1
|
Bear AS, Nadler RB, O’Hara MH, Stanton KL, Xu C, Saporito RJ, Rech AJ, Baroja ML, Blanchard T, Elliott MH, Ford MJ, Jones R, Patel S, Brennan A, O’Neil Z, Powell DJ, Vonderheide RH, Linette GP, Carreno BM. Natural TCRs targeting KRASG12V display fine specificity and sensitivity to human solid tumors. J Clin Invest 2024; 134:e175790. [PMID: 39287991 PMCID: PMC11529987 DOI: 10.1172/jci175790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUNDNeoantigens derived from KRASMUT have been described, but the fine antigen specificity of T cell responses directed against these epitopes is poorly understood. Here, we explore KRASMUT immunogenicity and the properties of 4 T cell receptors (TCRs) specific for KRASG12V restricted to the HLA-A3 superfamily of class I alleles.METHODSA phase 1 clinical vaccine trial targeting KRASMUT was conducted. TCRs targeting KRASG12V restricted to HLA-A*03:01 or HLA-A*11:01 were isolated from vaccinated patients or healthy individuals. A comprehensive analysis of TCR antigen specificity, affinity, crossreactivity, and CD8 coreceptor dependence was performed. TCR lytic activity was evaluated, and target antigen density was determined by quantitative immunopeptidomics.RESULTSVaccination against KRASMUT resulted in the priming of CD8+ and CD4+ T cell responses. KRASG12V -specific natural (not affinity enhanced) TCRs exhibited exquisite specificity to mutated protein with no discernible reactivity against KRASWT. TCR-recognition motifs were determined and used to identify and exclude crossreactivity to noncognate peptides derived from the human proteome. Both HLA-A*03:01 and HLA-A*11:01-restricted TCR-redirected CD8+ T cells exhibited potent lytic activity against KRASG12V cancers, while only HLA-A*11:01-restricted TCR-T CD4+ T cells exhibited antitumor effector functions consistent with partial coreceptor dependence. All KRASG12V-specific TCRs displayed high sensitivity for antigen as demonstrated by their ability to eliminate tumor cell lines expressing low levels of peptide/HLA (4.4 to 242) complexes per cell.CONCLUSIONThis study identifies KRASG12V-specific TCRs with high therapeutic potential for the development of TCR-T cell therapies.TRIAL REGISTRATIONClinicalTrials.gov NCT03592888.FUNDINGAACR SU2C/Lustgarten Foundation, Parker Institute for Cancer Immunotherapy, and NIH.
Collapse
Affiliation(s)
- Adham S. Bear
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine
| | | | - Mark H. O’Hara
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine
- Abramson Cancer Center, and
| | - Kelsey L. Stanton
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Chong Xu
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert J. Saporito
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrew J. Rech
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Miren L. Baroja
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tatiana Blanchard
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maxwell H. Elliott
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - Shivang Patel
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrea Brennan
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zachary O’Neil
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel J. Powell
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine and
| | - Robert H. Vonderheide
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine
- Abramson Cancer Center, and
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gerald P. Linette
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine
- Abramson Cancer Center, and
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Beatriz M. Carreno
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine and
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Meng W, Takeuchi Y, Ward JP, Sultan H, Arthur CD, Mardis ER, Artyomov MN, Lichti CF, Schreiber RD. Improvement of Tumor Neoantigen Detection by High-Field Asymmetric Waveform Ion Mobility Mass Spectrometry. Cancer Immunol Res 2024; 12:988-1006. [PMID: 38768391 PMCID: PMC11456315 DOI: 10.1158/2326-6066.cir-23-0900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/05/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Cancer neoantigens have been shown to elicit cancer-specific T-cell responses and have garnered much attention for their roles in both spontaneous and therapeutically induced antitumor responses. Mass spectrometry (MS) profiling of tumor immunopeptidomes has been used, in part, to identify MHC-bound mutant neoantigen ligands. However, under standard conditions, MS-based detection of such rare but clinically relevant neoantigens is relatively insensitive, requiring 300 million cells or more. Here, to quantitatively define the minimum detectable amounts of therapeutically relevant MHC-I and MHC-II neoantigen peptides, we analyzed different dilutions of immunopeptidomes isolated from the well-characterized T3 mouse methylcholanthrene (MCA)-induced cell line by MS. Using either data-dependent acquisition or parallel reaction monitoring (PRM), we established the minimum amount of material required to detect the major T3 neoantigens in the presence or absence of high field asymmetric waveform ion mobility spectrometry (FAIMS). This analysis yielded a 14-fold enhancement of sensitivity in detecting the major T3 MHC-I neoantigen (mLama4) with FAIMS-PRM compared with PRM without FAIMS, allowing ex vivo detection of this neoantigen from an individual 100 mg T3 tumor. These findings were then extended to two other independent MCA-sarcoma lines (1956 and F244). This study demonstrates that FAIMS substantially increases the sensitivity of MS-based characterization of validated neoantigens from tumors.
Collapse
Affiliation(s)
- Wei Meng
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
| | - Yoshiko Takeuchi
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
| | - Jeffrey P. Ward
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
| | - Hussein Sultan
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
| | - Cora D. Arthur
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
| | - Elaine R. Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, OH 43215, U.S.A
| | - Maxim N. Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
| | - Cheryl F. Lichti
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
| | - Robert D. Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
| |
Collapse
|
3
|
Yao X, Matosevic S. Generation and evaluation of cancer binding capacity of HLA-A2-WT1 complex-targeting antibody. Immunol Lett 2024; 268:106881. [PMID: 38810886 DOI: 10.1016/j.imlet.2024.106881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/03/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Wilms' tumor (WT1), a transcription factor highly expressed in various leukemias and solid tumors, is a highly specific intracellular tumor antigen, requiring presentation through complexation with HLA-restricted peptides.. WT1-derived epitopes are able to assemble with MHC-I and thereby be recognized by T cell receptors (TCR). Identification of new targetable epitopes derived from WT1 on solid tumors is a challenge, but meaningful for the development of therapeutics that could in this way target intracellular oncogenic proteins. In this study, we developed and comprehensively describe methods to validate the formation of the complex of WT1126-134 and HLA-A2. Subsequently, we developed an antibody fragment able to recognize the extracellular complex on the surface of cancer cells. The single chain variable fragment (scFv) of an established TCR-mimic antibody, specifically recognizing the WT1-derived peptide presented by the HLA-A2 complex, was expressed, purified, and functionally validated using a T2 cell antigen presentation model. Furthermore, we evaluated the potential of the WT1-derived peptide as a targetable extracellular antigen in multiple solid tumor cell lines. Our study describes methodology for the evaluation of WT1-derived peptides as tumor-specific antigen on solid tumors, and may facilitate the selection of potential candidates for future immunotherapy targeting WT1 epitopes.
Collapse
MESH Headings
- Humans
- WT1 Proteins/immunology
- WT1 Proteins/metabolism
- HLA-A2 Antigen/immunology
- HLA-A2 Antigen/metabolism
- Cell Line, Tumor
- Neoplasms/immunology
- Neoplasms/metabolism
- Neoplasms/therapy
- Protein Binding
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Single-Chain Antibodies/immunology
- Single-Chain Antibodies/genetics
- Single-Chain Antibodies/metabolism
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Antigen Presentation/immunology
- Epitopes/immunology
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Peptides/immunology
- Peptides/chemistry
- Peptides/metabolism
Collapse
Affiliation(s)
- Xue Yao
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, IN, USA
| | - Sandro Matosevic
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, IN, USA; Center for Cancer Research, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
4
|
Mog BJ, Marcou N, DiNapoli SR, Pearlman AH, Nichakawade TD, Hwang MS, Douglass J, Hsiue EHC, Glavaris S, Wright KM, Konig MF, Paul S, Wyhs N, Ge J, Miller MS, Azurmendi P, Watson E, Pardoll DM, Gabelli SB, Bettegowda C, Papadopoulos N, Kinzler KW, Vogelstein B, Zhou S. Preclinical studies show that Co-STARs combine the advantages of chimeric antigen and T cell receptors for the treatment of tumors with low antigen densities. Sci Transl Med 2024; 16:eadg7123. [PMID: 38985855 DOI: 10.1126/scitranslmed.adg7123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/01/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024]
Abstract
Two types of engineered T cells have been successfully used to treat patients with cancer, one with an antigen recognition domain derived from antibodies [chimeric antigen receptors (CARs)] and the other derived from T cell receptors (TCRs). CARs use high-affinity antigen-binding domains and costimulatory domains to induce T cell activation but can only react against target cells with relatively high amounts of antigen. TCRs have a much lower affinity for their antigens but can react against target cells displaying only a few antigen molecules. Here, we describe a new type of receptor, called a Co-STAR (for costimulatory synthetic TCR and antigen receptor), that combines aspects of both CARs and TCRs. In Co-STARs, the antigen-recognizing components of TCRs are replaced by high-affinity antibody fragments, and costimulation is provided by two modules that drive NF-κB signaling (MyD88 and CD40). Using a TCR-mimic antibody fragment that targets a recurrent p53 neoantigen presented in a common human leukocyte antigen (HLA) allele, we demonstrate that T cells equipped with Co-STARs can kill cancer cells bearing low densities of antigen better than T cells engineered with conventional CARs and patient-derived TCRs in vitro. In mouse models, we show that Co-STARs mediate more robust T cell expansion and more durable tumor regressions than TCRs similarly modified with MyD88 and CD40 costimulation. Our data suggest that Co-STARs may have utility for other peptide-HLA antigens in cancer and other targets where antigen density may limit the efficacy of engineered T cells.
Collapse
Affiliation(s)
- Brian J Mog
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Nikita Marcou
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sarah R DiNapoli
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alexander H Pearlman
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Tushar D Nichakawade
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Michael S Hwang
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jacqueline Douglass
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Emily Han-Chung Hsiue
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Stephanie Glavaris
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Katharine M Wright
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Maximilian F Konig
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Suman Paul
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Nicolas Wyhs
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jiaxin Ge
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michelle S Miller
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - P Azurmendi
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Evangeline Watson
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Drew M Pardoll
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Sandra B Gabelli
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chetan Bettegowda
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nickolas Papadopoulos
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kenneth W Kinzler
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Bert Vogelstein
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shibin Zhou
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| |
Collapse
|
5
|
Gurung HR, Heidersbach AJ, Darwish M, Chan PPF, Li J, Beresini M, Zill OA, Wallace A, Tong AJ, Hascall D, Torres E, Chang A, Lou K'HW, Abdolazimi Y, Hammer C, Xavier-Magalhães A, Marcu A, Vaidya S, Le DD, Akhmetzyanova I, Oh SA, Moore AJ, Uche UN, Laur MB, Notturno RJ, Ebert PJR, Blanchette C, Haley B, Rose CM. Systematic discovery of neoepitope-HLA pairs for neoantigens shared among patients and tumor types. Nat Biotechnol 2024; 42:1107-1117. [PMID: 37857725 PMCID: PMC11251992 DOI: 10.1038/s41587-023-01945-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 08/14/2023] [Indexed: 10/21/2023]
Abstract
The broad application of precision cancer immunotherapies is limited by the number of validated neoepitopes that are common among patients or tumor types. To expand the known repertoire of shared neoantigen-human leukocyte antigen (HLA) complexes, we developed a high-throughput platform that coupled an in vitro peptide-HLA binding assay with engineered cellular models expressing individual HLA alleles in combination with a concatenated transgene harboring 47 common cancer neoantigens. From more than 24,000 possible neoepitope-HLA combinations, biochemical and computational assessment yielded 844 unique candidates, of which 86 were verified after immunoprecipitation mass spectrometry analyses of engineered, monoallelic cell lines. To evaluate the potential for immunogenicity, we identified T cell receptors that recognized select neoepitope-HLA pairs and elicited a response after introduction into human T cells. These cellular systems and our data on therapeutically relevant neoepitopes in their HLA contexts will aid researchers studying antigen processing as well as neoepitope targeting therapies.
