburg, Regensburg, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3-Rheumatology and Immunology and Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital Erlangen, Erlangen, Germany
| | - Markus Schnare
- Department of Immunology, Philipps University Marburg, Marburg, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler Institut, Greifswald, Germany.,Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| |
Collapse
|
17
|
Wu B, Shen Y, Chen X, Wang X, Zhong Z. Effect of lymphadenectomy on the prognosis for N0 gallbladder carcinoma patients: A study based on SEER database. Cancer Med 2021; 10:7136-7143. [PMID: 34519168 PMCID: PMC8525154 DOI: 10.1002/cam4.4250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022] Open
Abstract
Background It remains unclear whether lymph node dissection is necessary for patients with N0 gallbladder carcinoma (GBC). The objective of this study was to evaluate the effect of lymphadenectomy on the prognosis for N0 GBC patients. The secondary objective was to establish a prognostic model of survival for N0 GBC patients being founded on the large samples. Methods Patient data were obtained from the database named SEER (Surveillance, Epidemiology, and End Results database) between 2010 and 2014. Analyses of Kaplan–Meier survival and multivariate Cox regression were performed in subgroups based on regional lymph nodes removal (LNR) to calculate the excess risk of cause‐specific death. A prognosis nomogram was constructed build on the results of a multivariate analysis to predict the specific survival time (CSS) rates of N0 GBC patients. Result A total of 1406 N0 GBC patients were included in this research. The majority of N0 GBC patients undergoing cancer‐directed surgery did not undergo LNR (64.5%). The results showed that LNR can improve the survival of N0 GBC patients, including those at the T1a and T1b stages, and a wider range of lymph node dissection (LNR2) compared to LNR1 was more conducive to the prognosis. Furthermore, multivariate regression analysis showed that LNR was an independent favorable prognostic factor of N0 GBC. Finally, a nomogram was constructed to accurately predict the prognosis of N0 gallbladder cancer patients. Conclusion This study demonstrated a significant survival benefit for extended lymph nodes removed in N0 GBC patients. These results recommend that an extended lymph node dissection strategy is needed for N0 GBC patients.
Collapse
Affiliation(s)
- Bin Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, P.R. China
| | - Yiyu Shen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, P.R. China
| | - Xujian Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, P.R. China
| | - Xiaoguang Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, P.R. China
| | - Zhengxiang Zhong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, P.R. China
| |
Collapse
|
18
|
Fan TW, Higashi RM, Song H, Daneshmandi S, Mahan AL, Purdom MS, Bocklage TJ, Pittman TA, He D, Wang C, Lane AN. Innate immune activation by checkpoint inhibition in human patient-derived lung cancer tissues. eLife 2021; 10:69578. [PMID: 34406120 PMCID: PMC8476122 DOI: 10.7554/elife.69578] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Although Pembrolizumab-based immunotherapy has significantly improved lung cancer patient survival, many patients show variable efficacy and resistance development. A better understanding of the drug’s action is needed to improve patient outcomes. Functional heterogeneity of the tumor microenvironment (TME) is crucial to modulating drug resistance; understanding of individual patients’ TME that impacts drug response is hampered by lack of appropriate models. Lung organotypic tissue slice cultures (OTC) with patients’ native TME procured from primary and brain-metastasized (BM) non-small cell lung cancer (NSCLC) patients were treated with Pembrolizumab and/or beta-glucan (WGP, an innate immune activator). Metabolic tracing with 13C6-Glc/13C5,15N2-Gln, multiplex immunofluorescence, and digital spatial profiling (DSP) were employed to interrogate metabolic and functional responses to Pembrolizumab and/or WGP. Primary and BM PD-1+ lung cancer OTC responded to Pembrolizumab and Pembrolizumab + WGP treatments, respectively. Pembrolizumab activated innate immune metabolism and functions in primary OTC, which were accompanied by tissue damage. DSP analysis indicated an overall decrease in immunosuppressive macrophages and T cells but revealed microheterogeneity in immune responses and tissue damage. Two TMEs with altered cancer cell properties showed resistance. Pembrolizumab or WGP alone had negligible effects on BM-lung cancer OTC but Pembrolizumab + WGP blocked central metabolism with increased pro-inflammatory effector release and tissue damage. In-depth metabolic analysis and multiplex TME imaging of lung cancer OTC demonstrated overall innate immune activation by Pembrolizumab but heterogeneous responses in the native TME of a patient with primary NSCLC. Metabolic and functional analysis also revealed synergistic action of Pembrolizumab and WGP in OTC of metastatic NSCLC.
Collapse
Affiliation(s)
- Teresa Wm Fan
- Center for Environmental and Systems Biochemistry (CESB), University of Kentucky, Lexington, United States.,Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, United States.,Markey Cancer Center, University of Kentucky, Lexington, United States
| | - Richard M Higashi
- Center for Environmental and Systems Biochemistry (CESB), University of Kentucky, Lexington, United States.,Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, United States.,Markey Cancer Center, University of Kentucky, Lexington, United States
| | - Huan Song
- Center for Environmental and Systems Biochemistry (CESB), University of Kentucky, Lexington, United States.,Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, United States.,Markey Cancer Center, University of Kentucky, Lexington, United States
| | - Saeed Daneshmandi
- Center for Environmental and Systems Biochemistry (CESB), University of Kentucky, Lexington, United States.,Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, United States.,Markey Cancer Center, University of Kentucky, Lexington, United States
| | - Angela L Mahan
- Markey Cancer Center, University of Kentucky, Lexington, United States.,Departement of Surgery, University of Kentucky, Lexington, United States
| | - Matthew S Purdom
- Markey Cancer Center, University of Kentucky, Lexington, United States.,Departement of Pathology and Laboratory Medicine, University of Kentucky, Lexington, United States
| | - Therese J Bocklage
- Markey Cancer Center, University of Kentucky, Lexington, United States.,Departement of Pathology and Laboratory Medicine, University of Kentucky, Lexington, United States
| | - Thomas A Pittman
- Department of Neurosurgery, University of Kentucky, Lexington, United States
| | - Daheng He
- Markey Cancer Center, University of Kentucky, Lexington, United States.,Department Internal Medicine, University of Kentucky, Lexington, United States
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, United States.,Department Internal Medicine, University of Kentucky, Lexington, United States
| | - Andrew N Lane
- Center for Environmental and Systems Biochemistry (CESB), University of Kentucky, Lexington, United States.,Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, United States.,Markey Cancer Center, University of Kentucky, Lexington, United States
| |
Collapse
|
19
|
Hu X, Li F, Xia F, Wang Q, Lin P, Wei M, Gong L, Low LE, Lee JY, Ling D. Dynamic nanoassembly-based drug delivery system (DNDDS): Learning from nature. Adv Drug Deliv Rev 2021; 175:113830. [PMID: 34139254 DOI: 10.1016/j.addr.2021.113830] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/19/2021] [Accepted: 06/10/2021] [Indexed: 12/18/2022]
Abstract
Dynamic nanoassembly-based drug delivery system (DNDDS) has evolved from being a mere curiosity to emerging as a promising strategy for high-performance diagnosis and/or therapy of various diseases. However, dynamic nano-bio interaction between DNDDS and biological systems remains poorly understood, which can be critical for precise spatiotemporal and functional control of DNDDS in vivo. To deepen the understanding for fine control over DNDDS, we aim to explore natural systems as the root of inspiration for researchers from various fields. This review highlights ingenious designs, nano-bio interactions, and controllable functionalities of state-of-the-art DNDDS under endogenous or exogenous stimuli, by learning from nature at the molecular, subcellular, and cellular levels. Furthermore, the assembly strategies and response mechanisms of tailor-made DNDDS based on the characteristics of various diseased microenvironments are intensively discussed. Finally, the current challenges and future perspectives of DNDDS are briefly commented.
