1
|
Liu Q, Guan Y, Li S. Programmed death receptor (PD-)1/PD-ligand (L)1 in urological cancers : the "all-around warrior" in immunotherapy. Mol Cancer 2024; 23:183. [PMID: 39223527 PMCID: PMC11367915 DOI: 10.1186/s12943-024-02095-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Programmed death receptor-1 (PD-1) and its ligand, programmed death ligand-1 (PD-L1) are essential molecules that are key in modulating immune responses. PD-L1 is constitutively expressed on various immune cells, epithelial cells, and cancer cells, where it functions as a co-stimulatory molecule capable of impairing T-cell mediated immune responses. Upon binding to PD-1 on activated T-cells, the PD-1/PD-L1 interaction triggers signaling pathways that can induce T-cell apoptosis or anergy, thereby facilitating the immune escape of tumors. In urological cancers, including bladder cancer (BCa), renal cell carcinoma (RCC), and prostate cancer (PCa), the upregulation of PD-L1 has been demonstrated. It is linked to poor prognosis and enhanced tumor immune evasion. Recent studies have highlighted the significant role of the PD-1/PD-L1 axis in the immune escape mechanisms of urological cancers. The interaction between PD-L1 and PD-1 on T-cells further contributes to immunosuppression by inhibiting T-cell activation and proliferation. Clinical applications of PD-1/PD-L1 checkpoint inhibitors have shown promising efficacy in treating advanced urological cancers, significantly improving patient outcomes. However, resistance to these therapies, either intrinsic or acquired, remains a significant challenge. This review aims to provide a comprehensive overview of the role of the PD-1/PD-L1 signaling pathway in urological cancers. We summarize the regulatory mechanism underlying PD-1 and PD-L1 expression and activity, including genetic, epigenetic, post-transcriptional, and post-translational modifications. Additionally, we discuss current clinical research on PD-1/PD-L1 inhibitors, their therapeutic potential, and the challenges associated with resistance. Understanding these mechanisms is crucial for developing new strategies to overcome therapeutic limitations and enhance the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Urology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China
| | - Yujing Guan
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, Liaoning, 110042, China
- Institute of Cancer Medicine, Faculty of Medicine, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning Province, 116024, China
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China.
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, Liaoning, 110042, China.
- Institute of Cancer Medicine, Faculty of Medicine, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning Province, 116024, China.
| |
Collapse
|
2
|
Ertl I, Shariat SF, Berger W, Englinger B. Preclinical models for bladder cancer therapy research. Curr Opin Urol 2024; 34:244-250. [PMID: 38630912 PMCID: PMC11155278 DOI: 10.1097/mou.0000000000001182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
PURPOSE OF REVIEW Bladder cancer (BC) is a highly heterogenous disease comprising tumours of various molecular subtypes and histologic variants. This heterogeneity represents a major challenge for the development of novel therapeutics. Preclinical models that closely mimic in vivo tumours and reflect their diverse biology are indispensable for the identification of therapies with specific activity in various BC subtypes. In this review, we summarize efforts and progress made in this context during the last 24 months. RECENT FINDINGS In recent years, one main focus was laid on the development of patient-derived BC models. Patient-derived organoids (PDOs) and patient-derived xenografts (PDXs) were demonstrated to widely recapitulate the molecular and histopathological characteristics, as well as the drug response profiles of the corresponding tumours of origin. These models, thus, represent promising tools for drug development and personalized medicine. Besides PDXs, syngenic in vivo models are of growing importance. Since these models are generated using immunocompetent hosts, they can, amongst others, be used to develop novel immunotherapeutics and to evaluate the impact of the immune system on drug response and resistance. SUMMARY In the past two years, various in vivo and in vitro models closely recapitulating the biology and heterogeneity of human bladder tumours were developed.