Collapse
Affiliation(s)
| | | | | | | | - Jenny Li
- Genentech, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Ana Marcu
- Genentech, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Wu J, Sun W, Zhang Y, Mao L, Ding T, Huang X, Lin D. Impact of platinum-based chemotherapy on the tumor mutational burden and immune microenvironment in non-small cell lung cancer with postoperative recurrence. Clin Transl Oncol 2024; 26:1738-1747. [PMID: 38421562 DOI: 10.1007/s12094-024-03397-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
PURPOSE To investigate the impact of platinum-based adjuvant chemotherapy on the immunotherapeutic biomarkers of postoperative recurrent tumors in non-small cell lung cancer (NSCLC). METHODS This study involved twenty-two cases of NSCLC, all of which underwent postoperative platinum-based chemotherapy, with matched surgical samples obtained from both their primary tumors (PTs) and recurrent tumors (RTs). Multiplex immunofluorescence was performed to assess the tumor proportion score (TPS) and immune cells (IC) on whole sections. Whole exon sequencing (WES) was conducted to investigate the tumor mutational burden (TMB) and tumor neoantigen burden (TNB). RESULTS Compared to paired PTs, RTs exhibited higher PD-L1 expression, along with a slightly elevated density of intratumoral PD-L1+ cells (p = 0.082) and an increased tumor proportion score (mean TPS: 40.51% vs. 28.56%, p = 0.046). Regarding IC infiltration, RTs generally demonstrated significantly lower CD8+ cytotoxic T lymphocyte (CTL) density (p = 0.011) and lower CD68+ macrophage density (p = 0.005), with a loss of tertiary lymphoid structure (TLS). The comparison between RTs and PTs revealed no significant differences in TMB (p = 0.795), whereas the count of TNB in RTs was notably increased compared to PTs (p = 0.033). Prognosis analysis indicated that a higher density of CD8+ CTLs in RTs was positively correlated with improved overall survival (OS). CONCLUSIONS In NSCLC patients with a history of postoperative platinum-based chemotherapy, the RTs demonstrated a trend towards increased PD-L1 expression and TMB/TNB, but a state of immunosuppression characterized by decreased ICs and loss of TLS, which may potentially impact the therapeutic benefits of immunotherapy.
Collapse
Affiliation(s)
- Jianghua Wu
- Department of Pathology, Peking University Cancer Hospital & Institute, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), No. 52, Fu-Cheng Road, Beijing, 100142, China
| | - Wei Sun
- Department of Pathology, Peking University Cancer Hospital & Institute, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), No. 52, Fu-Cheng Road, Beijing, 100142, China
| | - Yanhui Zhang
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center of Cancer, Tianjin, China
| | - Luning Mao
- Department of Pathology, Peking University Cancer Hospital & Institute, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), No. 52, Fu-Cheng Road, Beijing, 100142, China
| | - Tingting Ding
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center of Cancer, Tianjin, China
| | - Xiaozheng Huang
- Department of Pathology, Peking University Cancer Hospital & Institute, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), No. 52, Fu-Cheng Road, Beijing, 100142, China
| | - Dongmei Lin
- Department of Pathology, Peking University Cancer Hospital & Institute, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), No. 52, Fu-Cheng Road, Beijing, 100142, China.
| |
Collapse
|
7
|
Cook AL, Sur S, Dobbyn L, Watson E, Cohen JD, Ptak B, Lee BS, Paul S, Hsiue E, Popoli M, Vogelstein B, Papadopoulos N, Bettegowda C, Gabrielson K, Zhou S, Kinzler KW, Wyhs N. Identification of nonsense-mediated decay inhibitors that alter the tumor immune landscape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.28.573594. [PMID: 38234817 PMCID: PMC10793421 DOI: 10.1101/2023.12.28.573594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Despite exciting developments in cancer immunotherapy, its broad application is limited by the paucity of targetable antigens on the tumor cell surface. As an intrinsic cellular pathway, nonsense-mediated decay (NMD) conceals neoantigens through the destruction of the RNA products from genes harboring truncating mutations. We developed and conducted a high throughput screen, based on the ratiometric analysis of transcripts, to identify critical mediators of NMD. This screen implicated disruption of kinase SMG1's phosphorylation of UPF1 as a potential disruptor of NMD. This led us to design a novel SMG1 inhibitor, KVS0001, that elevates the expression of transcripts and proteins resulting from truncating mutations in vivo and in vitro . Most importantly, KVS0001 concomitantly increased the presentation of immune-targetable HLA class I-associated peptides from NMD-downregulated proteins on the surface of cancer cells. KVS0001 provides new opportunities for studying NMD and the diseases in which NMD plays a role, including cancer and inherited diseases. One Sentence Summary Disruption of the nonsense-mediated decay pathway with a newly developed SMG1 inhibitor with in-vivo activity increases the expression of T-cell targetable cancer neoantigens resulting from truncating mutations.
Collapse
|
8
|
Linette GP, Bear AS, Carreno BM. Facts and Hopes in Immunotherapy Strategies Targeting Antigens Derived from KRAS Mutations. Clin Cancer Res 2024; 30:2017-2024. [PMID: 38266167 PMCID: PMC11094419 DOI: 10.1158/1078-0432.ccr-23-1212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/20/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024]
Abstract
In this commentary, we advance the notion that mutant KRAS (mKRAS) is an ideal tumor neoantigen that is amenable for targeting by the adaptive immune system. Recent progress highlights key advances on various fronts that validate mKRAS as a molecular target and support further pursuit as an immunological target. Because mKRAS is an intracellular membrane localized protein and not normally expressed on the cell surface, we surmise that proteasome degradation will generate short peptides that bind to HLA class I (HLA-I) molecules in the endoplasmic reticulum for transport through the Golgi for display on the cell surface. T-cell receptors (TCR)αβ and antibodies have been isolated that specifically recognize mKRAS encoded epitope(s) or haptenated-mKRAS peptides in the context of HLA-I on tumor cells. Case reports using adoptive T-cell therapy provide proof of principle that KRAS G12D can be successfully targeted by the immune system in patients with cancer. Among the challenges facing investigators is the requirement of precision medicine to identify and match patients to available mKRAS peptide/HLA therapeutics and to increase the population coverage by targeting additional mKRAS epitopes. Ultimately, we envision mKRAS-directed immunotherapy as an effective treatment option for selected patients that will complement and perhaps synergize with small-molecule mKRAS inhibitors and targeted mKRAS degraders.
Collapse
Affiliation(s)
- Gerald P. Linette
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Adham S. Bear
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Beatriz M. Carreno
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
9
|
Struckman NE, de Jong RCM, Honders MW, Smith SAI, van der Lee DI, Koutsoumpli G, de Ru AH, Mikesch JH, van Veelen PA, Falkenburg JHF, Griffioen M. Hotspot DNA Methyltransferase 3A ( DNMT3A) and Isocitrate Dehydrogenase 1 and 2 ( IDH1/2) Mutations in Acute Myeloid Leukemia and Their Relevance as Targets for Immunotherapy. Biomedicines 2024; 12:1086. [PMID: 38791049 PMCID: PMC11118067 DOI: 10.3390/biomedicines12051086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
DNA methyltransferase 3A (DNMT3A) and isocitrate dehydrogenase 1 and 2 (IDH1/2) are genes involved in epigenetic regulation, each mutated in 7-23% of patients with acute myeloid leukemia. Here, we investigated whether hotspot mutations in these genes encode neoantigens that can be targeted by immunotherapy. Five human B-lymphoblastoid cell lines expressing common HLA class I alleles were transduced with a minigene construct containing mutations that often occur in DNMT3A or IDH1/2. From these minigene-transduced cell lines, peptides were eluted from HLA class I alleles and analyzed using tandem mass spectrometry. The resulting data are available via ProteomeXchange under the identifier PXD050560. Mass spectrometry revealed an HLA-A*01:01-binding DNMT3AR882H peptide and an HLA-B*07:02-binding IDH2R140Q peptide as potential neoantigens. For these neopeptides, peptide-HLA tetramers were produced to search for specific T-cells in healthy individuals. Various T-cell clones were isolated showing specific reactivity against cell lines transduced with full-length DNMT3AR882H or IDH2R140Q genes, while cell lines transduced with wildtype genes were not recognized. One T-cell clone for DNMT3AR882H also reacted against patient-derived acute myeloid leukemia cells with the mutation, while patient samples without the mutation were not recognized, thereby validating the surface presentation of a DNMT3AR882H neoantigen that can potentially be targeted in acute myeloid leukemia via immunotherapy.
Collapse
Affiliation(s)
- Nadine E. Struckman
- Department of Hematology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands; (N.E.S.); (R.C.M.d.J.); (M.W.H.); (S.-A.I.S.); (D.I.v.d.L.); (G.K.); (J.H.F.F.)
| | - Rob C. M. de Jong
- Department of Hematology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands; (N.E.S.); (R.C.M.d.J.); (M.W.H.); (S.-A.I.S.); (D.I.v.d.L.); (G.K.); (J.H.F.F.)
| | - M. Willy Honders
- Department of Hematology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands; (N.E.S.); (R.C.M.d.J.); (M.W.H.); (S.-A.I.S.); (D.I.v.d.L.); (G.K.); (J.H.F.F.)
| | - Sophie-Anne I. Smith
- Department of Hematology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands; (N.E.S.); (R.C.M.d.J.); (M.W.H.); (S.-A.I.S.); (D.I.v.d.L.); (G.K.); (J.H.F.F.)
| | - Dyantha I. van der Lee
- Department of Hematology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands; (N.E.S.); (R.C.M.d.J.); (M.W.H.); (S.-A.I.S.); (D.I.v.d.L.); (G.K.); (J.H.F.F.)
| | - Georgia Koutsoumpli
- Department of Hematology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands; (N.E.S.); (R.C.M.d.J.); (M.W.H.); (S.-A.I.S.); (D.I.v.d.L.); (G.K.); (J.H.F.F.)
| | - Arnoud H. de Ru
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333ZA Leiden, The Netherlands; (A.H.d.R.); (P.A.v.V.)
| | - Jan-Henrik Mikesch
- Department of Medicine A, University Hospital Münster, 48149 Münster, Germany;
| | - Peter A. van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333ZA Leiden, The Netherlands; (A.H.d.R.); (P.A.v.V.)
| | - J. H. Frederik Falkenburg
- Department of Hematology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands; (N.E.S.); (R.C.M.d.J.); (M.W.H.); (S.-A.I.S.); (D.I.v.d.L.); (G.K.); (J.H.F.F.)
| | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands; (N.E.S.); (R.C.M.d.J.); (M.W.H.); (S.-A.I.S.); (D.I.v.d.L.); (G.K.); (J.H.F.F.)
| |
Collapse
|
10
|
Xiang N, Zhang K, Zhao Y, Xu C, Zhang X, Meng S. Characterization of antigen presentation capability for neoantigen-based products using targeted LC-MS/MS method. J Pharm Biomed Anal 2024; 240:115886. [PMID: 38184916 DOI: 10.1016/j.jpba.2023.115886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/15/2023] [Accepted: 11/26/2023] [Indexed: 01/09/2024]
Abstract
The generation of an immune response in neoantigen-based products relies on antigen presentation, which is closely analyzed by bioassays for T-cell functions such as tetramer or cytokine release. Mass spectrometry (MS) has the potential to directly assess the antigen-presenting capability of antigen-presenting cells (APCs), offering advantages such as speed, multi-target analysis, robustness, and ease of transferability. However, it has not been used for quality control of these products due to challenges in sensitivity, including the number of cells and peptide diversity. In this study, we describe the development and validation of an improved targeted LC-MS/MS method with high sensitivity for characterizing antigen presentation, which could be applied in the quality control of neoantigen-based products. The parameters for the extraction were carefully optimized by different short peptides. Highly sensitive targeted triple quadrupole mass spectrometry combined with ultra-high performance liquid chromatography (UHPLC) was employed using a selective ion monitoring mode (Multiple Reaction Monitoring, MRM). Besides, we successfully implemented robust quality control peptides to ensure the reliability and consistency of this method, which proved invaluable for different APCs. With reference to the guidelines from ICH Q2 (R2), M10, as well as considering the specific attributes of the product itself, we validated the method for selectivity, specificity, sensitivity, limit of detection (LOD), recovery rate, matrix effect, repeatability, and application in dendritic cells (DCs) associated with neoantigen-based products. The validation process yields satisfactory results. Combining this approach with T cell assays will comprehensively assess cell product quality attributes from physicochemical and biological perspectives.
Collapse
Affiliation(s)
- Nan Xiang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; The Cell Collection and Research Center, National Institutes for Food and Drug Control, No. 31 Huatuo St., Daxing District, Beijing, China
| | - Kehua Zhang
- The Cell Collection and Research Center, National Institutes for Food and Drug Control, No. 31 Huatuo St., Daxing District, Beijing, China
| | - Yinghua Zhao
- SCIEX China, 5F, Building 1, No. 24 Jiuxianqiao Middle Road, Chaoyang District, Beijing, China
| | - Chongfeng Xu
- The Cell Collection and Research Center, National Institutes for Food and Drug Control, No. 31 Huatuo St., Daxing District, Beijing, China
| | - Xiuqing Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shufang Meng
- The Cell Collection and Research Center, National Institutes for Food and Drug Control, No. 31 Huatuo St., Daxing District, Beijing, China.
| |
Collapse
|
11
|
Wu J, Mao L, Lei W, Sun W, Yang X, Zhang Y, Huang X, Lin D. Genomic discordances and heterogeneous mutational burden, PD-L1 expression and immune infiltrates of non-small cell lung cancer metastasis. J Clin Pathol 2024:jcp-2023-209328. [PMID: 38307721 DOI: 10.1136/jcp-2023-209328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/21/2024] [Indexed: 02/04/2024]
Abstract
AIMS To investigate the genomic discordances and heterogeneous mutational burden, PD-L1 expression and immune cell (IC) infiltrates of non-small cell lung cancer (NSCLC) metastasis. METHODS Surgical samples from 41 cases of NSCLC with metastatic tumours (MTs) and paired primary tumours (PTs) were collected. PD-L1 expression and ICs were quantified using image-based immunohistochemistry profiling. Whole exome sequencing was employed to explore discrepancies in genomic characteristics, tumour mutational burden (TMB) and tumour neoantigen burden (TNB) in 28 cases. RESULTS Non-synonymous mutations in MTs were slightly more than in PTs, with only 42.34% of mutations shared between paired PTs and MTs. The heterogeneity of TMB showed no significant difference (p=0.785) between MTs and PTs, while TNB significantly increased in MTs (p=0.013). MTs generally exhibited a higher density of PD-L1+ cells and a higher tumour proportion score with a lower density of IC infiltrates. Subgroup analysis considering clinicopathological factors revealed that the heterogeneity of immune biomarkers was closely associated with the histology of lung adenocarcinoma, metastatic sites of extrapulmonary, time intervals and treatment history. Prognosis analysis indicated that a high density of CD8+ T cells was a low-risk factor, whereas a high density of PD-L1+ cells in MTs was a high-risk factor for cancer-related death in metastatic NSCLC. CONCLUSIONS The mutational burden, PD-L1 expression and IC infiltrates undergo changes during NSCLC metastasis, which may impact the immunotherapeutic benefits in patients with NSCLC with metastatic progression and should be monitored according to clinical scenarios.
Collapse
Affiliation(s)
- Jianghua Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Luning Mao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Wanjun Lei
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, China
| | - Wei Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xin Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yanhui Zhang
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center of Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center of Cancer, Tianjin, China
| | - Xiaozheng Huang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Dongmei Lin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
12
|
Pounraj S, Chen S, Ma L, Mazzieri R, Dolcetti R, Rehm BHA. Targeting Tumor Heterogeneity with Neoantigen-Based Cancer Vaccines. Cancer Res 2024; 84:353-363. [PMID: 38055891 DOI: 10.1158/0008-5472.can-23-2042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/24/2023] [Accepted: 12/04/2023] [Indexed: 12/08/2023]
Abstract
Neoantigen-based cancer vaccines have emerged as a promising immunotherapeutic approach to treat cancer. Nevertheless, the high degree of heterogeneity in tumors poses a significant hurdle for developing a vaccine that targets the therapeutically relevant neoantigens capable of effectively stimulating an immune response as each tumor contains numerous unique putative neoantigens. Understanding the complexities of tumor heterogeneity is crucial for the development of personalized neoantigen-based vaccines, which hold the potential to revolutionize cancer treatment and improve patient outcomes. In this review, we discuss recent advancements in the design of neoantigen-based cancer vaccines emphasizing the identification, validation, formulation, and targeting of neoantigens while addressing the challenges posed by tumor heterogeneity. The review highlights the application of cutting-edge approaches, such as single-cell sequencing and artificial intelligence to identify immunogenic neoantigens, while outlining current limitations and proposing future research directions to develop effective neoantigen-based vaccines.
Collapse
Affiliation(s)
- Saranya Pounraj
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University (Nathan Campus), Brisbane, Queensland, Australia
| | - Shuxiong Chen
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University (Nathan Campus), Brisbane, Queensland, Australia
| | - Linlin Ma
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University (Nathan Campus), Brisbane, Queensland, Australia
- School of Environment and Science, Griffith University (Nathan Campus), Brisbane, Queensland, Australia
| | - Roberta Mazzieri
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Riccardo Dolcetti
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Victoria, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University (Nathan Campus), Brisbane, Queensland, Australia
- Menzies Health Institute Queensland (MHIQ), Griffith University (Gold Coast Campus), Queensland, Australia
| |
Collapse
|
13
|
Huang D, Zhu X, Ye S, Zhang J, Liao J, Zhang N, Zeng X, Wang J, Yang B, Zhang Y, Lao L, Chen J, Xin M, Nie Y, Saw PE, Su S, Song E. Tumour circular RNAs elicit anti-tumour immunity by encoding cryptic peptides. Nature 2024; 625:593-602. [PMID: 38093017 DOI: 10.1038/s41586-023-06834-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/03/2023] [Indexed: 12/23/2023]
Abstract
Emerging data have shown that previously defined noncoding genomes might encode peptides that bind human leukocyte antigen (HLA) as cryptic antigens to stimulate adaptive immunity1,2. However, the significance and mechanisms of action of cryptic antigens in anti-tumour immunity remain unclear. Here mass spectrometry of the HLA class I (HLA-I) peptidome coupled with ribosome sequencing of human breast cancer samples identified HLA-I-binding cryptic antigenic peptides that were noncanonically translated by a tumour-specific circular RNA (circRNA): circFAM53B. The cryptic peptides efficiently primed naive CD4+ and CD8+ T cells in an antigen-specific manner and induced anti-tumour immunity. Clinically, the expression of circFAM53B and its encoded peptides was associated with substantial infiltration of antigen-specific CD8+ T cells and better survival in patients with breast cancer and patients with melanoma. Mechanistically, circFAM53B-encoded peptides had strong binding affinity to both HLA-I and HLA-II molecules. In vivo, administration of vaccines consisting of tumour-specific circRNA or its encoded peptides in mice bearing breast cancer tumours or melanoma induced enhanced infiltration of tumour-antigen-specific cytotoxic T cells, which led to effective tumour control. Overall, our findings reveal that noncanonical translation of circRNAs can drive efficient anti-tumour immunity, which suggests that vaccination exploiting tumour-specific circRNAs may serve as an immunotherapeutic strategy against malignant tumours.
Collapse
Affiliation(s)
- Di Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaofeng Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shuying Ye
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiahui Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jianyou Liao
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ning Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xin Zeng
- Program of Molecular Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jiawen Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Bing Yang
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yin Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Liyan Lao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jianing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Min Xin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yan Nie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shicheng Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
- Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
- Biotherapy Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
14
|
Meng W, Schreiber RD, Lichti CF. Recent advances in immunopeptidomic-based tumor neoantigen discovery. Adv Immunol 2023; 160:1-36. [PMID: 38042584 DOI: 10.1016/bs.ai.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Abstract
The role of aberrantly expressed proteins in tumors in driving immune-mediated control of cancer has been well documented for more than five decades. Today, we know that both aberrantly expressed normal proteins as well as mutant proteins (neoantigens) can function as tumor antigens in both humans and mice. Next-generation sequencing (NGS) and high-resolution mass spectrometry (MS) technologies have made significant advances since the early 2010s, enabling detection of rare but clinically relevant neoantigens recognized by T cells. MS profiling of tumor-specific immunopeptidomes remains the most direct method to identify mutant peptides bound to cellular MHC. However, the need for use of large numbers of cells or significant amounts of tumor tissue to achieve neoantigen detection has historically limited the application of MS. Newer, more sensitive MS technologies have recently demonstrated the capacities to detect neoantigens from fewer cells. Here, we highlight recent advancements in immunopeptidomics-based characterization of tumor-specific neoantigens. Various tumor antigen categories and neoantigen identification approaches are also discussed. Furthermore, we summarize recent reports that achieved successful tumor neoantigen detection by MS using a variety of starting materials, MS acquisition modes, and novel ion mobility devices.
Collapse
Affiliation(s)
- Wei Meng
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, United States
| | - Robert D Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, United States.
| | - Cheryl F Lichti
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, United States.
| |
Collapse
|
15
|
Chen G, Kong D, Lin Y. Neo-Antigen-Reactive T Cells Immunotherapy for Colorectal Cancer: A More Personalized Cancer Therapy Approach. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200186. [PMID: 37970536 PMCID: PMC10632666 DOI: 10.1002/gch2.202200186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 05/09/2023] [Indexed: 11/17/2023]
Abstract
Colorectal cancer (CRC) is the second most common malignancy in women and the third most frequent cancer in men. Evidence has revealed that the survival of patients with metastatic CRC is very low, between one and three years. Neoantigens are known proteins encoded by mutations in tumor cells. It is theorized that recognizing neoantigens by T cells leads to T cell activation and further antitumor responses. Neoantigen-reactive T cells (NRTs) are designed against the mentioned neoantigens expressed by tumor cells. NRTs selectively kill tumor cells without damage to non-cancerous cells. Identifying patient-specific and high immunogen neoantigens is important in NRT immunotherapy of patients with CRC. However, the main challenges are the side effects and preparation of NRTs, as well as the effectiveness of these cells in vivo. This review summarized the properties of neoantigens as well as the preparation and therapeutic outcomes of NRTs for the treatment of CRC.