Collapse
|
20
|
Morris Z, Dohopolski M, Rahimi A, Timmerman R. Future Directions in the Use of SAbR for the Treatment of Oligometastatic Cancers. Semin Radiat Oncol 2021; 31:253-262. [PMID: 34090653 DOI: 10.1016/j.semradonc.2021.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The role of local therapy as a sole therapy or part of a combined approach in treating metastatic cancer continues to evolve. The most obvious requirements for prudent implementation of local therapies like stereotactic ablative radiotherapy (SAbR) to become mainstream in treating oligometastases are (1) Clear guidance as to what particular patients might benefit, and (2) Confirmation of improvements in outcome after such treatments via clinical trials. These future directional requirements are non-negotiable. However, innovation and research offer many more opportunities to understand and improve therapy. Identifying candidates and personalizing their therapy can be afforded via proteomic, genomic and epigenomic characterization techniques. Such molecular profiling along with liquid biopsy opportunities will both help select best therapies and facilitate ongoing monitoring of response. Technologies both to find targets and help deliver less-toxic therapy continue to improve and will be available in the marketplace. These technologies include molecular-based imaging (eg, PET-PSMA), FLASH ultra-high dose rate platforms, Grid therapy, PULSAR adaptive dosing, and MRI/PET guided linear accelerators. Importantly, a treatment approach beyond oligometastastic could evolve including a rationale for using SAbR in the oligoprogressive, oligononresponsive, oligobulky and oligolethal settings as well as expansion beyond oligo- toward even plurimetastastic disease. In any case, lessons learned and experiences required by the implementation of using SAbR in oligometastatic cancer will be revisited.
Collapse
Affiliation(s)
- Zachary Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Michael Dohopolski
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Asal Rahimi
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Robert Timmerman
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX; Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI.
| |
Collapse
|
21
|
Danelli L, Cornish G, Merkenschlager J, Kassiotis G. Default polyfunctional T helper 1 response to ample signal 1 alone. Cell Mol Immunol 2021; 18:1809-1822. [PMID: 32313208 PMCID: PMC8245500 DOI: 10.1038/s41423-020-0415-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 03/14/2020] [Indexed: 12/27/2022] Open
Abstract
CD4+ T cells integrate well-defined signals from the T-cell receptor (TCR) (signal 1) and a host of costimulatory molecules (signal 2) to initiate clonal expansion and differentiation into diverse functional T helper (Th) subsets. However, our ability to guide the expansion of context-appropriate Th subsets by deploying these signals in vaccination remains limited. Using cell-based vaccines, we selectively amplified signal 1 by exclusive presentation of an optimized peptide:MHC II (pMHC II) complex in the absence of classic costimulation. Contrary to expectations, amplified signal 1 alone was strongly immunogenic and selectively expanded high-affinity TCR clonotypes, despite delivering intense TCR signals. In contrast to natural infection or standard vaccines, amplified signal 1, presented by a variety of professional and nonprofessional antigen-presenting cells (APCs), induced exclusively polyfunctional Th1 effector and memory cells, which protected against retroviral infection and tumor challenge, and expanded tumor-reactive CD4+ T cells otherwise rendered unresponsive in tumor-bearing hosts. Together, our findings uncover a default Th1 response to ample signal 1 and offer a means to selectively prime such protective responses by vaccination.
Collapse
Affiliation(s)
- Luca Danelli
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Georgina Cornish
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Julia Merkenschlager
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- Department of Medicine, Faculty of Medicine, Imperial College London, London, W2 1PG, UK.
| |
Collapse
|
22
|
Gaete D, Rodriguez D, Watts D, Sormendi S, Chavakis T, Wielockx B. HIF-Prolyl Hydroxylase Domain Proteins (PHDs) in Cancer-Potential Targets for Anti-Tumor Therapy? Cancers (Basel) 2021; 13:988. [PMID: 33673417 PMCID: PMC7956578 DOI: 10.3390/cancers13050988] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Solid tumors are typically associated with unbridled proliferation of malignant cells, accompanied by an immature and dysfunctional tumor-associated vascular network. Consequent impairment in transport of nutrients and oxygen eventually leads to a hypoxic environment wherein cells must adapt to survive and overcome these stresses. Hypoxia inducible factors (HIFs) are central transcription factors in the hypoxia response and drive the expression of a vast number of survival genes in cancer cells and in cells in the tumor microenvironment. HIFs are tightly controlled by a class of oxygen sensors, the HIF-prolyl hydroxylase domain proteins (PHDs), which hydroxylate HIFs, thereby marking them for proteasomal degradation. Remarkable and intense research during the past decade has revealed that, contrary to expectations, PHDs are often overexpressed in many tumor types, and that inhibition of PHDs can lead to decreased tumor growth, impaired metastasis, and diminished tumor-associated immune-tolerance. Therefore, PHDs represent an attractive therapeutic target in cancer research. Multiple PHD inhibitors have been developed that were either recently accepted in China as erythropoiesis stimulating agents (ESA) or are currently in phase III trials. We review here the function of HIFs and PHDs in cancer and related therapeutic opportunities.
Collapse
Affiliation(s)
| | | | | | | | | | - Ben Wielockx
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01307 Dresden, Germany; (D.G.); (D.R.); (D.W.); (S.S.); (T.C.)
| |
Collapse
|
23
|
Pallerla S, Abdul AURM, Comeau J, Jois S. Cancer Vaccines, Treatment of the Future: With Emphasis on HER2-Positive Breast Cancer. Int J Mol Sci 2021; 22:E779. [PMID: 33466691 PMCID: PMC7828795 DOI: 10.3390/ijms22020779] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is one of the leading causes of death in women. With improvements in early-stage diagnosis and targeted therapies, there has been an improvement in the overall survival rate in breast cancer over the past decade. Despite the development of targeted therapies, tyrosine kinase inhibitors, as well as monoclonal antibodies and their toxin conjugates, all metastatic tumors develop resistance, and nearly one-third of HER2+ breast cancer patients develop resistance to all these therapies. Although antibody therapy has shown promising results in breast cancer patients, passive immunotherapy approaches have limitations and need continuous administration over a long period. Vaccine therapy introduces antigens that act on cancer cells causing prolonged activation of the immune system. In particular, cancer relapse could be avoided due to the presence of a longer period of immunological memory with an effective vaccine that can protect against various tumor antigens. Cancer vaccines are broadly classified as preventive and therapeutic. Preventive vaccines are used to ward off any future infections and therapeutic vaccines are used to treat a person with active disease. In this article, we provided details about the tumor environment, different types of vaccines, their advantages and disadvantages, and the current status of various vaccine candidates with a focus on vaccines for breast cancer. Current data indicate that therapeutic vaccines themselves have limitations in terms of efficacy and are used in combination with other chemotherapeutic or targeting agents. The majority of breast cancer vaccines are undergoing clinical trials and the next decade will see the fruitfulness of breast cancer vaccine therapy.