Collapse
Affiliation(s)
- Iris Ertl
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Shahrokh F. Shariat
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Urology, Weill Cornell Medical College, New York, New York
- Department of Urology, University of Texas Southwestern, Dallas, Texas, USA
- Department of Urology, Second Faculty of Medicine, Charles University, Prag, Czech Republic
- Karl Landsteiner Institute of Urology and Andrology, Vienna, Austria
- Research Center for Evidence Medicine, Urology Department Tabriz University of Medical Sciences, Tabriz, Iran
- Division of Urology, Department of Special Surgery, Jordan University Hospital, The University of Jordan, Amman, Jordan
| | - Walter Berger
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Bernard Englinger
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Yu M, Peng J, Lu Y, Li S, Ding K. Silencing immune-infiltrating biomarker CCDC80 inhibits malignant characterization and tumor formation in gastric cancer. BMC Cancer 2024; 24:724. [PMID: 38872096 PMCID: PMC11170897 DOI: 10.1186/s12885-024-12451-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024] Open
Abstract
OBJECTIVE Tumor immune infiltration leads to poor prognosis of gastric cancer patients and seriously affects the life quality of gastric cancer patients. This study was based on bioinformatics to screen prognostic biomarkers in patients with high degree of immune invasion of gastric cancer. Meanwhile, the action of biomarker CCDC80 was explored in gastric cancer by cell and tumorigenesis experiments, to provide reference for the cure of gastric cancer patients. METHODS Data sets and clinical massage on gastric cancer were collected from TCGA database and GEO database. ConsensusClusterPlus was used to cluster gastric cancer patients based on the 28 immune cells infiltration in ssGSEA. R "Limma" package was applied to analyze differential mRNAs between Cluster 1 and Cluster 2. Differential expression genes were screened by single factor analysis. Stemness markers (SERPINF1, DCN, CCDC80, FBLN5, SPARCL1, CCL14, DPYSL3) were identified for differential expression genes. Prognostic value of CCDC80 was evaluated in gastric cancer. Differences in genomic mutation and tumor microenvironment immune infiltration were assessed between high or low CCDC80. Finally, gastric cancer cells (HGC-27 and MKN-45) were selected to evaluate the action of silencing CCDC80 on malignant characterization, macrophage polarization, and tumor formation. RESULTS Bioinformatics analysis showed that CCDC80, as a stemness marker, was significantly overexpressed in gastric cancer. CCDC80 was also related to the degree of gastric cancer immune invasion. CCDC80 was up-expressed in cells of gastric cancer. Silencing CCDC80 inhibited malignant characterization and subcutaneous tumor formation of gastric cancer cells. High expression of CCDC80 was positive correspondence with immune invasion. Silencing CCDC80 inhibited M2 polarization and promoted M1 polarization in tumor tissues. In addition, gastric cancer patients were likely to have mutations in CDH1, ACTRT1, GANAB, and CDH10 genes in the High-CCDC80 group. CONCLUSION Silencing CCDC80, a prognostic biomarker in patients with immune invasion of gastric cancer, could effectively inhibit the malignant characterization, M2 polarization, and tumor formation of gastric cancer.
Collapse
Affiliation(s)
- MeiHong Yu
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
| | - Jingxuan Peng
- Department of Urology, First Affiliated Hospital of Jishou University, Jishou, Hunan, China
| | - Yanxu Lu
- Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China
| | - Sha Li
- Department of Burns and Reconstructive Surgery, Xiangya Hospital of Central South University, Changsha, China
| | - Ke Ding
- Department of General Surgery Thyroid Specialty, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
4
|
Qin S, Xie B, Wang Q, Yang R, Sun J, Hu C, Liu S, Tao Y, Xiao D. New insights into immune cells in cancer immunotherapy: from epigenetic modification, metabolic modulation to cell communication. MedComm (Beijing) 2024; 5:e551. [PMID: 38783893 PMCID: PMC11112485 DOI: 10.1002/mco2.551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 05/25/2024] Open
Abstract
Cancer is one of the leading causes of death worldwide, and more effective ways of attacking cancer are being sought. Cancer immunotherapy is a new and effective therapeutic method after surgery, radiotherapy, chemotherapy, and targeted therapy. Cancer immunotherapy aims to kill tumor cells by stimulating or rebuilding the body's immune system, with specific efficiency and high safety. However, only few tumor patients respond to immunotherapy and due to the complex and variable characters of cancer immune escape, the behavior and regulatory mechanisms of immune cells need to be deeply explored from more dimensions. Epigenetic modifications, metabolic modulation, and cell-to-cell communication are key factors in immune cell adaptation and response to the complex tumor microenvironment. They collectively determine the state and function of immune cells through modulating gene expression, changing in energy and nutrient demands. In addition, immune cells engage in complex communication networks with other immune components, which are mediated by exosomes, cytokines, and chemokines, and are pivotal in shaping the tumor progression and therapeutic response. Understanding the interactions and combined effects of such multidimensions mechanisms in immune cell modulation is important for revealing the mechanisms of immunotherapy failure and developing new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Sha Qin
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Department of PathologySchool of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Bin Xie
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Qingyi Wang