Collapse
Affiliation(s)
- Guan‐Liang Chen
- Department of Gastroenterology SurgeryAffiliated Hospital of Shaoxing UniversityShaoxing312000China
| | - De‐Xia Kong
- Center for General Practice MedicineDepartment of GastroenterologyZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeNo. 158 Shangtang RoadHangzhouZhejiang310014China
| | - Yan Lin
- Center for General Practice MedicineDepartment of GastroenterologyZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeNo. 158 Shangtang RoadHangzhouZhejiang310014China
| |
Collapse
|
16
|
Ade CM, Sporn MJ, Das S, Yu Z, Hanada KI, Qi YA, Maity T, Zhang X, Guha U, Andresson T, Yang JC. Identification of neoepitope reactive T-cell receptors guided by HLA-A*03:01 and HLA-A*11:01 immunopeptidomics. J Immunother Cancer 2023; 11:e007097. [PMID: 37758652 PMCID: PMC10537849 DOI: 10.1136/jitc-2023-007097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Tumor-specific mutated proteins can create immunogenic non-self, mutation-containing 'neoepitopes' that are attractive targets for adoptive T-cell therapies. To avoid the complexity of defining patient-specific, private neoepitopes, there has been major interest in targeting common shared mutations in driver genes using off-the-shelf T-cell receptors (TCRs) engineered into autologous lymphocytes. However, identifying the precise naturally processed neoepitopes to pursue is a complex and challenging process. One method to definitively demonstrate whether an epitope is presented at the cell surface is to elute peptides bound to a specific major histocompatibility complex (MHC) allele and analyze them by mass spectrometry (MS). These MS data can then be prospectively applied to isolate TCRs specific to the neoepitope. METHODS We created mono-allelic cell lines expressing one class I HLA allele and one common mutated oncogene in order to eliminate HLA deconvolution requirements and increase the signal of recovered peptides. MHC-bound peptides on the surface of these cell lines were immunoprecipitated, purified, and analyzed using liquid chromatography-tandem mass spectrometry, producing a list of mutation-containing minimal epitopes. To validate the immunogenicity of these neoepitopes, HLA-transgenic mice were vaccinated using the minimal peptides identified by MS in order to generate neoepitope-reactive TCRs. Specificity of these candidate TCRs was confirmed by peptide titration and recognition of transduced targets. RESULTS We identified precise neoepitopes derived from mutated isoforms of KRAS, EGFR, BRAF, and PIK3CA presented by HLA-A*03:01 and/or HLA-A*11:01 across multiple biological replicates. From our MS data, we were able to successfully isolate murine TCRs that specifically recognize four HLA-A*11:01 restricted neoepitopes (KRAS G13D, PIK3CA E545K, EGFR L858R and BRAF V600E) and three HLA-A*03:01 restricted neoepitopes (KRAS G12V, EGFR L858R and BRAF V600E). CONCLUSIONS Our data show that an MS approach can be used to demonstrate which shared oncogene-derived neoepitopes are processed and presented by common HLA alleles, and those MS data can rapidly be used to develop TCRs against these common tumor-specific antigens. Although further characterization of these neoepitope-specific murine TCRs is required, ultimately, they have the potential to be used clinically for adoptive cell therapy.
Collapse
Affiliation(s)
- Catherine M Ade
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Matthew J Sporn
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Sudipto Das
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Zhiya Yu
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Ken-Ichi Hanada
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Yue A Qi
- Thoracic and GI Malignancies Branch, National Cancer Institute, Bethesda, Maryland, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Tapan Maity
- Thoracic and GI Malignancies Branch, National Cancer Institute, Bethesda, Maryland, USA
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, MD, USA
| | - Xu Zhang
- Thoracic and GI Malignancies Branch, National Cancer Institute, Bethesda, Maryland, USA
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, USA
| | - Udayan Guha
- Thoracic and GI Malignancies Branch, National Cancer Institute, Bethesda, Maryland, USA
- NextCure Inc, Beltsville, MD, USA
| | - Thorkell Andresson
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - James C Yang
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Peri A, Salomon N, Wolf Y, Kreiter S, Diken M, Samuels Y. The landscape of T cell antigens for cancer immunotherapy. NATURE CANCER 2023:10.1038/s43018-023-00588-x. [PMID: 37415076 DOI: 10.1038/s43018-023-00588-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/18/2023] [Indexed: 07/08/2023]
Abstract
The remarkable capacity of immunotherapies to induce durable regression in some patients with metastatic cancer relies heavily on T cell recognition of tumor-presented antigens. As checkpoint-blockade therapy has limited efficacy, tumor antigens have the potential to be exploited for complementary treatments, many of which are already in clinical trials. The surge of interest in this topic has led to the expansion of the tumor antigen landscape with the emergence of new antigen categories. Nonetheless, how different antigens compare in their ability to elicit efficient and safe clinical responses remains largely unknown. Here, we review known cancer peptide antigens, their attributes and the relevant clinical data and discuss future directions.
Collapse
Affiliation(s)
- Aviyah Peri
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Nadja Salomon
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - Yochai Wolf
- Ella Lemelbaum Institute for Immuno-oncology and Skin Cancer, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Sebastian Kreiter
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH, Mainz, Germany.
| | - Mustafa Diken
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH, Mainz, Germany.
| | - Yardena Samuels
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
18
|
Abelin JG, Bergstrom EJ, Rivera KD, Taylor HB, Klaeger S, Xu C, Verzani EK, Jackson White C, Woldemichael HB, Virshup M, Olive ME, Maynard M, Vartany SA, Allen JD, Phulphagar K, Harry Kane M, Rachimi S, Mani DR, Gillette MA, Satpathy S, Clauser KR, Udeshi ND, Carr SA. Workflow enabling deepscale immunopeptidome, proteome, ubiquitylome, phosphoproteome, and acetylome analyses of sample-limited tissues. Nat Commun 2023; 14:1851. [PMID: 37012232 PMCID: PMC10070353 DOI: 10.1038/s41467-023-37547-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Serial multi-omic analysis of proteome, phosphoproteome, and acetylome provides insights into changes in protein expression, cell signaling, cross-talk and epigenetic pathways involved in disease pathology and treatment. However, ubiquitylome and HLA peptidome data collection used to understand protein degradation and antigen presentation have not together been serialized, and instead require separate samples for parallel processing using distinct protocols. Here we present MONTE, a highly sensitive multi-omic native tissue enrichment workflow, that enables serial, deep-scale analysis of HLA-I and HLA-II immunopeptidome, ubiquitylome, proteome, phosphoproteome, and acetylome from the same tissue sample. We demonstrate that the depth of coverage and quantitative precision of each 'ome is not compromised by serialization, and the addition of HLA immunopeptidomics enables the identification of peptides derived from cancer/testis antigens and patient specific neoantigens. We evaluate the technical feasibility of the MONTE workflow using a small cohort of patient lung adenocarcinoma tumors.
Collapse
Affiliation(s)
- Jennifer G Abelin
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA.
| | - Erik J Bergstrom
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Keith D Rivera
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Hannah B Taylor
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Susan Klaeger
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Charles Xu
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Eva K Verzani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - C Jackson White
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Hilina B Woldemichael
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Maya Virshup
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Meagan E Olive
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Myranda Maynard
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Stephanie A Vartany
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Joseph D Allen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Kshiti Phulphagar
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - M Harry Kane
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Suzanna Rachimi
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Michael A Gillette
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
- Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Shankha Satpathy
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Karl R Clauser
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Namrata D Udeshi
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA.
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
19
|
Martinov T, Greenberg PD. Targeting Driver Oncogenes and Other Public Neoantigens Using T Cell Receptor-Based Cellular Therapy. ANNUAL REVIEW OF CANCER BIOLOGY 2023; 7:331-351. [PMID: 37655310 PMCID: PMC10470615 DOI: 10.1146/annurev-cancerbio-061521-082114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
T cell reactivity to tumor-specific neoantigens can drive endogenous and therapeutically induced antitumor immunity. However, most tumor-specific neoantigens are unique to each patient (private) and targeting them requires personalized therapy. A smaller subset of neoantigens includes epitopes that span recurrent mutation hotspots, translocations, or gene fusions in oncogenic drivers and tumor suppressors, as well as epitopes that arise from viral oncogenic proteins. Such antigens are likely to be shared across patients (public), uniformly expressed within a tumor, and required for cancer cell survival and fitness. Although a limited number of these public neoantigens are naturally immunogenic, recent studies affirm their clinical utility. In this review, we highlight efforts to target mutant KRAS, mutant p53, and epitopes derived from oncogenic viruses using T cells engineered with off-the-shelf T cell receptors. We also discuss the challenges and strategies to achieving more effective T cell therapies, particularly in the context of solid tumors.