Collapse
Affiliation(s)
- Sandeep Pallerla
- School of Pharmaceutical and Toxicological Sciences and School of Clinical Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA; (S.P.); (J.C.)
| | | | - Jill Comeau
- School of Pharmaceutical and Toxicological Sciences and School of Clinical Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA; (S.P.); (J.C.)
| | - Seetharama Jois
- School of Pharmaceutical and Toxicological Sciences and School of Clinical Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA; (S.P.); (J.C.)
| |
Collapse
|
24
|
Wang X, Huynh C, Urak R, Weng L, Walter M, Lim L, Vyas V, Chang WC, Aguilar B, Brito A, Sarkissian A, Bandara NA, Yang L, Wang J, Wu X, Zhang J, Priceman SJ, Qin H, Kwak LW, Budde LE, Thomas SH, Clark MC, Popplewell L, Siddiqi T, Brown CE, Forman SJ. The Cerebroventricular Environment Modifies CAR T Cells for Potent Activity against Both Central Nervous System and Systemic Lymphoma. Cancer Immunol Res 2020; 9:75-88. [PMID: 33093217 DOI: 10.1158/2326-6066.cir-20-0236] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/24/2020] [Accepted: 10/15/2020] [Indexed: 11/16/2022]
Abstract
Lymphomas with central nervous system (CNS) involvement confer a worse prognosis than those without CNS involvement, and patients currently have limited treatment options. T cells genetically engineered with CD19-targeted chimeric antigen receptors (CAR) are effective against B-cell malignancies and show tremendous potential in the treatment of systemic lymphoma. We aimed to leverage this strategy toward a more effective therapy for patients with lymphoma with CNS disease. NOD-scid IL2Rgammanull (NSG) mice with CNS and/or systemic lymphoma were treated with CD19-CAR T cells via intracerebroventricular (ICV) or intravenous (IV) injection. CAR T cells isolated after treatment were rigorously examined for phenotype, gene expression, and function. We observed that CAR T cells infused ICV, but not IV, completely and durably eradicated both CNS and systemic lymphoma. CAR T cells delivered ICV migrated efficiently to the periphery, homed to systemic tumors, and expanded in vivo, leading to complete elimination of disease and resistance to tumor rechallenge. Mechanistic studies indicated that ICV-delivered CAR T cells are conditioned by exposure to cerebrospinal fluid in the ICV environment for superior antilymphoma activity and memory function compared with IV-delivered CAR T cells. Further analysis suggested that manipulating cellular metabolism or preactivating therapeutic CAR T cells with antigen ex vivo may improve the efficacy of CAR T cells in vivo Our demonstration that ICV-delivered CD19-CAR T cells had activity against CNS and systemic lymphoma could offer a valuable new strategy for treatment of B-cell malignancies with CNS involvement.
Collapse
Affiliation(s)
- Xiuli Wang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California.
| | - Christian Huynh
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Ryan Urak
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Lihong Weng
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Miriam Walter
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Laura Lim
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Vibhuti Vyas
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Wen-Chung Chang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Brenda Aguilar
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Alfonso Brito
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Aniee Sarkissian
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - N Achini Bandara
- Clinical and Translational Project Development Core, City of Hope, Duarte, California
| | - Lu Yang
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, California
| | - Jinhui Wang
- Integrative Genomics Core, Beckman Research Institute, City of Hope, Duarte, California
| | - Xiwei Wu
- Integrative Genomics Core, Beckman Research Institute, City of Hope, Duarte, California
| | - Jianying Zhang
- The Department of Computational and Quantitative Medicine, City of Hope, Duarte, California
| | - Saul J Priceman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Hong Qin
- Toni Stephenson Lymphoma Center, Beckman Research Institute, City of Hope, Duarte, California
| | - Larry W Kwak
- Toni Stephenson Lymphoma Center, Beckman Research Institute, City of Hope, Duarte, California
| | - Lihua E Budde
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Sandra H Thomas
- Clinical and Translational Project Development Core, City of Hope, Duarte, California
| | - Mary C Clark
- Clinical and Translational Project Development Core, City of Hope, Duarte, California
| | - Leslie Popplewell
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Tanya Siddiqi
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Christine E Brown
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Stephen J Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| |
Collapse
|
25
|
Angiogenesis inhibition in non-small cell lung cancer: a critical appraisal, basic concepts and updates from American Society for Clinical Oncology 2019. Curr Opin Oncol 2020; 32:44-53. [PMID: 31609741 DOI: 10.1097/cco.0000000000000591] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Recently, the combination of antiangiogenic agents, chemotherapy and immunotherapy has shown synergistic anticancer effects in non-small cell lung cancer (NSCLC). The future for this approach appears bright in lung cancer treatment; however, many challenges remain to be overcome regarding its true potential, optimal sequence and timing of therapy, and safety profile. In this review, we will discuss the current status and future direction of antiangiogenic therapy for the treatment of NSCLC, and highlight emerging strategies, such as tumor vessel normalization (TVN). RECENT FINDINGS Bevacizumab was the first antiangiogenic agent approved for the treatment of advanced NSCLC. Recently, the combination of chemotherapy/antiangiogenic therapy with immunotherapy showed high efficacy in first-line settings. A subgroup of patients with liver metastasis and driver mutation-addicted tumors benefited most, suggesting that the metastatic location, as well as the genetic background of the tumor, are key determinants for therapy responses. SUMMARY The efficacy of antiangiogenic therapies in unselected patients is rather limited. The tumor microenvironment has appeared to be more complex and heterogeneous than previously assumed. Only a contextual rather than a cell-specific approach might provide valuable insights towards the clinical validation of combinational therapies.
Collapse
|
26
|
Terkelsen T, Russo F, Gromov P, Haakensen VD, Brunak S, Gromova I, Krogh A, Papaleo E. Secreted breast tumor interstitial fluid microRNAs and their target genes are associated with triple-negative breast cancer, tumor grade, and immune infiltration. Breast Cancer Res 2020; 22:73. [PMID: 32605588 PMCID: PMC7329449 DOI: 10.1186/s13058-020-01295-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/14/2020] [Indexed: 12/21/2022] Open
Abstract
Background Studies on tumor-secreted microRNAs point to a functional role of these in cellular communication and reprogramming of the tumor microenvironment. Uptake of tumor-secreted microRNAs by neighboring cells may result in the silencing of mRNA targets and, in turn, modulation of the transcriptome. Studying miRNAs externalized from tumors could improve cancer patient diagnosis and disease monitoring and help to pinpoint which miRNA-gene interactions are central for tumor properties such as invasiveness and metastasis. Methods Using a bioinformatics approach, we analyzed the profiles of secreted tumor and normal interstitial fluid (IF) microRNAs, from women with breast cancer (BC). We carried out differential abundance analysis (DAA), to obtain miRNAs, which were enriched or depleted in IFs, from patients with different clinical traits. Subsequently, miRNA family enrichment analysis was performed to assess whether any families were over-represented in the specific sets. We identified dysregulated genes in tumor tissues from the same cohort of patients and constructed weighted gene co-expression networks, to extract sets of co-expressed genes and co-abundant miRNAs. Lastly, we integrated miRNAs and mRNAs to obtain interaction networks and supported our findings using prediction tools and cancer gene databases. Results Network analysis showed co-expressed genes and miRNA regulators, associated with tumor lymphocyte infiltration. All of the genes were involved in immune system processes, and many had previously been associated with cancer immunity. A subset of these, BTLA, CXCL13, IL7R, LAMP3, and LTB, was linked to the presence of tertiary lymphoid structures and high endothelial venules within tumors. Co-abundant tumor interstitial fluid miRNAs within this network, including miR-146a and miR-494, were annotated as negative regulators of immune-stimulatory responses. One co-expression network encompassed differences between BC subtypes. Genes differentially co-expressed between luminal B and triple-negative breast cancer (TNBC) were connected with sphingolipid metabolism and predicted to be co-regulated by miR-23a. Co-expressed genes and TIF miRNAs associated with tumor grade were BTRC, CHST1, miR-10a/b, miR-107, miR-301a, and miR-454. Conclusion Integration of IF miRNAs and mRNAs unveiled networks associated with patient clinicopathological traits, and underlined molecular mechanisms, specific to BC sub-groups. Our results highlight the benefits of an integrative approach to biomarker discovery, placing secreted miRNAs within a biological context.
