1
|
Plaza-Florido A, Gálvez BG, López JA, Santos-Lozano A, Zazo S, Rincón-Castanedo C, Martín-Ruiz A, Lumbreras J, Terron-Camero LC, López-Soto A, Andrés-León E, González-Murillo Á, Rojo F, Ramírez M, Lucia A, Fiuza-Luces C. Exercise and tumor proteome: insights from a neuroblastoma model. Physiol Genomics 2024; 56:833-844. [PMID: 39311839 DOI: 10.1152/physiolgenomics.00064.2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 11/12/2024] Open
Abstract
The impact of exercise on pediatric tumor biology is essentially unknown. We explored the effects of regular exercise on tumor proteome profile (as assessed with liquid chromatography with tandem mass spectrometry) in a mouse model of one of the most aggressive childhood malignancies, high-risk neuroblastoma (HR-NB). Tumor samples of 14 male mice (aged 6-8 wk) that were randomly allocated into an exercise (5-wk combined aerobic and resistance training) or nonexercise control group (6 and 8 mice/group, respectively) were analyzed. The Search Tool for the Retrieval of Interacting Genes/Proteins database was used to generate a protein-protein interaction (PPI) network and enrichment analyses. The Systems Biology Triangle (SBT) algorithm was applied for analyses at the functional category level. Tumors of exercised mice showed a higher and lower abundance of 101 and 150 proteins, respectively, than controls [false discovery rate (FDR) < 0.05]. These proteins were enriched in metabolic pathways, amino acid metabolism, regulation of hormone levels, and peroxisome proliferator-activated receptor signaling (FDR < 0.05). The SBT algorithm indicated that 184 and 126 categories showed a lower and higher abundance, respectively, in the tumors of exercised mice (FDR < 0.01). Categories with lower abundance were involved in energy production, whereas those with higher abundance were related to transcription/translation, apoptosis, and tumor suppression. Regular exercise altered the abundance of hundreds of intratumoral proteins and molecular pathways, particularly those involved in energy metabolism, apoptosis, and tumor suppression. These findings provide preliminary evidence of the molecular mechanisms underlying the potential effects of exercise in HR-NB.NEW & NOTEWORTHY We used liquid chromatography with tandem mass spectrometry to explore the impact of a 5-wk exercise intervention on the tumor proteome profile in a mouse model of one of the most aggressive childhood malignancies, high-risk neuroblastoma. Exercise altered the abundance of hundreds of proteins and pathways, particularly those involved in energy metabolism and tumor suppression. These molecular changes could mediate, at least partly, the potential antitumorigenic effects of exercise.
Collapse
Affiliation(s)
- Abel Plaza-Florido
- Pediatric Exercise and Genomics Research Center, Department of Pediatrics, School of Medicine, University of California Irvine, Irvine, California, United States
| | - Beatriz G Gálvez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
- Research Institute of the Hospital 12 de Octubre, Madrid, Spain
| | - Juan A López
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandro Santos-Lozano
- Research Institute of the Hospital 12 de Octubre, Madrid, Spain
- i+HeALTH, Department of Health Sciences, European University Miguel de Cervantes, Valladolid, Spain
| | - Sandra Zazo
- Department of Pathology, Fundación Jiménez Díaz University Hospital Health Research Institute (IIS-FJD, UAM)-CIBERONC, Madrid, Spain
| | | | - Asunción Martín-Ruiz
- Department of Cellular Biology, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Jorge Lumbreras
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Laura C Terron-Camero
- Unidad de Bioinformática, Instituto de Parasitología y Biomedicina "López-Neyra," Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Alejandro López-Soto
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Asturias, Spain
| | - Eduardo Andrés-León
- Unidad de Bioinformática, Instituto de Parasitología y Biomedicina "López-Neyra," Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - África González-Murillo
- Unidad de Terapias Avanzadas, Oncología, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Fundación de Investigación Biomédica, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Federico Rojo
- Department of Pathology, Fundación Jiménez Díaz University Hospital Health Research Institute (IIS-FJD, UAM)-CIBERONC, Madrid, Spain
| | - Manuel Ramírez
- Unidad de Terapias Avanzadas, Oncología, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Fundación de Investigación Biomédica, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Alejandro Lucia
- Research Institute of the Hospital 12 de Octubre, Madrid, Spain
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | | |
Collapse
|
2
|
Jin L, Yang G, Liu Y, Rang Z, Cui F. Bioinformatics data combined with single-cell analysis reveals patterns of immunoinflammatory infiltration and cell death in melanoma. Int Immunopharmacol 2024; 143:113347. [PMID: 39418727 DOI: 10.1016/j.intimp.2024.113347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/10/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