Collapse
Affiliation(s)
- Tijana Martinov
- Program in Immunology and Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Philip D Greenberg
- Program in Immunology and Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Immunology Department, University of Washington, Seattle, Washington, USA
| |
Collapse
|
20
|
Hattori T, Maso L, Araki KY, Koide A, Hayman J, Akkapeddi P, Bang I, Neel BG, Koide S. Creating MHC-Restricted Neoantigens with Covalent Inhibitors That Can Be Targeted by Immune Therapy. Cancer Discov 2023; 13:132-145. [PMID: 36250888 PMCID: PMC9827112 DOI: 10.1158/2159-8290.cd-22-1074] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 01/16/2023]
Abstract
Intracellular oncoproteins can be inhibited with targeted therapy, but responses are not durable. Immune therapies can be curative, but most oncogene-driven tumors are unresponsive to these agents. Fragments of intracellular oncoproteins can act as neoantigens presented by the major histocompatibility complex (MHC), but recognizing minimal differences between oncoproteins and their normal counterparts is challenging. We have established a platform technology that exploits hapten-peptide conjugates generated by covalent inhibitors to create distinct neoantigens that selectively mark cancer cells. Using the FDA-approved covalent inhibitors sotorasib and osimertinib, we developed "HapImmune" antibodies that bind to drug-peptide conjugate/MHC complexes but not to the free drugs. A HapImmune-based bispecific T-cell engager selectively and potently kills sotorasib-resistant lung cancer cells upon sotorasib treatment. Notably, it is effective against KRASG12C-mutant cells with different HLA supertypes, HLA-A*02 and A*03/11, suggesting loosening of MHC restriction. Our strategy creates targetable neoantigens by design, unifying targeted and immune therapies. SIGNIFICANCE Targeted therapies against oncoproteins often have dramatic initial efficacy but lack durability. Immunotherapies can be curative, yet most tumors fail to respond. We developed a generalizable technology platform that exploits hapten-peptides generated by covalent inhibitors as neoantigens presented on MHC to enable engineered antibodies to selectively kill drug-resistant cancer cells. See related commentary by Cox et al., p. 19. This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Takamitsu Hattori
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York.,Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York
| | - Lorenzo Maso
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York
| | - Kiyomi Y. Araki
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York
| | - Akiko Koide
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York.,Division of Hematology Oncology, Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - James Hayman
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York
| | - Padma Akkapeddi
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York
| | - Injin Bang
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York
| | - Benjamin G. Neel
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York.,Division of Hematology Oncology, Department of Medicine, New York University Grossman School of Medicine, New York, New York.,Corresponding Authors: Shohei Koide, Smilow Research Center, Room 1105, 522 First Avenue, New York, NY 10016. Phone: 646-501-4601; E-mail: ; and Benjamin G. Neel, Smilow Research Center, Suite 1201, 522 First Avenue, New York, NY 10016. Phone: 212-263-3019; E-mail:
| | - Shohei Koide
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York.,Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York.,Corresponding Authors: Shohei Koide, Smilow Research Center, Room 1105, 522 First Avenue, New York, NY 10016. Phone: 646-501-4601; E-mail: ; and Benjamin G. Neel, Smilow Research Center, Suite 1201, 522 First Avenue, New York, NY 10016. Phone: 212-263-3019; E-mail:
| |
Collapse
|
21
|
Luo K, Liu S, Shen X, Xu J, Shi C, Chao Y, Wen Z, Zhang K, Wang R, Liu B, Jiang Y. Integration of cancer stemness and neoantigen load to predict responsiveness to anti-PD1/PDL1 therapy. Front Cell Dev Biol 2022; 10:1003656. [DOI: 10.3389/fcell.2022.1003656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/27/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Anti-programmed cell death 1/programmed cell death ligand 1 (PD1/PDL1) therapy is an important part of comprehensive cancer therapy. However, many patients suffer from non-response to therapy. Tumor neoantigen burden (TNB) and cancer stemness play essential roles in the responsiveness to therapy. Therefore, the identification of drug candidates for anti-PD1/PDL1 therapy remains an unmet need.Methods: Three anti-PD1/PDL1 therapy cohorts were obtained from GEO database and published literatures. Cancer immune characteristics were analyzed using CIBERSORTX, GSVA, and ESTIMATE. WGCNA was employed to identify the gene modules correlated with cancer TNB and stemness. A machine-learning method was used to construct the immunotherapy resistance score (TSIRS). Pharmacogenomic analysis was conducted to explore the potential alternative drugs for anti-PD1/PDL1 therapy resistant patients. CCK-8 assay, EdU assay and wound healing assay were used to validate the effect of the predicted drug on cancer cells.Results: The therapy response and non-response cancer groups have different microenvironment features. TSIRS was developed based on tumor neoantigen and stemness. TSIRS can effectively predict the outcomes of patients with anti-PD1/PDL1 therapy in training, validation and meta cohorts. Meanwhile, TSIRS can reflect the characteristics of tumor microenvironment during anti-PD1/PDL1 therapy. PF-4708671 is identified as a potential alternative drug for patients with resistance to anti-PD1/PDL1 therapy. It possesses significant inhibitive effect on the proliferation and migration of BGC-823 cells.Conclusion: TSIRS is an effective tool in the identification of candidate patients who will be benefit from anti-PD1/PDL1 therapy. Small molecule drug PF-4708671 has the potential to be used in anti-PD1/PDL1 therapy resistant patients.
Collapse
|
22
|
Shen Y, Yu L, Xu X, Yu S, Yu Z. Neoantigen vaccine and neoantigen-specific cell adoptive transfer therapy in solid tumors: Challenges and future directions. CANCER INNOVATION 2022; 1:168-182. [PMID: 38090649 PMCID: PMC10686129 DOI: 10.1002/cai2.26] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 06/11/2024]
Abstract
The phenomenon of tumor hierarchy and genetic instability can be explained by the "two-hits theory" and results in the occurrence of many somatic mutations. The expression of nonsynonymous mutations results in the production of mutant proteins from tumor cells, namely tumor-specific antigens called neoantigens. Because neoantigens do not exist in healthy cells, they have the potential to stimulate antitumor immune responses by CD4+ and CD8+ T-cell activation without jeopardizing normal tissues. Immunotherapy has reshaped the cancer treatment paradigm in recent decades with the introduction of immune-checkpoint blockade therapy and transgenic T-cell receptor/chimeric antigen receptor T cells. However, these strategies performed poorly in solid tumors because of the obstacles of the immunosuppressive microenvironment caused by regulatory T cells and other suppressor cells. Therefore, other immunotherapeutic strategies are under development, such as personalized vaccines, to trigger de novo T-cell responses against neoantigens and lead to the amplification of tumor-specific T-cell subclones. Neoantigen epitope prediction algorithms have enabled the detection of neoantigens and the creation of tailored neoantigen vaccines as a result of the fast development of next-generation sequencing and cancer bioinformatics. Here we provide an overview of the current neoantigen cancer vaccines and adoptive T-cell transfer therapy with neoantigen-specific lymphocytes. We also discuss the challenges in developing neoantigen-targeted immunotherapeutic strategies for cancer.
Collapse
Affiliation(s)
- Yanwei Shen
- Shanghai Jianshan Medical Tech Co LtdShanghaiChina
| | - Lu Yu
- Shanghai Jianshan Medical Tech Co LtdShanghaiChina
| | - Xiaoli Xu
- Shanghai Jianshan Medical Tech Co LtdShanghaiChina
| | - Shaojun Yu
- Department of Surgery, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Zhuo Yu
- Department of Medical Oncology, Beijing Tsinghua Changgung Hospital, School of Clinical MedicineTsinghua UniversityBeijingChina
| |
Collapse
|
23
|
Feng W, Lin A, Sun L, Wei T, Ying H, Zhang J, Luo P, Zhu W. Activation of the chemokine receptor 3 pathway leads to a better response to immune checkpoint inhibitors in patients with metastatic urothelial carcinoma. Cancer Cell Int 2022; 22:186. [PMID: 35562800 PMCID: PMC9107140 DOI: 10.1186/s12935-022-02604-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/02/2022] [Indexed: 11/17/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have made important breakthrough in anti-tumor therapy, however, no single biomarker can accurately predict their efficacy. Studies have found that tumor microenvironment is a key factor for determining the response to ICI therapy. Cytokine receptor 3 (C-X-C Motif Chemokine Receptor 3, CXCR3) pathway has been reported to play an important role in the migration, activation, and response of immune cells. We analyzed survival data, genomics, and clinical data from patients with metastatic urothelial carcinoma (mUC) who received ICI treatment to explore the relationship between CXCR3 pathway activation and the effectiveness of ICIs. The Cancer Genome Atlas Bladder Urothelial Carcinoma cohort and six other cohorts receiving ICI treatment were used for mechanism exploration and validation. In the ICI cohort, we performed univariate and multivariate COX analyses and discovered that patients in the CXCR3-high group were more sensitive to ICI treatment. A Kaplan–Meier analysis demonstrated that patients in the high CXCR3-high group had a better prognosis than those in the CXCR3-low group (P = 0.0001, Hazard Ratio = 0.56; 95% CI 0.42−0.75). CIBERSORT analysis found that mUC patients in the CXCR3-high group had higher levels of activated CD8+ T cells, M1 macrophages, and activated NK cells and less regulatory T cell (Treg) infiltration. Immunogenicity analysis showed the CXCR3-high group had higher tumor neoantigen burden (TNB). Our study suggests that CXCR3 pathway activation may be a novel predictive biomarker for the effectiveness of immunotherapy in mUC patients.
Collapse
Affiliation(s)
- Wenqin Feng
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, China
| | - Le Sun
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, China
| | - Ting Wei
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, China
| | - Haoxuan Ying
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, China.
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, China.
| | - Weiliang Zhu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
24
|
Xu G, Luo Y, Wang H, Wang Y, Liu B, Wei J. Therapeutic bispecific antibodies against intracellular tumor antigens. Cancer Lett 2022; 538:215699. [PMID: 35487312 DOI: 10.1016/j.canlet.2022.215699] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 12/16/2022]
Abstract
Bispecific antibodies (BsAbs)-based therapeutics have been identified to be one of the most promising immunotherapy strategies. However, their target repertoire is mainly restricted to cell surface antigens rather than intracellular antigens, resulting in a relatively limited scope of applications. Intracellular tumor antigens are identified to account for a large proportion of tumor antigen profiles. Recently, bsAbs that target intracellular oncoproteins have raised much attention, broadening the targeting scope of tumor antigens and improving the efficacy of traditional antibody-based therapeutics. Consequently, this review will focus on this emerging field and discuss related research advances. We introduce the classification, characteristics, and clinical applications of bsAbs, the theoretical basis for targeting intracellular antigens, delivery systems of bsAbs, and the latest preclinical and clinical advances of bsAbs targeting several intracellular oncotargets, including those of cancer-testis antigens, differentiation antigens, neoantigens, and other antigens. Moreover, we summarize the limitations of current bsAbs, and propose several potential strategies against immune escape and T cell exhaustion as well as some future perspectives.
Collapse
Affiliation(s)
- Guanghui Xu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
| | - Yuting Luo
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
| | - Hanbing Wang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
| | - Yue Wang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
| | - Baorui Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
| | - Jia Wei
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China; Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
25
|
Douglass J. Mutation-guided therapeutics. Science 2022; 376:147. [PMID: 35389812 DOI: 10.1126/science.abo4237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Development of bispecific antibodies to target mutant peptides in cancer.
Collapse
Affiliation(s)
- Jacqueline Douglass
- Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
26
|
Bollineni RC, Tran TT, Lund-Johansen F, Olweus J. Chasing neoantigens; invite naïve T cells to the party. Curr Opin Immunol 2022; 75:102172. [DOI: 10.1016/j.coi.2022.102172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 11/03/2022]
|
27
|
Valid-NEO: A Multi-Omics Platform for Neoantigen Detection and Quantification from Limited Clinical Samples. Cancers (Basel) 2022; 14:cancers14051243. [PMID: 35267551 PMCID: PMC8909145 DOI: 10.3390/cancers14051243] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 02/01/2023] Open
Abstract
The presentation of neoantigens on the cell membrane is the foundation for most cancer immunotherapies. Due to their extremely low abundance, analyzing neoantigens in clinical samples is technically difficult, hindering the development of neoantigen-based therapeutics for more general use in the treatment of diverse cancers worldwide. Here, we describe an integrated system, "Valid-NEO", which reveals patient-specific cancer neoantigen therapeutic targets from minute amounts of clinical samples through direct observation, without computer-based prediction, in a sensitive, rapid, and reproducible manner. The overall four-hour procedure involves mass spectrometry analysis of neoantigens purified from tumor samples through recovery of HLA molecules with HLA antibodies. Valid-NEO could be applicable to the identification and quantification of presented neoantigens in cancer patients, particularly when only limited amounts of sample are available.