Collapse
Affiliation(s)
- Thilde Terkelsen
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Francesco Russo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pavel Gromov
- Breast Cancer Biology Group, Genome Integrity Unit, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Vilde Drageset Haakensen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Irina Gromova
- Breast Cancer Biology Group, Genome Integrity Unit, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Anders Krogh
- Unit of Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark. .,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
27
|
Neubert P, Homann A, Wendelborn D, Bär AL, Krampert L, Trum M, Schröder A, Ebner S, Weichselbaum A, Schatz V, Linz P, Veelken R, Schulte-Schrepping J, Aschenbrenner AC, Quast T, Kurts C, Geisberger S, Kunzelmann K, Hammer K, Binger KJ, Titze J, Müller DN, Kolanus W, Schultze JL, Wagner S, Jantsch J. NCX1 represents an ionic Na+ sensing mechanism in macrophages. PLoS Biol 2020; 18:e3000722. [PMID: 32569301 PMCID: PMC7307728 DOI: 10.1371/journal.pbio.3000722] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/22/2020] [Indexed: 01/20/2023] Open
Abstract
Inflammation and infection can trigger local tissue Na+ accumulation. This Na+-rich environment boosts proinflammatory activation of monocyte/macrophage-like cells (MΦs) and their antimicrobial activity. Enhanced Na+-driven MΦ function requires the osmoprotective transcription factor nuclear factor of activated T cells 5 (NFAT5), which augments nitric oxide (NO) production and contributes to increased autophagy. However, the mechanism of Na+ sensing in MΦs remained unclear. High extracellular Na+ levels (high salt [HS]) trigger a substantial Na+ influx and Ca2+ loss. Here, we show that the Na+/Ca2+ exchanger 1 (NCX1, also known as solute carrier family 8 member A1 [SLC8A1]) plays a critical role in HS-triggered Na+ influx, concomitant Ca2+ efflux, and subsequent augmented NFAT5 accumulation. Moreover, interfering with NCX1 activity impairs HS-boosted inflammatory signaling, infection-triggered autolysosome formation, and subsequent antibacterial activity. Taken together, this demonstrates that NCX1 is able to sense Na+ and is required for amplifying inflammatory and antimicrobial MΦ responses upon HS exposure. Manipulating NCX1 offers a new strategy to regulate MΦ function.
Collapse
Affiliation(s)
- Patrick Neubert
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Arne Homann
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - David Wendelborn
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Anna-Lorena Bär
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Luka Krampert
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Maximilian Trum
- Department of Internal Medicine II, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Agnes Schröder
- Institute of Orthodontics, University Hospital of Regensburg, Regensburg, Germany
| | - Stefan Ebner
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Andrea Weichselbaum
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Valentin Schatz
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Peter Linz
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Roland Veelken
- Department of Internal Medicine 4, University Hospital Erlangen, Erlangen, Germany
| | - Jonas Schulte-Schrepping
- Department for Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Anna C. Aschenbrenner
- Department for Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Thomas Quast
- Molecular Immunology and Cell Biology LIMES Institute, University of Bonn, Bonn, Germany
| | - Christian Kurts
- Institute of Experimental Immunology, University of Bonn, Bonn, Germany
| | - Sabrina Geisberger
- Experimental and Clinical Research Center (ECRC), a cooperation of Charité-Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max Delbruck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Karl Kunzelmann
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Karin Hammer
- Department of Internal Medicine II, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Katrina J. Binger
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Jens Titze
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
| | - Dominik N. Müller
- Experimental and Clinical Research Center (ECRC), a cooperation of Charité-Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max Delbruck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Waldemar Kolanus
- Molecular Immunology and Cell Biology LIMES Institute, University of Bonn, Bonn, Germany
| | - Joachim L. Schultze
- Department for Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Platform for Single Cell Genomics & Epigenomics at the German Center for Neurodegenerative Diseases (DZNE) and the University of Bonn, Bonn, Germany
| | - Stefan Wagner
- Department of Internal Medicine II, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| |
Collapse
|
28
|
Yu Q, Lei Y, Huang Y, Zhang J, Chen Y, Chen K, Lin J, Sun S, Lin X. CYLD expression in dendritic cells involved in the immunoregulation of pulmonary adenocarcinoma via NF-κB pathway. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:137-142. [PMID: 31852310 DOI: 10.1080/21691401.2019.1699820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Our previous study found that IL33 repressed the growth of pulmonary adenocarcinoma (PA) via regulation of dendritic cells (DCs). However, the molecular mechanism of DCs in PA is still unclear. The present work showed that CYLD-/- mice have a shorter survival rate of PA, and knockout CYLD in DCs also repress the progression of PA in mice. Subsequently, we found that decreased expression and reduced the nuclear translocation of NF-κB signalling was observed in CYLD knockout DCs, and inhibiting NF-κB pathway repressed DCs-induced proliferation and function of CD4+ T cells. These results indicated that CYLD function as a tumour suppresser in PA via regulates the function of DCs through NF-κB signalling pathway. Our findings support that CYLD serves as a potential target for immunotherapy in PA.
Collapse
Affiliation(s)
- Qinghua Yu
- Department of Radiology, Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou, China
| | - Yujie Lei
- Department of Thoracic Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunchao Huang
- Department of Thoracic Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jiguang Zhang
- Department of Thoracic Surgery, Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou, China
| | - Yangming Chen
- Department of Thoracic Surgery, Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou, China
| | - Kai Chen
- Department of Thoracic Surgery, Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou, China
| | - Jianbin Lin
- Department of Thoracic Surgery, Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou, China
| | - Shihui Sun
- Department of Thoracic Surgery, Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou, China
| | - Xing Lin
- Department of Thoracic Surgery, Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou, China
| |
Collapse
|
29
|
Bhattacharya S, Calar K, de la Puente P. Mimicking tumor hypoxia and tumor-immune interactions employing three-dimensional in vitro models. J Exp Clin Cancer Res 2020; 39:75. [PMID: 32357910 PMCID: PMC7195738 DOI: 10.1186/s13046-020-01583-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
The heterogeneous tumor microenvironment (TME) is highly complex and not entirely understood. These complex configurations lead to the generation of oxygen-deprived conditions within the tumor niche, which modulate several intrinsic TME elements to promote immunosuppressive outcomes. Decoding these communications is necessary for designing effective therapeutic strategies that can effectively reduce tumor-associated chemotherapy resistance by employing the inherent potential of the immune system.While classic two-dimensional in vitro research models reveal critical hypoxia-driven biochemical cues, three-dimensional (3D) cell culture models more accurately replicate the TME-immune manifestations. In this study, we review various 3D cell culture models currently being utilized to foster an oxygen-deprived TME, those that assess the dynamics associated with TME-immune cell penetrability within the tumor-like spatial structure, and discuss state of the art 3D systems that attempt recreating hypoxia-driven TME-immune outcomes. We also highlight the importance of integrating various hallmarks, which collectively might influence the functionality of these 3D models.This review strives to supplement perspectives to the quickly-evolving discipline that endeavors to mimic tumor hypoxia and tumor-immune interactions using 3D in vitro models.
Collapse
Affiliation(s)
- Somshuvra Bhattacharya
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 E 60th Street N, Sioux Falls, SD, 57104, USA
| | - Kristin Calar
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 E 60th Street N, Sioux Falls, SD, 57104, USA
| | - Pilar de la Puente
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 E 60th Street N, Sioux Falls, SD, 57104, USA.
- Department of Surgery, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, USA.