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Department of PathologySchool of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Rui Yang
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Department of PathologySchool of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Jingyue Sun
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Department of PathologySchool of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Chaotao Hu
- Regenerative Medicine, Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Shuang Liu
- Department of OncologyInstitute of Medical SciencesNational Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha, Hunan, China. UniversityChangshaHunanChina
| | - Yongguang Tao
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
- NHC Key Laboratory of CarcinogenesisCancer Research Institute and School of Basic MedicineCentral South universityChangshaHunanChina
| | - Desheng Xiao
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Department of PathologySchool of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaHunanChina
| |
Collapse
|
5
|
Fu C, Tong W, Yu L, Miao Y, Wei Q, Yu Z, Chen B, Wei M. When will the immune-stimulating antibody conjugates (ISACs) be transferred from bench to bedside? Pharmacol Res 2024; 203:107160. [PMID: 38547937 DOI: 10.1016/j.phrs.2024.107160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/17/2024] [Accepted: 03/25/2024] [Indexed: 04/30/2024]
Abstract
Immunostimulatory antibody conjugates (ISACs) as a promising new generation of targeted therapeutic antibody-drug conjugates (ADCs), that not only activate innate immunity but also stimulate adaptive immunity, providing a dual therapeutic effect to eliminate tumor cells. However, several ISACs are still in the early stages of clinical development or have already failed. Therefore, it is crucial to design ISACs more effectively to overcome their limitations, including high toxicity, strong immunogenicity, long development time, and poor pharmacokinetics. This review aims to summarize the composition and function of ISACs, incorporating current design considerations and ongoing clinical trials. Additionally, the review delves into the current issues with ISACs and potential solutions, such as adjusting the drug-antibody ratio (DAR) to improve the bioavailability of ISACs. By leveraging the affinity and bioavailability-enhancing properties of bispecific antibodies, the utility between antibodies and immunostimulatory agents can be balanced. Commonly used immunostimulatory agents may induce systemic immune reactions, and BTK (Bruton's tyrosine kinase) inhibitors can regulate immunogenicity. Finally, the concept of grafting ADC's therapeutic principles is simple, but the combination of payload, linker, and targeted functional molecules is not a simple permutation and combination problem. The development of conjugate drugs faces more complex pharmacological and toxicological issues. Standing on the shoulders of ADC, the development and application scenarios of ISAC are endowed with broader space.
Collapse
Affiliation(s)
- Chen Fu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, PR China
| | - Weiwei Tong
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang 110122, PR China
| | - Lifeng Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, PR China
| | - Yuxi Miao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, PR China
| | - Qian Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, PR China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, PR China.
| | - Bo Chen
- Department of Breast Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Shenyang 110122, PR China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
6
|
Gouez M, Rébillard A, Thomas A, Beaumel S, Matera EL, Gouraud E, Orfila L, Martin B, Pérol O, Chaveroux C, Chirico EN, Dumontet C, Fervers B, Pialoux V. Combined effects of exercise and immuno-chemotherapy treatments on tumor growth in MC38 colorectal cancer-bearing mice. Front Immunol 2024; 15:1368550. [PMID: 38426110 PMCID: PMC10902641 DOI: 10.3389/fimmu.2024.1368550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Acute exercise induces transient modifications in the tumor microenvironment and has been linked to reduced tumor growth along with increased infiltration of immune cells within the tumor in mouse models. In this study, we aimed to evaluate the impact of acute exercise before treatment administration on tumor growth in a mice model of MC38 colorectal cancer receiving an immune checkpoint inhibitor (ICI) and chemotherapy. Six-week-old mice injected with colorectal cancer cells (MC38) were randomized in 4 groups: control (CTRL), immuno-chemotherapy (TRT), exercise (EXE) and combined intervention (TRT/EXE). Both TRT and TRT-EXE received ICI: anti-PD1-1 (1 injection/week) and capecitabine + oxaliplatin (5 times a week) for 1 week (experimentation 1), 3 weeks (experimentation 2). TRT-EXE and EXE groups were submitted to 50 minutes of treadmill exercise before each treatment administration. Over the protocol duration, tumor size has been monitored daily. Tumor growth and microenvironment parameters were measured after the intervention on Day 7 (D7) and Day 16 (D16). From day 4 to day 7, tumor volumes decreased in the EXE/TRT group while remaining stable in the TRT group (p=0.0213). From day 7 until day 16 tumor volume decreased with no significant difference between TRT and TRT/EXE. At D7 the TRT/EXE group exhibited a higher total infiltrate T cell (p=0.0118) and CD8+ cytotoxic T cell (p=0.0031). At D16, tumor marker of apoptosis, vascular integrity and inflammation were not significantly different between TRT and TRT/EXE. Our main result was that acute exercise before immuno-chemotherapy administration significantly decreased early-phase tumor growth (D0 to D4). Additionally, exercise led to immune cell infiltration changes during the first week after exercise, while no significant molecular alterations in the tumor were observed 3 weeks after exercise.