Collapse
|
28
|
Peri A, Greenstein E, Alon M, Pai JA, Dingjan T, Reich-Zeliger S, Barnea E, Barbolin C, Levy R, Arnedo-Pac C, Kalaora S, Dassa B, Feldmesser E, Shang P, Greenberg P, Levin Y, Benedek G, Levesque MP, Adams DJ, Lotem M, Wilmott JS, Scolyer RA, Jönsson GB, Admon A, Rosenberg SA, Cohen CJ, Niv MY, Lopez-Bigas N, Satpathy AT, Friedman N, Samuels Y. Combined presentation and immunogenicity analysis reveals a recurrent RAS.Q61K neoantigen in melanoma. J Clin Invest 2021; 131:129466. [PMID: 34651586 DOI: 10.1172/jci129466] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/02/2021] [Indexed: 12/30/2022] Open
Abstract
Neoantigens are now recognized drivers of the antitumor immune response. Recurrent neoantigens, shared among groups of patients, have thus become increasingly coveted therapeutic targets. Here, we report on the data-driven identification of a robustly presented, immunogenic neoantigen that is derived from the combination of HLA-A*01:01 and RAS.Q61K. Analysis of large patient cohorts indicated that this combination applies to 3% of patients with melanoma. Using HLA peptidomics, we were able to demonstrate robust endogenous presentation of the neoantigen in 10 tumor samples. We detected specific reactivity to the mutated peptide within tumor-infiltrating lymphocytes (TILs) from 2 unrelated patients, thus confirming its natural immunogenicity. We further investigated the neoantigen-specific clones and their T cell receptors (TCRs) via a combination of TCR sequencing, TCR overexpression, functional assays, and single-cell transcriptomics. Our analysis revealed a diverse repertoire of neoantigen-specific clones with both intra- and interpatient TCR similarities. Moreover, 1 dominant clone proved to cross-react with the highly prevalent RAS.Q61R variant. Transcriptome analysis revealed a high association of TCR clones with specific T cell phenotypes in response to cognate melanoma, with neoantigen-specific cells showing an activated and dysfunctional phenotype. Identification of recurrent neoantigens and their reactive TCRs can promote "off-the-shelf" precision immunotherapies, alleviating limitations of personalized treatments.
Collapse
Affiliation(s)
| | - Erez Greenstein
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Joy A Pai
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Tamir Dingjan
- The Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Eilon Barnea
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | | | - Ronen Levy
- Department of Molecular Cell Biology and
| | - Claudia Arnedo-Pac
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Bareket Dassa
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ester Feldmesser
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ping Shang
- Melanoma Institute Australia and.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Yishai Levin
- The de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Gil Benedek
- Tissue Typing and Immunogenetics Unit, Hadassah Medical Center, Jerusalem, Israel
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Michal Lotem
- Sharett Institute of Oncology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - James S Wilmott
- Melanoma Institute Australia and.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia and.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, Australia
| | - Göran B Jönsson
- Lund University Cancer Center, Lund University, Lund, Sweden
| | - Arie Admon
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Steven A Rosenberg
- Surgery Branch, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Cyrille J Cohen
- Laboratory of Tumor Immunotherapy, The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Masha Y Niv
- The Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Nir Friedman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
29
|
Stopfer L, D'Souza A, White F. 1,2,3, MHC: a review of mass-spectrometry-based immunopeptidomics methods for relative and absolute quantification of pMHCs. IMMUNO-ONCOLOGY TECHNOLOGY 2021; 11:100042. [PMID: 35756972 PMCID: PMC9216433 DOI: 10.1016/j.iotech.2021.100042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Quantitative mass-spectrometry-based methods to perform relative and absolute quantification of peptides in the immunopeptidome are growing in popularity as researchers aim to measure the dynamic nature of the peptide major histocompatibility complex repertoire and make copies-per-cell estimations of target antigens of interest. Multiple methods to carry out these experiments have been reported, each with unique advantages and limitations. This article describes existing methods and recent applications, offering guidance for improving quantitative accuracy and selecting an appropriate experimental set-up to maximize data quality and quantity.
Collapse
Affiliation(s)
- L.E. Stopfer
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, USA,Koch Institute for Integrative Cancer Research, Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, USA
| | - A.D. D'Souza
- Koch Institute for Integrative Cancer Research, Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, USA,Program in Health Sciences and Technology, Harvard Medical School and Massachusetts Institute of Technology, Boston, USA
| | - F.M. White
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, USA,Koch Institute for Integrative Cancer Research, Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, USA,Correspondence to: Prof. Forest M. White, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Tel: 617-258-8949
| |
Collapse
|
30
|
Choi J, Goulding SP, Conn BP, McGann CD, Dietze JL, Kohler J, Lenkala D, Boudot A, Rothenberg DA, Turcott PJ, Srouji JR, Foley KC, Rooney MS, van Buuren MM, Gaynor RB, Abelin JG, Addona TA, Juneja VR. Systematic discovery and validation of T cell targets directed against oncogenic KRAS mutations. CELL REPORTS METHODS 2021; 1:100084. [PMID: 35474673 PMCID: PMC9017224 DOI: 10.1016/j.crmeth.2021.100084] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 08/04/2021] [Accepted: 08/20/2021] [Indexed: 12/27/2022]
Abstract
Oncogenic mutations in KRAS can be recognized by T cells on specific class I human leukocyte antigen (HLA-I) molecules, leading to tumor control. To date, the discovery of T cell targets from KRAS mutations has relied on occasional T cell responses in patient samples or the use of transgenic mice. To overcome these limitations, we have developed a systematic target discovery and validation pipeline. We evaluate the presentation of mutant KRAS peptides on individual HLA-I molecules using targeted mass spectrometry and identify 13 unpublished KRASG12C/D/R/V mutation/HLA-I pairs and nine previously described pairs. We assess immunogenicity, generating T cell responses to nearly all targets. Using cytotoxicity assays, we demonstrate that KRAS-specific T cells and T cell receptors specifically recognize endogenous KRAS mutations. The discovery and validation of T cell targets from KRAS mutations demonstrate the potential for this pipeline to aid the development of immunotherapies for important cancer targets.
Collapse
Affiliation(s)
- Jaewon Choi
- BioNTech US Inc., 40 Erie Street, Suite 110, Cambridge, MA 02139, USA
| | - Scott P. Goulding
- BioNTech US Inc., 40 Erie Street, Suite 110, Cambridge, MA 02139, USA
| | - Brandon P. Conn
- BioNTech US Inc., 40 Erie Street, Suite 110, Cambridge, MA 02139, USA
| | | | - Jared L. Dietze
- BioNTech US Inc., 40 Erie Street, Suite 110, Cambridge, MA 02139, USA
| | - Jessica Kohler
- BioNTech US Inc., 40 Erie Street, Suite 110, Cambridge, MA 02139, USA
| | - Divya Lenkala
- BioNTech US Inc., 40 Erie Street, Suite 110, Cambridge, MA 02139, USA
| | - Antoine Boudot
- BioNTech US Inc., 40 Erie Street, Suite 110, Cambridge, MA 02139, USA
| | | | - Paul J. Turcott
- BioNTech US Inc., 40 Erie Street, Suite 110, Cambridge, MA 02139, USA
| | - John R. Srouji
- BioNTech US Inc., 40 Erie Street, Suite 110, Cambridge, MA 02139, USA
| | - Kendra C. Foley
- BioNTech US Inc., 40 Erie Street, Suite 110, Cambridge, MA 02139, USA
| | - Michael S. Rooney
- BioNTech US Inc., 40 Erie Street, Suite 110, Cambridge, MA 02139, USA
| | | | - Richard B. Gaynor
- BioNTech US Inc., 40 Erie Street, Suite 110, Cambridge, MA 02139, USA
| | | | - Terri A. Addona
- BioNTech US Inc., 40 Erie Street, Suite 110, Cambridge, MA 02139, USA
| | - Vikram R. Juneja
- BioNTech US Inc., 40 Erie Street, Suite 110, Cambridge, MA 02139, USA
| |
Collapse
|
31
|
Wang Q. Building Personalized Cancer Therapeutics through Multi-Omics Assays and Bacteriophage-Eukaryotic Cell Interactions. Int J Mol Sci 2021; 22:ijms22189712. [PMID: 34575870 PMCID: PMC8468737 DOI: 10.3390/ijms22189712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022] Open
Abstract
Bacteriophage-eukaryotic cell interaction provides the biological foundation of Phage Display technology, which has been widely adopted in studies involving protein-protein and protein-peptide interactions, and it provides a direct link between the proteins and the DNA encoding them. Phage display has also facilitated the development of new therapeutic agents targeting personalized cancer mutations. Proteins encoded by mutant genes in cancers can be processed and presented on the tumor cell surface by human leukocyte antigen (HLA) molecules, and such mutant peptides are called Neoantigens. Neoantigens are naturally existing tumor markers presented on the cell surface. In clinical settings, the T-cell recognition of neoantigens is the foundation of cancer immunotherapeutics. This year, we utilized phage display to successfully develop the 1st antibody-based neoantigen targeting approach for next-generation personalized cancer therapeutics. In this article, we discussed the strategies for identifying neoantigens, followed by using phage display to create personalized cancer therapeutics-a complete pipeline for personalized cancer treatment.
Collapse
Affiliation(s)
- Qing Wang
- Complete Omics Inc., 1448 S. Rolling Rd, Baltimore, MD 21227, USA
| |
Collapse
|
32
|
Hwang MS, Miller MS, Thirawatananond P, Douglass J, Wright KM, Hsiue EHC, Mog BJ, Aytenfisu TY, Murphy MB, Aitana Azurmendi P, Skora AD, Pearlman AH, Paul S, DiNapoli SR, Konig MF, Bettegowda C, Pardoll DM, Papadopoulos N, Kinzler KW, Vogelstein B, Zhou S, Gabelli SB. Structural engineering of chimeric antigen receptors targeting HLA-restricted neoantigens. Nat Commun 2021; 12:5271. [PMID: 34489470 PMCID: PMC8421441 DOI: 10.1038/s41467-021-25605-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 08/16/2021] [Indexed: 01/17/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cells have emerged as a promising class of therapeutic agents, generating remarkable responses in the clinic for a subset of human cancers. One major challenge precluding the wider implementation of CAR therapy is the paucity of tumor-specific antigens. Here, we describe the development of a CAR targeting the tumor-specific isocitrate dehydrogenase 2 (IDH2) with R140Q mutation presented on the cell surface in complex with a common human leukocyte antigen allele, HLA-B*07:02. Engineering of the hinge domain of the CAR, as well as crystal structure-guided optimization of the IDH2R140Q-HLA-B*07:02-targeting moiety, enhances the sensitivity and specificity of CARs to enable targeting of this HLA-restricted neoantigen. This approach thus holds promise for the development and optimization of immunotherapies specific to other cancer driver mutations that are difficult to target by conventional means. Chimeric antigen receptor T cells in the clinic currently target cell-type-specific extracellular antigens on malignant cells. Here, authors engineer tumor-specific chimeric antigen receptor T cells that target human leukocyte antigen-presented neoantigens derived from mutant intracellular proteins.