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, USA.
| |
Collapse
|
30
|
Chimote AA, Gawali VS, Newton HS, Wise-Draper TM, Conforti L. A Compartmentalized Reduction in Membrane-Proximal Calmodulin Reduces the Immune Surveillance Capabilities of CD8 + T Cells in Head and Neck Cancer. Front Pharmacol 2020; 11:143. [PMID: 32184726 PMCID: PMC7059094 DOI: 10.3389/fphar.2020.00143] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/04/2020] [Indexed: 01/28/2023] Open
Abstract
The limited ability of cytotoxic CD8+ T cells to infiltrate solid tumors and function within the tumor microenvironment presents a major roadblock to effective immunotherapy. Ion channels and Ca2+-dependent signaling events control the activity of T cells and are implicated in the failure of immune surveillance in cancer. Reduced KCa3.1 channel activity mediates the heightened inhibitory effect of adenosine on the chemotaxis of circulating T cells from head and neck squamous cell carcinoma (HNSCC) patients. Herein, we conducted experiments that elucidate the mechanisms of KCa3.1 dysfunction and impaired chemotaxis in HNSCC CD8+ T cells. The Ca2+ sensor calmodulin (CaM) controls multiple cellular functions including KCa3.1 activation. Our data showed that CaM expression is lower in HNSCC than healthy donor (HD) T cells. This reduction was due to an intrinsic decrease in the genes encoding CaM combined to the failure of HNSCC T cells to upregulate CaM upon activation. Furthermore, the reduction in CaM was confined to the plasma membrane and resulted in decreased CaM-KCa3.1 association and KCa3.1 activity (which was rescued by the delivery of CaM). IFNγ production, also Ca2+- and CaM-dependent, was instead not reduced in HNSCC T cells, which maintained intact cytoplasmic CaM and Ca2+ fluxing ability. Knockdown of CaM in HD T cells decreased KCa3.1 activity, but not IFNγ production, and reduced their chemotaxis in the presence of adenosine, thus recapitulating HNSCC T cell dysfunction. Activation of KCa3.1 with 1-EBIO restored the ability of CaM knockdown HD T cells to chemotax in the presence of adenosine. Additionally, 1-EBIO enhanced INFγ production. Our data showed a localized downregulation of membrane-proximal CaM that suppressed KCa3.1 activity in HNSCC circulating T cells and limited their ability to infiltrate adenosine-rich tumor-like microenvironments. Furthermore, they indicate that KCa3.1 activators could be used as positive CD8+ T cell modulators in cancers.
Collapse
Affiliation(s)
- Ameet A. Chimote
- Division of Nephrology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Vaibhavkumar S. Gawali
- Division of Nephrology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Hannah S. Newton
- Division of Nephrology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Trisha M. Wise-Draper
- Division of Hematology Oncology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Laura Conforti
- Division of Nephrology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
31
|
Logozzi M, Spugnini E, Mizzoni D, Di Raimo R, Fais S. Extracellular acidity and increased exosome release as key phenotypes of malignant tumors. Cancer Metastasis Rev 2020; 38:93-101. [PMID: 30715644 DOI: 10.1007/s10555-019-09783-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The tumor milieu is characteristically acidic as a consequence of the fermentative metabolism of glucose that results in massive accumulation of lactic acid within the cytoplasm. Tumor cells get rid of excessive protons through exchangers that are responsible for the extracellular acidification that selects cellular clones that are more apt at surviving in this challenging and culling environment. Extracellular vesicles (EVs) are vesicles with diameters ranging from nm to μm that are released from the cells to deliver nucleic acids, proteins, and lipids to adjacent or distant cells. EVs are involved in a plethora of biological events that promote tumor progression including unrestricted proliferation, angiogenesis, migration, local invasion, preparation of the metastatic niche, metastasis, downregulation or hijacking of the immune system, and drug resistance. There is evidence that the release of specific exosomes is increased many folds in cancer patients, as shown by many techniques aimed at evaluating "liquid biopsies". The quality of the exosomal contents has been shown to vary at the different moments of tumor life such as local invasion or metastasis. In vitro studies have recently pointed out that cancer acidity is a major determinant in inducing increased exosome release by human cancer cells, by showing that exosomal release was increased as the pH moved from 7.4 pH to the typical pH of cancer that is 6.5. In this review, we emphasize the recent evidence that tumor acidity and exosomes levels are strictly related and strongly contribute to the malignant tumor phenotypes.
Collapse
Affiliation(s)
- Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Enrico Spugnini
- SAFU Department, Regina Elena Cancer Institute, Via Elio Chianesi 51, 00144, Rome, Italy
| | - Davide Mizzoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Rossella Di Raimo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
32
|
Xu Y, Wu H, Huang J, Qian W, Martinson DE, Ji B, Li Y, Wang YA, Yang L, Mao H. Probing and Enhancing Ligand-Mediated Active Targeting of Tumors Using Sub-5 nm Ultrafine Iron Oxide Nanoparticles. Theranostics 2020; 10:2479-2494. [PMID: 32194814 PMCID: PMC7052897 DOI: 10.7150/thno.39560] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/15/2019] [Indexed: 11/05/2022] Open
Abstract
Rationale: "Active targeting" based on the ligand-target affinity is a common strategy to precisely deliver nanoparticle (NP) imaging probes or drug carriers to the diseased tissue. However, such ligand-mediated active targeting inevitably takes place with prerequisite "passive targeting", driven by the enhanced permeability and retention (EPR) effect. Thus, the efficiency of active targeting in relation to off-targeted unbound NPs is of great importance in quantitative imaging of tumor biomarkers and delivery. With the notion that easy clearance of off-targeted uIONPs may lead to enhanced active targeting and tumor accumulation, we examined the NP size effect on "active targeting" of the transferrin receptor (TfR) using transferrin (Tf)-conjugated sub-5 nm (3 nm core) ultrafine iron oxide NPs (uIONPs) and larger IONPs (30 nm core). Methods: Green fluorescent dye (FITC)-labeled active targeting uIONPs (FITC-Tf-uIONPs) and red fluorescent dye (TRITC)-labeled passive targeting uIONPs (TRITC-uIONPs) were prepared. FITC-Tf-IONPs and TRITC-IONPs were used as comparison for the NP size effect. Multiphoton imaging, confocal fluorescence imaging, histological staining and computational analysis were applied to track different types of NPs in tumors at 1, 3 and 24 hours after co-injection of equal amounts of paired NPs, e.g., active targeting FITC-Tf-uIONPs and non-targeting TRITC-uIONPs, or FITC-Tf-IONPs and TRITC-IONPs into the same mice bearing 4T1 mouse mammary tumors. Results: Active targeting uIONPs exhibited an almost 6-fold higher level of tumor retention with deeper penetration comparing to non-targeting uIONPs at 24 hours after co-injection. However, accumulation of active targeting IONPs with a 30-nm core is only about 1.15-fold higher than non-targeting IONPs. The enhanced active targeting by uIONPs can be attributed to the size dependent clearance of unbound off-targeted NPs, as majority off-targeted uIONPs were readily cleared from the tumor by intravasation back into tumor blood vessels likely due to high interstitial pressure, even though they are not favorable for macrophage uptake. Conclusion: Ligand-mediated active targeting improves the delivery and accumulation of the sub-5 nm NPs. The improvement on active targeting is size-dependent and facilitated by NPs with sub-5 nm core sizes. Thus, sub-5 nm NPs may serve as favorable platforms for development of NP-based molecular imaging probes and targeted drug carriers.
Collapse
Affiliation(s)
- Yaolin Xu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Hui Wu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jing Huang
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
- Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Weiping Qian
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Bing Ji
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yuancheng Li
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Lily Yang
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
33
|
Abstract
Checkpoint inhibitor therapy (CIT) has revolutionized cancer treatment but it has also reached a standstill when an absent dialog between cancer and immune cells makes it irrelevant. This occurs with high prevalence in the context of "immune silent" and, even perhaps, "immune-excluded" tumors. The latter are characterized by T cells restricted to the periphery of cancer nests. Since in either case T cells do not come in direct contact with most cancer cells, CIT rests immaterial. Adoptive cell therapy (ACT), may also be affected by limited access to antigen-bearing cancer cells. While lack of immunogenicity intuitively explains the immune silent phenotype, immune exclusion is perplexing. The presence of T cells at the periphery suggests that chemo-attraction recruits them and an immunogenic stimulus promotes their persistence. However, what stops the T cells from infiltrating the tumors' nests and reaching the germinal center (GC)? Possibly, a concentric gradient of increased chemo-repulsion or decreased chemo-attraction demarcates an abrupt "do not trespass" warning. Various hypotheses suggest physical or functional barriers but no definitive consensus exists over the weight that each plays in human cancers. On one hand, it could be hypothesized that the intrinsic biology of cancer cells may degenerate from a "cancer stem cell" (CSC)-like phenotype in the GC toward a progressively more immunogenic phenotype prone to immunogenic cell death (ICD) at the periphery. On the other hand, the intrinsic biology of the cancer cells may not change but it is the disorderly architecture of the tumor microenvironment (TME) that alters in a centripetal direction cancer cell metabolism, both directly and indirectly, the function of surrounding stromal cells. In this chapter, we examine whether the paradoxical exclusion of T cells from tumors may serve as a model to understand the requirements for tumor immune infiltration and, correspondingly, we put forth strategies to restore the dialog between immune cells and cancer to enhance the effectiveness of immune oncology (IO) approaches.