Collapse
Affiliation(s)
- Manon Gouez
- Prevention Cancer Environment Department, Léon Bérard Cancer Center, Lyon, France
- Team Atherosclerosis, Thrombosis and Physical Activity, LIBM EA7424, Université Claude Bernard Lyon 1, Université de Lyon, Faculty of Medicine, Lyon, France
- Inserm, U1296 Unit, “Radiation: Defense, Health and Environment”, Centre Léon Bérard, Lyon, France
| | - Amélie Rébillard
- Movement, Sport, and Health Sciences Laboratory, EA 1274, Université Rennes 2, ENS Rennes, Bruz, France
- Institut Universitaire de France, Paris, France
| | - Amandine Thomas
- Team Atherosclerosis, Thrombosis and Physical Activity, LIBM EA7424, Université Claude Bernard Lyon 1, Université de Lyon, Faculty of Medicine, Lyon, France
| | - Sabine Beaumel
- CRCL INSERM 1052/CNRS 5286, University of Lyon, Hospices Civils de Lyon, Lyon, France
| | - Eva-Laure Matera
- CRCL INSERM 1052/CNRS 5286, University of Lyon, Hospices Civils de Lyon, Lyon, France
| | - Etienne Gouraud
- Team Atherosclerosis, Thrombosis and Physical Activity, LIBM EA7424, Université Claude Bernard Lyon 1, Université de Lyon, Faculty of Medicine, Lyon, France
| | - Luz Orfila
- Movement, Sport, and Health Sciences Laboratory, EA 1274, Université Rennes 2, ENS Rennes, Bruz, France
| | - Brice Martin
- Movement, Sport, and Health Sciences Laboratory, EA 1274, Université Rennes 2, ENS Rennes, Bruz, France
| | - Olivia Pérol
- Prevention Cancer Environment Department, Léon Bérard Cancer Center, Lyon, France
- Inserm, U1296 Unit, “Radiation: Defense, Health and Environment”, Centre Léon Bérard, Lyon, France
| | - Cédric Chaveroux
- CRCL INSERM 1052/CNRS 5286, University of Lyon, Hospices Civils de Lyon, Lyon, France
| | - Erica N. Chirico
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Charles Dumontet
- CRCL INSERM 1052/CNRS 5286, University of Lyon, Hospices Civils de Lyon, Lyon, France
| | - Béatrice Fervers
- Prevention Cancer Environment Department, Léon Bérard Cancer Center, Lyon, France
- Inserm, U1296 Unit, “Radiation: Defense, Health and Environment”, Centre Léon Bérard, Lyon, France
| | - Vincent Pialoux
- Team Atherosclerosis, Thrombosis and Physical Activity, LIBM EA7424, Université Claude Bernard Lyon 1, Université de Lyon, Faculty of Medicine, Lyon, France
| |
Collapse
|
7
|
Xiong Z, Chan SL, Zhou J, Vong JSL, Kwong TT, Zeng X, Wu H, Cao J, Tu Y, Feng Y, Yang W, Wong PPC, Si-Tou WWY, Liu X, Wang J, Tang W, Liang Z, Lu J, Li KM, Low JT, Chan MWY, Leung HHW, Chan AWH, To KF, Yip KYL, Lo YMD, Sung JJY, Cheng ASL. Targeting PPAR-gamma counteracts tumour adaptation to immune-checkpoint blockade in hepatocellular carcinoma. Gut 2023; 72:1758-1773. [PMID: 37019619 PMCID: PMC10423534 DOI: 10.1136/gutjnl-2022-328364] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/21/2023] [Indexed: 04/07/2023]
Abstract
OBJECTIVE Therapy-induced tumour microenvironment (TME) remodelling poses a major hurdle for cancer cure. As the majority of patients with hepatocellular carcinoma (HCC) exhibits primary or acquired resistance to antiprogrammed cell death (ligand)-1 (anti-PD-[L]1) therapies, we aimed to investigate the mechanisms underlying tumour adaptation to immune-checkpoint targeting. DESIGN Two immunotherapy-resistant HCC models were generated by serial orthotopic implantation of HCC cells through anti-PD-L1-treated syngeneic, immunocompetent mice and interrogated by single-cell RNA sequencing (scRNA-seq), genomic and immune profiling. Key signalling pathway was investigated by lentiviral-mediated knockdown and pharmacological inhibition, and further verified by scRNA-seq analysis of HCC tumour biopsies from a phase II trial of pembrolizumab (NCT03419481). RESULTS Anti-PD-L1-resistant tumours grew >10-fold larger than parental tumours in immunocompetent but not immunocompromised mice without overt genetic changes, which were accompanied by intratumoral accumulation of myeloid-derived suppressor cells (MDSC), cytotoxic to exhausted CD8+ T cell conversion and exclusion. Mechanistically, tumour cell-intrinsic upregulation of peroxisome proliferator-activated receptor-gamma (PPARγ) transcriptionally activated vascular endothelial growth factor-A (VEGF-A) production to drive MDSC expansion and CD8+ T cell dysfunction. A selective PPARγ antagonist triggered an immune suppressive-to-stimulatory TME conversion and resensitised tumours to anti-PD-L1 therapy in orthotopic and spontaneous HCC models. Importantly, 40% (6/15) of patients with HCC resistant to pembrolizumab exhibited tumorous PPARγ induction. Moreover, higher baseline PPARγ expression was associated with poorer survival of anti-PD-(L)1-treated patients in multiple cancer types. CONCLUSION We uncover an adaptive transcriptional programme by which tumour cells evade immune-checkpoint targeting via PPARγ/VEGF-A-mediated TME immunosuppression, thus providing a strategy for counteracting immunotherapeutic resistance in HCC.