Collapse
Affiliation(s)
- Michael S Hwang
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA.,Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Genentech, Inc., South San Francisco, CA, USA
| | - Michelle S Miller
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.,Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.,Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Puchong Thirawatananond
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacqueline Douglass
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA.,Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Katharine M Wright
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.,Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Emily Han-Chung Hsiue
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA.,Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brian J Mog
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA.,Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Tihitina Y Aytenfisu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - P Aitana Azurmendi
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew D Skora
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA.,Lilly Biotechnology Center, Eli Lilly and Co, San Diego, CA, USA
| | - Alexander H Pearlman
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA.,Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Suman Paul
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA.,Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah R DiNapoli
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA.,Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maximilian F Konig
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA.,Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chetan Bettegowda
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Drew M Pardoll
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nickolas Papadopoulos
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth W Kinzler
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bert Vogelstein
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, USA. .,Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA. .,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Shibin Zhou
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA. .,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Sandra B Gabelli
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
33
|
Bear AS, Blanchard T, Cesare J, Ford MJ, Richman LP, Xu C, Baroja ML, McCuaig S, Costeas C, Gabunia K, Scholler J, Posey AD, O'Hara MH, Smole A, Powell DJ, Garcia BA, Vonderheide RH, Linette GP, Carreno BM. Biochemical and functional characterization of mutant KRAS epitopes validates this oncoprotein for immunological targeting. Nat Commun 2021; 12:4365. [PMID: 34272369 PMCID: PMC8285372 DOI: 10.1038/s41467-021-24562-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
Activating RAS missense mutations are among the most prevalent genomic alterations observed in human cancers and drive oncogenesis in the three most lethal tumor types. Emerging evidence suggests mutant KRAS (mKRAS) may be targeted immunologically, but mKRAS epitopes remain poorly defined. Here we employ a multi-omics approach to characterize HLA class I-restricted mKRAS epitopes. We provide proteomic evidence of mKRAS epitope processing and presentation by high prevalence HLA class I alleles. Select epitopes are immunogenic enabling mKRAS-specific TCRαβ isolation. TCR transfer to primary CD8+ T cells confers cytotoxicity against mKRAS tumor cell lines independent of histologic origin, and the kinetics of lytic activity correlates with mKRAS peptide-HLA class I complex abundance. Adoptive transfer of mKRAS-TCR engineered CD8+ T cells leads to tumor eradication in a xenograft model of metastatic lung cancer. This study validates mKRAS peptides as bona fide epitopes facilitating the development of immune therapies targeting this oncoprotein. KRAS is commonly mutated at codon 12 in several cancer types, offering a unique opportunity for the development of neoantigen-targeted immunotherapy. Here the authors present a pipeline for the prediction, identification and validation of HLA class-I restricted mutant KRAS G12 peptides, leading to the generation of mutant KRAS-specific T cell receptors for adoptive T cell immunotherapy.
Collapse
Affiliation(s)
- Adham S Bear
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
| | - Tatiana Blanchard
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph Cesare
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Lee P Richman
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Chong Xu
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Miren L Baroja
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah McCuaig
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christina Costeas
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Khatuna Gabunia
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Scholler
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Avery D Posey
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Mark H O'Hara
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Anze Smole
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J Powell
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert H Vonderheide
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.,Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gerald P Linette
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Beatriz M Carreno
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
34
|
Duan Z, Ho M. T-Cell Receptor Mimic Antibodies for Cancer Immunotherapy. Mol Cancer Ther 2021; 20:1533-1541. [PMID: 34172530 DOI: 10.1158/1535-7163.mct-21-0115] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/18/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022]
Abstract
Antibody-based immunotherapies show clinical effectiveness in various cancer types. However, the target repertoire is limited to surface or soluble antigens, which are a relatively small percentage of the cancer proteome. Most proteins of the human proteome are intracellular. Short peptides from intracellular targets can be presented by MHC class I (MHC-I) molecules on cell surface, making them potential targets for cancer immunotherapy. Antibodies can be developed to target these peptide/MHC complexes, similar to the recognition of such complexes by the T-cell receptor (TCR). These antibodies are referred to as T-cell receptor mimic (TCRm) or TCR-like antibodies. Ongoing preclinical and clinical studies will help us understand their mechanisms of action and selection of target epitopes for immunotherapy. The present review will summarize and discuss the selection of intracellular antigens, production of the peptide/MHC complexes, isolation of TCRm antibodies for therapeutic applications, limitations of TCRm antibodies, and possible ways to advance TCRm antibody-based approaches into the clinic.
Collapse
Affiliation(s)
- Zhijian Duan
- Antibody Engineering Program, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Mitchell Ho
- Antibody Engineering Program, Center for Cancer Research, NCI, NIH, Bethesda, Maryland. .,Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| |
Collapse
|
35
|
Hao Q, Wei P, Shu Y, Zhang YG, Xu H, Zhao JN. Improvement of Neoantigen Identification Through Convolution Neural Network. Front Immunol 2021; 12:682103. [PMID: 34113354 PMCID: PMC8186784 DOI: 10.3389/fimmu.2021.682103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/05/2021] [Indexed: 02/05/2023] Open
Abstract
Accurate prediction of neoantigens and the subsequent elicited protective anti-tumor response are particularly important for the development of cancer vaccine and adoptive T-cell therapy. However, current algorithms for predicting neoantigens are limited by in vitro binding affinity data and algorithmic constraints, inevitably resulting in high false positives. In this study, we proposed a deep convolutional neural network named APPM (antigen presentation prediction model) to predict antigen presentation in the context of human leukocyte antigen (HLA) class I alleles. APPM is trained on large mass spectrometry (MS) HLA-peptides datasets and evaluated with an independent MS benchmark. Results show that APPM outperforms the methods recommended by the immune epitope database (IEDB) in terms of positive predictive value (PPV) (0.40 vs. 0.22), which will further increase after combining these two approaches (PPV = 0.51). We further applied our model to the prediction of neoantigens from consensus driver mutations and identified 16,000 putative neoantigens with hallmarks of 'drivers'.
Collapse
Affiliation(s)
- Qing Hao
- College of Pharmaceutical Sciences, Southwest Medical University, Luzhou, China
| | - Ping Wei
- Sichuan Center for Translational Medicine of Traditional Chinese Medicine, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Geoherbs System Engineering Technology Research Center of Chinese Medicine, Sichuan Provincial Key Laboratory of Quality Evaluation of Traditional Chinese Medicine and Innovative Chinese Medicine Research, Institute of Translational Pharmacology of Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Yang Shu
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yi-Guan Zhang
- College of Pharmaceutical Sciences, Southwest Medical University, Luzhou, China.,Sichuan Center for Translational Medicine of Traditional Chinese Medicine, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Geoherbs System Engineering Technology Research Center of Chinese Medicine, Sichuan Provincial Key Laboratory of Quality Evaluation of Traditional Chinese Medicine and Innovative Chinese Medicine Research, Institute of Translational Pharmacology of Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Heng Xu
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jun-Ning Zhao
- Sichuan Center for Translational Medicine of Traditional Chinese Medicine, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Geoherbs System Engineering Technology Research Center of Chinese Medicine, Sichuan Provincial Key Laboratory of Quality Evaluation of Traditional Chinese Medicine and Innovative Chinese Medicine Research, Institute of Translational Pharmacology of Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| |
Collapse
|
36
|
Gupta RG, Li F, Roszik J, Lizée G. Exploiting Tumor Neoantigens to Target Cancer Evolution: Current Challenges and Promising Therapeutic Approaches. Cancer Discov 2021; 11:1024-1039. [PMID: 33722796 PMCID: PMC8102318 DOI: 10.1158/2159-8290.cd-20-1575] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022]
Abstract
Immunotherapeutic manipulation of the antitumor immune response offers an attractive strategy to target genomic instability in cancer. A subset of tumor-specific somatic mutations can be translated into immunogenic and HLA-bound epitopes called neoantigens, which can induce the activation of helper and cytotoxic T lymphocytes. However, cancer immunoediting and immunosuppressive mechanisms often allow tumors to evade immune recognition. Recent evidence also suggests that the tumor neoantigen landscape extends beyond epitopes originating from nonsynonymous single-nucleotide variants in the coding exome. Here we review emerging approaches for identifying, prioritizing, and immunologically targeting personalized neoantigens using polyvalent cancer vaccines and T-cell receptor gene therapy. SIGNIFICANCE: Several major challenges currently impede the clinical efficacy of neoantigen-directed immunotherapy, such as the relative infrequency of immunogenic neoantigens, suboptimal potency and priming of de novo tumor-specific T cells, and tumor cell-intrinsic and -extrinsic mechanisms of immune evasion. A deeper understanding of these biological barriers could help facilitate the development of effective and durable immunotherapy for any type of cancer, including immunologically "cold" tumors that are otherwise therapeutically resistant.
Collapse
Affiliation(s)
- Ravi G Gupta
- Department of Hematology/Oncology, MD Anderson Cancer Center at Cooper, Camden, New Jersey.
| | - Fenge Li
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gregory Lizée
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
37
|
Pearlman AH, Hwang MS, Konig MF, Hsiue EHC, Douglass J, DiNapoli SR, Mog BJ, Bettegowda C, Pardoll DM, Gabelli SB, Papadopoulos N, Kinzler KW, Vogelstein B, Zhou S. Targeting public neoantigens for cancer immunotherapy. NATURE CANCER 2021; 2:487-497. [PMID: 34676374 PMCID: PMC8525885 DOI: 10.1038/s43018-021-00210-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
Several current immunotherapy approaches target private neoantigens derived from mutations that are unique to individual patients' tumors. However, immunotherapeutic agents can also be developed against public neoantigens derived from recurrent mutations in cancer driver genes. The latter approaches target proteins that are indispensable for tumor growth, and each therapeutic agent can be applied to numerous patients. Here we review the opportunities and challenges involved in the identification of suitable public neoantigen targets and the development of therapeutic agents targeting them.
Collapse
Affiliation(s)
- Alexander H Pearlman
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Michael S Hwang
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Genentech, Inc., South San Francisco, CA, USA
| | - Maximilian F Konig
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Division of Rheumatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emily Han-Chung Hsiue
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Jacqueline Douglass
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Sarah R DiNapoli
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Brian J Mog
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Chetan Bettegowda
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Drew M Pardoll
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Sandra B Gabelli
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicholas Papadopoulos
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth W Kinzler
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bert Vogelstein
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shibin Zhou
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.
| |
Collapse
|
38
|
Wang P, Chen Y, Wang C. Beyond Tumor Mutation Burden: Tumor Neoantigen Burden as a Biomarker for Immunotherapy and Other Types of Therapy. Front Oncol 2021; 11:672677. [PMID: 33996601 PMCID: PMC8117238 DOI: 10.3389/fonc.2021.672677] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/07/2021] [Indexed: 02/05/2023] Open
Abstract
Immunotherapy has significantly improved the clinical outcome of patients with cancer. However, the immune response rate varies greatly, possibly due to lack of effective biomarkers that can be used to distinguish responders from non-responders. Recently, clinical studies have associated high tumor neoantigen burden (TNB) with improved outcomes in patients treated with immunotherapy. Therefore, TNB has emerged as a biomarker for immunotherapy and other types of therapy. In the present review, the potential application of TNB as a biomarker was evaluated. The methods of neoantigen prediction were summarized and the mechanisms involved in TNB were investigated. The impact of high TNB and increased number of infiltrating immune cells on the efficacy of immunotherapy was also addressed. Finally, the future challenges of TNB were discussed.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Biotherapy, Cancer Center, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Yueyun Chen
- Department of Biotherapy, Cancer Center, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Chun Wang
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
39
|
Hsiue EHC, Wright KM, Douglass J, Hwang MS, Mog BJ, Pearlman AH, Paul S, DiNapoli SR, Konig MF, Wang Q, Schaefer A, Miller MS, Skora AD, Azurmendi PA, Murphy MB, Liu Q, Watson E, Li Y, Pardoll DM, Bettegowda C, Papadopoulos N, Kinzler KW, Vogelstein B, Gabelli SB, Zhou S. Targeting a neoantigen derived from a common TP53 mutation. Science 2021; 371:eabc8697. [PMID: 33649166 PMCID: PMC8208645 DOI: 10.1126/science.abc8697] [Citation(s) in RCA: 195] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/30/2020] [Accepted: 02/05/2021] [Indexed: 12/12/2022]
Abstract
TP53 (tumor protein p53) is the most commonly mutated cancer driver gene, but drugs that target mutant tumor suppressor genes, such as TP53, are not yet available. Here, we describe the identification of an antibody highly specific to the most common TP53 mutation (R175H, in which arginine at position 175 is replaced with histidine) in complex with a common human leukocyte antigen-A (HLA-A) allele on the cell surface. We describe the structural basis of this specificity and its conversion into an immunotherapeutic agent: a bispecific single-chain diabody. Despite the extremely low p53 peptide-HLA complex density on the cancer cell surface, the bispecific antibody effectively activated T cells to lyse cancer cells that presented the neoantigen in vitro and in mice. This approach could in theory be used to target cancers containing mutations that are difficult to target in conventional ways.