Collapse
Affiliation(s)
- Sara I Pai
- Massachusetts General Hospital, Harvard University, Boston, MA, USA.
| | | | | |
Collapse
|
34
|
Kawashima A, Uemura M, Nonomura N. Importance of Multiparametric Evaluation of Immune-Related T-Cell Markers in Renal-Cell Carcinoma. Clin Genitourin Cancer 2019; 17:e1147-e1152. [PMID: 31473121 DOI: 10.1016/j.clgc.2019.07.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/06/2019] [Accepted: 07/29/2019] [Indexed: 12/27/2022]
Abstract
Immunotherapeutic therapies such as immune checkpoint inhibitors have been used in patients with renal cell carcinoma (RCC). To overcome therapeutic resistance or identify predictive markers, a comprehensive understanding of the immunologic condition in the tumor microenvironment is important. We reviewed the latest scientific findings on the comprehensive immunologic condition within the tumor microenvironment in patients with RCC and its clinical significance. The immunologic condition evaluated by 3 different methods (flow cytometry, mass cytometry, and next-generation sequencing) in 4 different cohorts of patients with RCC could commonly divide the immunologic condition into 2 or 3 groups, all of which were significantly correlated with tumor aggressiveness and patient prognosis. In particular, patients with high T-cell infiltration and immunosuppressive cells including regulatory T cells had the worst prognosis in each cohort. This classification correlated with angiogenesis and metabolism and glycolysis, and it suggested that distinct biology exists in each immunologic classification. Moreover, around 20% to 30% of the RCC patients had intratumor immunologic diversity within each individual; this might help in understanding the presence of radiologic heterogeneity for immunotherapies. In conclusion, a comprehensive understanding of the immune condition is needed for the upcoming era of novel cancer immunotherapy using not only genetic but also phenotypic and functional classifications.
Collapse
Affiliation(s)
- Atsunari Kawashima
- Department of Urology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | - Motohide Uemura
- Department of Urology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Department of Therapeutic Urologic Oncology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Norio Nonomura
- Department of Urology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
35
|
Zhang J, Chen Y, Chen K, Huang Y, Xu X, Chen Q, Huang C, Luo J, Lin X. IL-33 drives the antitumour effects of dendritic cells via upregulating CYLD expression in pulmonary adenocarcinoma. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1335-1341. [PMID: 30964341 DOI: 10.1080/21691401.2019.1596926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Lung adenocarcinoma is one of the leading causes of cancer-related death worldwide. Low expression of Interleukin-33 (IL-33) was reported to be associated with the progression of pulmonary adenocarcinoma. However, the IL-33-mediated immunoregulation in pulmonary adenocarcinoma remains unclear. In this study, we found that IL-33 treatment evidently repressed tumour growth, induced CD4+ T cells infiltration and IL-17 expression in pulmonary adenocarcinoma. Notably, IL-33 treatment increased the number of Dendritic Cells (DCs) in pulmonary adenocarcinoma. More importantly, IL-33 induced maturation and regulated the function of DCs by increasing expression of DCs mature markers (CD40 and CD80, CD86) DCs-function-related gene including antigen presentation genes (HLA-DMA, HLA-DMB and CD74) and cytokines (IL-1β, IL-6 and TNF). Mechanistic studies demonstrated that IL-33 treatment induced DCs maturation by upregulating CYLD expression in DCs. In addition, CYLD played an important role in DCs-induced T cell proliferation and IL-17 secretion. In conclusion, our study demonstrated that IL-33 mediated immunoregulation in pulmonary adenocarcinoma by improving DC-induced T cell proliferation by upregulating CYLD expression.
Collapse
Affiliation(s)
- Jiguang Zhang
- a Department of Thoracic Surgery, Fujian Provincial Hospital , Provincial Clinical College of Fujian Medical University , Fuzhou , Fujian , China
| | - Yangming Chen
- a Department of Thoracic Surgery, Fujian Provincial Hospital , Provincial Clinical College of Fujian Medical University , Fuzhou , Fujian , China
| | - Kai Chen
- a Department of Thoracic Surgery, Fujian Provincial Hospital , Provincial Clinical College of Fujian Medical University , Fuzhou , Fujian , China
| | - Yunchao Huang
- b Department of thoracic surgery, Yunnan Cancer Hospital , the Third Affiliated Hospital of Kunming Medical University , Kunming , Yunnan , China
| | - Xunyu Xu
- a Department of Thoracic Surgery, Fujian Provincial Hospital , Provincial Clinical College of Fujian Medical University , Fuzhou , Fujian , China
| | - Qianshun Chen
- a Department of Thoracic Surgery, Fujian Provincial Hospital , Provincial Clinical College of Fujian Medical University , Fuzhou , Fujian , China
| | - Chen Huang
- a Department of Thoracic Surgery, Fujian Provincial Hospital , Provincial Clinical College of Fujian Medical University , Fuzhou , Fujian , China
| | - Jiewei Luo
- c Department of traditional Chinese medicine, Fujian Province Hospital, School of clinical medicine , Fujian Medical University , Fuzhou , Fujian , China
| | - Xing Lin
- a Department of Thoracic Surgery, Fujian Provincial Hospital , Provincial Clinical College of Fujian Medical University , Fuzhou , Fujian , China
| |
Collapse
|
36
|
Live-Cell Imaging of Physiologically Relevant Metal Ions Using Genetically Encoded FRET-Based Probes. Cells 2019; 8:cells8050492. [PMID: 31121936 PMCID: PMC6562680 DOI: 10.3390/cells8050492] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 01/02/2023] Open
Abstract
Essential biochemical reactions and processes within living organisms are coupled to subcellular fluctuations of metal ions. Disturbances in cellular metal ion homeostasis are frequently associated with pathological alterations, including neurotoxicity causing neurodegeneration, as well as metabolic disorders or cancer. Considering these important aspects of the cellular metal ion homeostasis in health and disease, measurements of subcellular ion signals are of broad scientific interest. The investigation of the cellular ion homeostasis using classical biochemical methods is quite difficult, often even not feasible or requires large cell numbers. Here, we report of genetically encoded fluorescent probes that enable the visualization of metal ion dynamics within individual living cells and their organelles with high temporal and spatial resolution. Generally, these probes consist of specific ion binding domains fused to fluorescent protein(s), altering their fluorescent properties upon ion binding. This review focuses on the functionality and potential of these genetically encoded fluorescent tools which enable monitoring (sub)cellular concentrations of alkali metals such as K+, alkaline earth metals including Mg2+ and Ca2+, and transition metals including Cu+/Cu2+ and Zn2+. Moreover, we discuss possible approaches for the development and application of novel metal ion biosensors for Fe2+/Fe3+, Mn2+ and Na+.