Collapse
Affiliation(s)
- Zhewen Xiong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Stephen Lam Chan
- Department of Clinical Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jingying Zhou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Joaquim S L Vong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Tsz Tung Kwong
- Department of Clinical Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Xuezhen Zeng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Haoran Wu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jianquan Cao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yalin Tu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu Feng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Weiqin Yang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Patrick Pak-Chun Wong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Willis Wai-Yiu Si-Tou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyu Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jing Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenshu Tang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhixian Liang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiahuan Lu
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Man Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jie-Ting Low
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
| | - Michael Wing-Yan Chan
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
| | - Howard H W Leung
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Anthony W H Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka-Fai To
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Kevin Yuk-Lap Yip
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Yuk Ming Dennis Lo
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Joseph Jao-Yiu Sung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Alfred Sze-Lok Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
8
|
Nahar S, Huang Y, Nagy BA, Zebala JA, Maeda DY, Rudloff U, Oppenheim JJ, Yang D. Regression and Eradication of Triple-Negative Breast Carcinoma in 4T1 Mouse Model by Combination Immunotherapies. Cancers (Basel) 2023; 15:cancers15082366. [PMID: 37190294 DOI: 10.3390/cancers15082366] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Triple-negative breast carcinoma (TNBC) is one of the most aggressive types of solid-organ cancers. While immune checkpoint blockade (ICB) therapy has significantly improved outcomes in certain types of solid-organ cancers, patients with immunologically cold TNBC are afforded only a modest gain in survival by the addition of ICB to systemic chemotherapy. Thus, it is urgently needed to develop novel effective therapeutic approaches for TNBC. Utilizing the 4T1 murine model of TNBC, we developed a novel combination immunotherapeutic regimen consisting of intratumoral delivery of high-mobility group nucleosome binding protein 1 (HMGN1), TLR2/6 ligand fibroblast-stimulating lipopeptide (FSL-1), TLR7/8 agonist (R848/resiquimod), and CTLA-4 blockade. We also investigated the effect of adding SX682, a small-molecule inhibitor of CXCR1/2 known to reduce MDSC trafficking to tumor microenvironment, to our therapeutic approach. 4T1-bearing mice responded with significant tumor regression and tumor elimination to our therapeutic combination regimen. Mice with complete tumor regressions did not recur and became long-term survivors. Treatment with HMGN1, FSL-1, R848, and anti-CTLA4 antibody increased the number of infiltrating CD4+ and CD8+ effector/memory T cells in both tumors and draining lymph nodes and triggered the generation of 4T1-specific cytotoxic T lymphocytes (CTLs) in the draining lymph nodes. Thus, we developed a potentially curative immunotherapeutic regimen consisting of HMGN1, FSL-1, R848, plus a checkpoint inhibitor for TNBC, which does not rely on the administration of chemotherapy, radiation, or exogenous tumor-associated antigen(s).