Collapse
Affiliation(s)
- Emily Han-Chung Hsiue
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Katharine M Wright
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Jacqueline Douglass
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michael S Hwang
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Brian J Mog
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Alexander H Pearlman
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Suman Paul
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sarah R DiNapoli
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Maximilian F Konig
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Qing Wang
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Complete Omics, Baltimore, MD 21227, USA
| | - Annika Schaefer
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michelle S Miller
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Andrew D Skora
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - P Aitana Azurmendi
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | | | - Qiang Liu
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Evangeline Watson
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yana Li
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Drew M Pardoll
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Chetan Bettegowda
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, MD 21205, USA
| | - Nickolas Papadopoulos
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kenneth W Kinzler
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Bert Vogelstein
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sandra B Gabelli
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shibin Zhou
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| |
Collapse
|
40
|
Douglass J, Hsiue EHC, Mog BJ, Hwang MS, DiNapoli SR, Pearlman AH, Miller MS, Wright KM, Azurmendi PA, Wang Q, Paul S, Schaefer A, Skora AD, Molin MD, Konig MF, Liu Q, Watson E, Li Y, Murphy MB, Pardoll DM, Bettegowda C, Papadopoulos N, Gabelli SB, Kinzler KW, Vogelstein B, Zhou S. Bispecific antibodies targeting mutant RAS neoantigens. Sci Immunol 2021; 6:6/57/eabd5515. [PMID: 33649101 DOI: 10.1126/sciimmunol.abd5515] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/01/2021] [Indexed: 12/18/2022]
Abstract
Mutations in the RAS oncogenes occur in multiple cancers, and ways to target these mutations has been the subject of intense research for decades. Most of these efforts are focused on conventional small-molecule drugs rather than antibody-based therapies because the RAS proteins are intracellular. Peptides derived from recurrent RAS mutations, G12V and Q61H/L/R, are presented on cancer cells in the context of two common human leukocyte antigen (HLA) alleles, HLA-A3 and HLA-A1, respectively. Using phage display, we isolated single-chain variable fragments (scFvs) specific for each of these mutant peptide-HLA complexes. The scFvs did not recognize the peptides derived from the wild-type form of RAS proteins or other related peptides. We then sought to develop an immunotherapeutic agent that was capable of killing cells presenting very low levels of these RAS-derived peptide-HLA complexes. Among many variations of bispecific antibodies tested, one particular format, the single-chain diabody (scDb), exhibited superior reactivity to cells expressing low levels of neoantigens. We converted the scFvs to this scDb format and demonstrated that they were capable of inducing T cell activation and killing of target cancer cells expressing endogenous levels of the mutant RAS proteins and cognate HLA alleles. CRISPR-mediated alterations of the HLA and RAS genes provided strong genetic evidence for the specificity of the scDbs. Thus, this approach could be applied to other common oncogenic mutations that are difficult to target by conventional means, allowing for more specific anticancer therapeutics.
Collapse
Affiliation(s)
- Jacqueline Douglass
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Emily Han-Chung Hsiue
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Brian J Mog
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michael S Hwang
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sarah R DiNapoli
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alexander H Pearlman
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michelle S Miller
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Katharine M Wright
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - P Aitana Azurmendi
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Qing Wang
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Complete Omics Inc., Baltimore, MD 21227, USA
| | - Suman Paul
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Annika Schaefer
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Andrew D Skora
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Marco Dal Molin
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Surgery, University of Maryland Medical Center, Baltimore, MD 21201, USA
| | - Maximilian F Konig
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Qiang Liu
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Evangeline Watson
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yana Li
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | - Drew M Pardoll
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Chetan Bettegowda
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Neurosurgery, Johns Hopkins University School of Medicine, MD 21205, USA
| | - Nickolas Papadopoulos
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sandra B Gabelli
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kenneth W Kinzler
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Bert Vogelstein
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shibin Zhou
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA. .,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| |
Collapse
|
41
|
Ferreira JA, Relvas-Santos M, Peixoto A, M N Silva A, Lara Santos L. Glycoproteogenomics: Setting the Course for Next-generation Cancer Neoantigen Discovery for Cancer Vaccines. GENOMICS, PROTEOMICS & BIOINFORMATICS 2021; 19:25-43. [PMID: 34118464 PMCID: PMC8498922 DOI: 10.1016/j.gpb.2021.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/25/2021] [Accepted: 03/01/2021] [Indexed: 12/24/2022]
Abstract
Molecular-assisted precision oncology gained tremendous ground with high-throughput next-generation sequencing (NGS), supported by robust bioinformatics. The quest for genomics-based cancer medicine set the foundations for improved patient stratification, while unveiling a wide array of neoantigens for immunotherapy. Upfront pre-clinical and clinical studies have successfully used tumor-specific peptides in vaccines with minimal off-target effects. However, the low mutational burden presented by many lesions challenges the generalization of these solutions, requiring the diversification of neoantigen sources. Oncoproteogenomics utilizing customized databases for protein annotation by mass spectrometry (MS) is a powerful tool toward this end. Expanding the concept toward exploring proteoforms originated from post-translational modifications (PTMs) will be decisive to improve molecular subtyping and provide potentially targetable functional nodes with increased cancer specificity. Walking through the path of systems biology, we highlight that alterations in protein glycosylation at the cell surface not only have functional impact on cancer progression and dissemination but also originate unique molecular fingerprints for targeted therapeutics. Moreover, we discuss the outstanding challenges required to accommodate glycoproteomics in oncoproteogenomics platforms. We envisage that such rationale may flag a rather neglected research field, generating novel paradigms for precision oncology and immunotherapy.
Collapse
Affiliation(s)
- José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto 4200-072, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto 4050-313, Portugal; Porto Comprehensive Cancer Center (P.ccc), Porto 4200-072, Portugal.
| | - Marta Relvas-Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto 4200-072, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto 4050-313, Portugal; REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Porto 4169-007, Portugal
| | - Andreia Peixoto
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto 4200-072, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto 4050-313, Portugal
| | - André M N Silva
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Porto 4169-007, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto 4200-072, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto 4050-313, Portugal; Porto Comprehensive Cancer Center (P.ccc), Porto 4200-072, Portugal
| |
Collapse
|
42
|
Jones HF, Molvi Z, Klatt MG, Dao T, Scheinberg DA. Empirical and Rational Design of T Cell Receptor-Based Immunotherapies. Front Immunol 2021; 11:585385. [PMID: 33569049 PMCID: PMC7868419 DOI: 10.3389/fimmu.2020.585385] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/04/2020] [Indexed: 01/04/2023] Open
Abstract
The use of T cells reactive with intracellular tumor-associated or tumor-specific antigens has been a promising strategy for cancer immunotherapies in the past three decades, but the approach has been constrained by a limited understanding of the T cell receptor's (TCR) complex functions and specificities. Newer TCR and T cell-based approaches are in development, including engineered adoptive T cells with enhanced TCR affinities, TCR mimic antibodies, and T cell-redirecting bispecific agents. These new therapeutic modalities are exciting opportunities by which TCR recognition can be further exploited for therapeutic benefit. In this review we summarize the development of TCR-based therapeutic strategies and focus on balancing efficacy and potency versus specificity, and hence, possible toxicity, of these powerful therapeutic modalities.
Collapse
Affiliation(s)
- Heather F. Jones
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medicine, New York, NY, United States
| | - Zaki Molvi
- Weill Cornell Medicine, New York, NY, United States
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Martin G. Klatt
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Tao Dao
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - David A. Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
43
|
Bear AS, Vonderheide RH, O'Hara MH. Challenges and Opportunities for Pancreatic Cancer Immunotherapy. Cancer Cell 2020; 38:788-802. [PMID: 32946773 PMCID: PMC7738380 DOI: 10.1016/j.ccell.2020.08.004] [Citation(s) in RCA: 309] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is among the most immune-resistant tumor types. Its unique genomic landscape shaped by oncogenic drivers promotes immune suppression from the earliest stages of tumor inception to subvert adaptive T cell immunity. Single-agent immune modulators have thus far proven clinically ineffective, and multi-modal therapies targeting mechanisms of immunotherapy resistance are likely needed. Here, we review novel immunotherapy strategies currently under investigation to (1) confer antigen specificity, (2) enhance T cell effector function, and (3) neutralize immunosuppressive elements within the tumor microenvironment that may be rationally combined to untangle the web of immune resistance in PDA and other tumors.
Collapse
Affiliation(s)
- Adham S Bear
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert H Vonderheide
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
| | - Mark H O'Hara
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA. mark.o'
| |
Collapse
|
44
|
Stopfer LE, Mesfin JM, Joughin BA, Lauffenburger DA, White FM. Multiplexed relative and absolute quantitative immunopeptidomics reveals MHC I repertoire alterations induced by CDK4/6 inhibition. Nat Commun 2020; 11:2760. [PMID: 32488085 PMCID: PMC7265461 DOI: 10.1038/s41467-020-16588-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/13/2020] [Indexed: 12/19/2022] Open
Abstract
Peptides bound to class I major histocompatibility complexes (MHC) play a critical role in immune cell recognition and can trigger an antitumor immune response in cancer. Surface MHC levels can be modulated by anticancer agents, altering immunity. However, understanding the peptide repertoire's response to treatment remains challenging and is limited by quantitative mass spectrometry-based strategies lacking normalization controls. We describe an experimental platform that leverages recombinant heavy isotope-coded peptide MHCs (hipMHCs) and multiplex isotope tagging to quantify peptide repertoire alterations using low sample input. HipMHCs improve quantitative accuracy of peptide repertoire changes by normalizing for variation across analyses and enable absolute quantification using internal calibrants to determine copies per cell of MHC antigens, which can inform immunotherapy design. Applying this platform in melanoma cell lines to profile the immunopeptidome response to CDK4/6 inhibition and interferon-γ - known modulators of antigen presentation - uncovers treatment-specific alterations, connecting the intracellular response to extracellular immune presentation.
Collapse
Affiliation(s)
- Lauren E Stopfer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Joshua M Mesfin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Brian A Joughin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Douglas A Lauffenburger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Forest M White
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|