Collapse
|
37
|
Talotta R, Rucci F, Canti G, Scaglione F. Pros and cons of the immunogenicity of monoclonal antibodies in cancer treatment: a lesson from autoimmune diseases. Immunotherapy 2019; 11:241-254. [DOI: 10.2217/imt-2018-0081] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The aim of this review is to report the current evidence on immunogenicity of monoclonal antibodies (moAbs) used in cancer compared with autoimmune diseases, focusing on local microenvironment. English abstracts were identified in Medline and www.clinicaltrials.gov . A total of 82 papers were selected. The percentage of immunogenicity of moAbs used for cancer therapy, evaluated as the serum concentration of antidrug antibodies, is significantly lower than that of moAbs used for the treatment of autoimmune diseases. This condition may rely on a different immunologic background characterized by a hyperactivation of immune cells in autoimmune diseases. The formation of complexes between antidrug antibodies and non-neutralizing moAbs bound to neoplastic antigens may allow more efficient elimination of cancer cells, but additional studies are needed.
Collapse
Affiliation(s)
- Rossella Talotta
- Postgraduate School of Clinical Pharmacology & Toxicology, University of Milan, 20162, Milan, Italy
- Laboratory of Genetics, ASST ‘Grande Ospedale Metropolitano Niguarda’, 20162, Milan, Italy
| | - Francesco Rucci
- Postgraduate School of Clinical Pharmacology & Toxicology, University of Milan, 20162, Milan, Italy
- Laboratory of Genetics, ASST ‘Grande Ospedale Metropolitano Niguarda’, 20162, Milan, Italy
| | - Gianfranco Canti
- Department of Medical Biotechnology & Traslational Medicine, University of Milan, 20129, Milan, Italy
| | - Francesco Scaglione
- Department of Oncology & Onco-Hematology, University of Milan, 20162, Milan, Italy
- Clinical Pharmacology Unit, ASST ‘Grande Ospedale Metropolitano Niguarda’, 20162, Milan, Italy
| |
Collapse
|
38
|
The Adaptive Complexity of Cancer. BIOMED RESEARCH INTERNATIONAL 2019; 2018:5837235. [PMID: 30627563 PMCID: PMC6304530 DOI: 10.1155/2018/5837235] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022]
Abstract
Cancer treatment options are expanding to the benefit of significant segments of patients. However, their therapeutic power is not equally realized for all cancer patients due to drug toxicity and disease resistance. Overcoming these therapeutic challenges would require a better understanding of the adaptive survival mechanisms of cancer. In this respect, an integrated view of the disease as a complex adaptive system is proposed as a framework to explain the dynamic coupling between the various drivers underlying tumor growth and cancer resistance to therapy. In light of this system view of cancer, the immune system is in principal the most appropriate and naturally available therapeutic instrument that can thwart the adaptive survival mechanisms of cancer. In this respect, new cancer therapies should aim at restoring immunosurveillance by priming the induction of an effective immune response through a judicious targeting of immunosuppression, inflammation, and the tumor nutritional lifeline extended by the tumor microenvironment.
Collapse
|
39
|
Cheerathodi MR, Meckes DG. The Epstein-Barr virus LMP1 interactome: biological implications and therapeutic targets. Future Virol 2018; 13:863-887. [PMID: 34079586 DOI: 10.2217/fvl-2018-0120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The oncogenic potential of Epstein-Barr virus (EBV) is mostly attributed to latent membrane protein 1 (LMP1), which is essential and sufficient for transformation of fibroblast and primary lymphocytes. LMP1 expression results in the activation of multiple signaling cascades like NF-ΚB and MAP kinases that trigger cell survival and proliferative pathways. LMP1 specific signaling events are mediated through the recruitment of a number of interacting proteins to various signaling domains. Based on these properties, LMP1 is an attractive target to develop effective therapeutics to treat EBV-related malignancies. In this review, we focus on LMP1 interacting proteins, associated signaling events, and potential targets that could be exploited for therapeutic strategies.
Collapse
Affiliation(s)
- Mujeeb R Cheerathodi
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306
| | - David G Meckes
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306
| |
Collapse
|
40
|
PHA eludes macrophage suppression to activate CD8 + T cells. Immunobiology 2018; 224:94-101. [PMID: 30446337 DOI: 10.1016/j.imbio.2018.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/13/2022]
Abstract
Tumors may include a high proportion of immune modulatory cells and molecules that restrain the anti-cancer response. Activation of T cells to eliminate cancer cells within the immune-suppressive tumor microenvironment remains a challenge. We have shown that C57BL/6 J peritoneal cell culture models features of macrophage-dense tumors as TCR ligation fails to activate T cells unless IFNγ is neutralized or iNOS is inhibited. We tested other forms of T cell activation and found phytohemagglutinin (PHA) distinctive in the ability to markedly expand CD8 T cells in this model. IFNγ or iNOS inhibition was not necessary for this response. PHA triggered less IFNγ production and inhibitory PD-L1 expression than TCR ligation. Macrophages and CD44hi T cells bound PHA. Spleen T cell responses to PHA were markedly enhanced by the addition of peritoneal cells revealing that macrophages enhance T cell expansion. That PHA increases CD8 T cell responses within macrophage-dense culture suggests this mitogen might enhance anti-tumor immunity.
Collapse
|
41
|
Chatterjee S, Chakraborty P, Daenthanasanmak A, Iamsawat S, Andrejeva G, Luevano LA, Wolf M, Baliga U, Krieg C, Beeson CC, Mehrotra M, Hill EG, Rathmell JC, Yu XZ, Kraft AS, Mehrotra S. Targeting PIM Kinase with PD1 Inhibition Improves Immunotherapeutic Antitumor T-cell Response. Clin Cancer Res 2018; 25:1036-1049. [PMID: 30327305 DOI: 10.1158/1078-0432.ccr-18-0706] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/29/2018] [Accepted: 10/10/2018] [Indexed: 01/01/2023]
Abstract
PURPOSE Adoptive T-cell therapy (ACT) of cancer, which involves the infusion of ex vivo-engineered tumor epitope reactive autologous T cells into the tumor-bearing host, is a potential treatment modality for cancer. However, the durable antitumor response following ACT is hampered either by loss of effector function or survival of the antitumor T cells. Therefore, strategies to improve the persistence and sustain the effector function of the antitumor T cells are of immense importance. Given the role of metabolism in determining the therapeutic efficacy of T cells, we hypothesize that inhibition of PIM kinases, a family of serine/threonine kinase that promote cell-cycle transition, cell growth, and regulate mTORC1 activity, can improve the potency of T cells in controlling tumor. EXPERIMENTAL DESIGN The role of PIM kinases in T cells was studied either by genetic ablation (PIM1-/-PIM2-/-PIM3-/-) or its pharmacologic inhibition (pan-PIM kinase inhibitor, PimKi). Murine melanoma B16 was established subcutaneously and treated by transferring tumor epitope gp100-reactive T cells along with treatment regimen that involved inhibiting PIM kinases, anti-PD1 or both. RESULTS With inhibition of PIM kinases, T cells had significant reduction in their uptake of glucose, and upregulated expression of memory-associated genes that inversely correlate with glycolysis. In addition, the expression of CD38, which negatively regulates the metabolic fitness of the T cells, was also reduced in PimKi-treated cells. Importantly, the efficacy of antitumor T-cell therapy was markedly improved by inhibiting PIM kinases in tumor-bearing mice receiving ACT, and further enhanced by adding anti-PD1 antibody to this combination. CONCLUSIONS This study highlights the potential therapeutic significance of combinatorial strategies where ACT and inhibition of signaling kinase with checkpoint blockade could improve tumor control.