Collapse
Affiliation(s)
- Saifun Nahar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Yue Huang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Bethany A Nagy
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | | | - Udo Rudloff
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Joost J Oppenheim
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - De Yang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
9
|
Denis M, Mathé D, Micoud M, Choffour PA, Grasselly C, Matera EL, Dumontet C. Impact of mouse model tumor implantation site on acquired resistance to anti-PD-1 immune checkpoint therapy. Front Immunol 2023; 13:1011943. [PMID: 36703964 PMCID: PMC9872099 DOI: 10.3389/fimmu.2022.1011943] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction The use of tumor subcutaneous (SC) implantations rather than orthotopic sites is likely to induce a significant bias, in particular, in the field of immunotherapy. Methods In this study, we developed and characterized MC38 models, implanted subcutaneously and orthotopically, which were either sensitive or rendered resistant to anti-PD1 therapy. We characterized the tumor immune infiltrate by flow cytometry at baseline and after treatment. Results and Discussion Our results demonstrate several differences between SC and orthotopic models at basal state, which tend to become similar after therapy. These results emphasize the need to take into account tumor implantation sites when performing preclinical studies with immunotherapeutic agents.
Collapse
Affiliation(s)
- Morgane Denis
- Univ Lyon, Université Claude Bernard Lyon, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France,R&D Department, Antineo, Lyon, France
| | | | - Manon Micoud
- Univ Lyon, Université Claude Bernard Lyon, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | | | - Chloé Grasselly
- Univ Lyon, Université Claude Bernard Lyon, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Eva-Laure Matera
- Univ Lyon, Université Claude Bernard Lyon, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Charles Dumontet
- Univ Lyon, Université Claude Bernard Lyon, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France,Hematology Department, Hospices Civils de Lyon, Lyon, France,*Correspondence: Charles Dumontet,
| |
Collapse
|
10
|
Feng F, Zhong YX, Huang JH, Lin FX, Zhao PP, Mai Y, Wei W, Zhu HC, Xu ZP. Identifying stage-associated hub genes in bladder cancer via weighted gene co-expression network and robust rank aggregation analyses. Medicine (Baltimore) 2022; 101:e32318. [PMID: 36595851 PMCID: PMC9794320 DOI: 10.1097/md.0000000000032318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/29/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Bladder cancer (BC) is among the most frequent cancers globally. Although substantial efforts have been put to understand its pathogenesis, its underlying molecular mechanisms have not been fully elucidated. METHODS The robust rank aggregation approach was adopted to integrate 4 eligible bladder urothelial carcinoma microarray datasets from the Gene Expression Omnibus. Differentially expressed gene sets were identified between tumor samples and equivalent healthy samples. We constructed gene co-expression networks using weighted gene co-expression network to explore the alleged relationship between BC clinical characteristics and gene sets, as well as to identify hub genes. We also incorporated the weighted gene co-expression network and robust rank aggregation to screen differentially expressed genes. RESULTS CDH11, COL6A3, EDNRA, and SERPINF1 were selected from the key module and validated. Based on the results, significant downregulation of the hub genes occurred during the early stages of BC. Moreover, receiver operating characteristics curves and Kaplan-Meier plots showed that the genes exhibited favorable diagnostic and prognostic value for BC. Based on gene set enrichment analysis for single hub gene, all the genes were closely linked to BC cell proliferation. CONCLUSIONS These results offer unique insight into the pathogenesis of BC and recognize CDH11, COL6A3, EDNRA, and SERPINF1 as potential biomarkers with diagnostic and prognostic roles in BC.
Collapse
Affiliation(s)
- Fu Feng
- Department of Urinary Surgery, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Yu-Xiang Zhong
- Department of Urinary Surgery, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Jian-Hua Huang
- Department of Urinary Surgery, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Fu-Xiang Lin
- Department of Urinary Surgery, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Peng-Peng Zhao
- Department of Urinary Surgery, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Yuan Mai
- Department of Urinary Surgery, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Wei Wei
- Department of Urinary Surgery, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Hua-Cai Zhu
- Department of Urinary Surgery, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Zhan-Ping Xu
- Department of Urinary Surgery, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| |
Collapse
|