Collapse
Affiliation(s)
- Shilpak Chatterjee
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Paramita Chakraborty
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Anusara Daenthanasanmak
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Supinya Iamsawat
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Gabriela Andrejeva
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Libia A Luevano
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona
| | - Melissa Wolf
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Uday Baliga
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Carsten Krieg
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Craig C Beeson
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Meenal Mehrotra
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Elizabeth G Hill
- Department of Public Health, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Jeffery C Rathmell
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Xue-Zhong Yu
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Andrew S Kraft
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
42
|
Vaccine therapy in hematologic malignancies. Blood 2018; 131:2640-2650. [DOI: 10.1182/blood-2017-11-785873] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/04/2018] [Indexed: 02/06/2023] Open
Abstract
Abstract
Immune-based therapy has emerged as a paradigm shift in cancer therapy with dramatic responses observed in previously incurable disease. Cancer vaccines are being developed to disrupt tumor-associated tolerance and activate and selectively expand tumor-specific lymphocytes within the native effector cell repertoire while maintaining immune-regulatory protection against autoimmunity. Although individual antigen approaches result in immune response with a suggestion of clinical effect in some settings, broader efficacy may be dependent on presentation of multiple antigens that capture clonal diversity presented in the context of functionally potent antigen-presenting cells. The use of whole cell–based strategies such as dendritic cell/tumor fusions have yielded provocative results in single-arm studies and are currently being explored in multicenter randomized trials. The posttransplant setting is a potentially promising platform for vaccination due to cytoreduction and relative depletion of inhibitory accessory cells fostering greater immune responsiveness. Integration of these efforts with other immunotherapeutic strategies and agents that target the tumor microenvironment is being studied in an effort to generate durable immunologic responses with clinically meaningful impact on disease.
Collapse
|
43
|
Erndt-Marino J, Diaz-Rodriguez P, Hahn MS. Initial In Vitro Development of a Potassium-Based Intra-Articular Injection for Osteoarthritis. Tissue Eng Part A 2018; 24:1390-1392. [PMID: 29562839 DOI: 10.1089/ten.tea.2017.0390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The long-term goal of this work is to develop a potassium (K+)-based intra-articular (IA) injection for osteoarthritis treatment. Within this context, the objectives of this study were to (1) demonstrate that hyperosmolar K+ solutions can suppress proinflammatory macrophage activation and (2) evaluate the therapeutic potential of a hyperosmolar K+ solution relative to a clinically utilized drug-based (methylprednisolone acetate [MPA]-a corticosteroid) or cell-based (human mesenchymal stem cell [hMSC]) IA injectable. A 3D in vitro model with poly(ethylene glycol) diacrylate hydrogels encapsulated with proinflammatory interferon-gamma (IFN)-stimulated macrophages (M(IFN)s) was utilized. Long-term changes in cell phenotype in response to short-term stimulation (i.e., mimicking an IA injection) were assessed following treatment with 80 mM K+ gluconate, hMSCs, or MPA. Addition of 80 mM K+ gluconate to culture media significantly reduced iNOS and TNF protein levels in M(IFN)s. Furthermore, short-term stimulation with K+ gluconate elicited a significant increase in the anti/proinflammatory cytokine profile in M(IFN)s, a response that is not noticed with either clinically utilized MPA or an hMSC injectable. Hyperosmolar K+ solutions are capable of attenuating proinflammatory macrophage activation. Moreover, when evaluated in an in vitro setting mimicking an IA injection, K+ performed significantly better than hMSCs or the corticosteroid MPA. Cumulatively, these results support further development and application of a K+-based IA injection toward osteoarthritis research.
Collapse
Affiliation(s)
- Josh Erndt-Marino
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute , Troy, New York
| | | | - Mariah S Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute , Troy, New York
| |
Collapse
|
44
|
Chimote AA, Balajthy A, Arnold MJ, Newton HS, Hajdu P, Qualtieri J, Wise-Draper T, Conforti L. A defect in KCa3.1 channel activity limits the ability of CD8 + T cells from cancer patients to infiltrate an adenosine-rich microenvironment. Sci Signal 2018; 11:11/527/eaaq1616. [PMID: 29692361 DOI: 10.1126/scisignal.aaq1616] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The limited ability of cytotoxic T cells to infiltrate solid tumors hampers immune surveillance and the efficacy of immunotherapies in cancer. Adenosine accumulates in solid tumors and inhibits tumor-specific T cells. Adenosine inhibits T cell motility through the A2A receptor (A2AR) and suppression of KCa3.1 channels. We conducted three-dimensional chemotaxis experiments to elucidate the effect of adenosine on the migration of peripheral blood CD8+ T cells from head and neck squamous cell carcinoma (HNSCC) patients. The chemotaxis of HNSCC CD8+ T cells was reduced in the presence of adenosine, and the effect was greater on HNSCC CD8+ T cells than on healthy donor (HD) CD8+ T cells. This response correlated with the inability of CD8+ T cells to infiltrate tumors. The effect of adenosine was mimicked by an A2AR agonist and prevented by an A2AR antagonist. We found no differences in A2AR expression, 3',5'-cyclic adenosine monophosphate abundance, or protein kinase A type 1 activity between HNSCC and HD CD8+ T cells. We instead detected a decrease in KCa3.1 channel activity, but not expression, in HNSCC CD8+ T cells. Activation of KCa3.1 channels by 1-EBIO restored the ability of HNSCC CD8+ T cells to chemotax in the presence of adenosine. Our data highlight the mechanism underlying the increased sensitivity of HNSCC CD8+ T cells to adenosine and the potential therapeutic benefit of KCa3.1 channel activators, which could increase infiltration of these T cells into tumors.
Collapse
Affiliation(s)
- Ameet A Chimote
- Division of Nephrology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Andras Balajthy
- Division of Nephrology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Michael J Arnold
- Division of Nephrology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Hannah S Newton
- Division of Nephrology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Peter Hajdu
- Division of Nephrology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Julianne Qualtieri
- Department of Pathology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Trisha Wise-Draper
- Division of Hematology Oncology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Laura Conforti
- Division of Nephrology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA.
| |
Collapse
|
45
|
Abstract
An important role of the immune system is in the surveillance for abnormal or transformed cells, which is known as cancer immunosurveillance. Through this process, the first changes to normal tissue homeostasis caused by infectious or other inflammatory insults can be detected by the immune system through the recognition of antigenic molecules (including tumour antigens) expressed by abnormal cells. However, as they develop, tumour cells can acquire antigenic and other changes that allow them to escape elimination by the immune system. To bias this process towards elimination, immunosurveillance can be improved by the administration of vaccines based on tumour antigens. Therapeutic cancer vaccines have been extensively tested in patients with advanced cancer but have had little clinical success, which has been attributed to the immunosuppressive tumour microenvironment. Thus, the administration of preventive vaccines at pre-malignant stages of the disease holds promise, as they function before tumour-associated immune suppression is established. Accordingly, immunological and clinical studies are yielding impressive results.
Collapse
|
46
|
Vaupel P, Multhoff G. Accomplices of the Hypoxic Tumor Microenvironment Compromising Antitumor Immunity: Adenosine, Lactate, Acidosis, Vascular Endothelial Growth Factor, Potassium Ions, and Phosphatidylserine. Front Immunol 2017; 8:1887. [PMID: 29312351 PMCID: PMC5742577 DOI: 10.3389/fimmu.2017.01887] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/11/2017] [Indexed: 01/05/2023] Open
Abstract
In this minireview, we aim to highlight key factors of the tumor microenvironment, including adenosine, lactate, acidosis, vascular endothelial growth factor, phosphatidylserine, high extracellular K+ levels, and tumor hypoxia with respect to antitumor immune functions. Most solid tumors have an immature chaotic microvasculature that results in tumor hypoxia. Hypoxia is a key determinant of tumor aggressiveness and therapy resistance and hypoxia-related gene products can thwart antitumor immune responses.
Collapse
Affiliation(s)
- Peter Vaupel
- Department of Radiation Oncology, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Gabriele Multhoff
- Department of Radiation Oncology, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| |
Collapse
|