BACKGRUOND Melanoma is a common cancer in dermatology, but its molecular mechanisms remain poorly explained. AIM Utilizing single-cell analytics and bioinformatics, the work sought to discover the immunological infiltration and cellular molecular mechanisms of melanoma. METHODS Melanoma genes databases were downloaded from GeneCards, and gene expression profiles were chosen from the Gene Expression Omnibus (GSE244889). Establishing and analyzing protein-protein interaction networks for functional enrichment made use of the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) databases. The process assesses the immunological cell infiltration variations between normal and malignant samples by Immune Cell AI software program. Different cell type differences were clarified by cell quality control, filtration, removal of batch effects and cell clustering analysis using single cell analysis techniques. RESULTS Using a variety of machine learning techniques, 20 differentially expressed hub genes were found; among these, TP53, HSP90AB1, HSPA4, RHOA, CCND1, CYCS, PPARG, NFKBIA, CAV1, ANXA5, ENO1, ITGAM, YWHAZ, RELA, SOD1, and VDAC1 were found to be significantly significant. The results of enrichment analysis demonstrated that immune response and inflammatory response were strongly associated with melanoma. Animal mitophagy, ferroptosis, the PI3K-Akt signaling pathway, and the HIF-1 signaling pathway were the primary signaling pathways implicated. Cells of immunity, T-cells, lymphocytes, B-cells, NK-cells, monocytes, and macrophages were shown to be significantly infiltrated in melanoma patients, according to analysis. Single cell analysis also demonstrated that ferroptosis is a significant mechanism of cell death that contributes to the advancement of melanoma and that macrophages are important in the disease. CONCLUSION In summary, different immune cell infiltrations-particularly macrophages-have a significant impact on the onset and course of melanoma, and our findings may help direct future investigations into melanoma macrophages.
Collapse
Affiliation(s)
- Li Jin
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Ge Yang
- Department of Dermatology, Sichuan Provincial People's Hospital, School of medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yangying Liu
- Department of Dermatology, Sichuan Provincial People's Hospital, School of medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhen Rang
- Department of Dermatology, Sichuan Provincial People's Hospital, School of medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Fan Cui
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China; Department of Dermatology, Sichuan Provincial People's Hospital, School of medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
3
|
Plaza-Florido A, Lucia A, Radom-Aizik S, Fiuza-Luces C. Anticancer effects of exercise: Insights from single-cell analysis. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:676-678. [PMID: 38266673 PMCID: PMC11282339 DOI: 10.1016/j.jshs.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024]
Abstract
•Physical exercise can exert antitumorigenic effects; however, the molecular mechanisms are still poorly understood. •Single-cell analysis may help to characterize the molecular mechanisms underlying the effects of exercise on anticancer immune function as well as on the complex tumor microenvironment. •Recent research using single-cell analysis provides preliminary insights into the molecular mechanisms behind an improved antitumor immunity in response to exercise. Particularly, there is evidence for a “reprogramming” of several immune effectors towards a higher antitumoral toxicity.
Collapse
Affiliation(s)
- Abel Plaza-Florido
- Pediatric Exercise and Genomics Research Center, Department of Pediatrics, School of Medicine, University of California Irvine, Irvine, CA 92617, USA.
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid 28670, Spain; Physical Activity and Health Research Group ("PaHerg"), Research Institute of the Hospital 12 de Octubre ("imas12"), Madrid 28041, Spain
| | - Shlomit Radom-Aizik
- Pediatric Exercise and Genomics Research Center, Department of Pediatrics, School of Medicine, University of California Irvine, Irvine, CA 92617, USA
| | - Carmen Fiuza-Luces
- Physical Activity and Health Research Group ("PaHerg"), Research Institute of the Hospital 12 de Octubre ("imas12"), Madrid 28041, Spain.
| |
Collapse
|
4
|
Wen L, Liu Z, Zhou L, Liu Z, Li Q, Geng B, Xia Y. Bone and Extracellular Signal-Related Kinase 5 (ERK5). Biomolecules 2024; 14:556. [PMID: 38785963 PMCID: PMC11117709 DOI: 10.3390/biom14050556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/17/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Bones are vital for anchoring muscles, tendons, and ligaments, serving as a fundamental element of the human skeletal structure. However, our understanding of bone development mechanisms and the maintenance of bone homeostasis is still limited. Extracellular signal-related kinase 5 (ERK5), a recently identified member of the mitogen-activated protein kinase (MAPK) family, plays a critical role in the pathogenesis and progression of various diseases, especially neoplasms. Recent studies have highlighted ERK5's significant role in both bone development and bone-associated pathologies. This review offers a detailed examination of the latest research on ERK5 in different tissues and diseases, with a particular focus on its implications for bone health. It also examines therapeutic strategies and future research avenues targeting ERK5.
Collapse
Affiliation(s)
- Lei Wen
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- Department of Orthopedics and Trauma Surgery, Affiliated Hospital of Yunnan University, Kunming 650032, China
| | - Zirui Liu
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Libo Zhou
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Zhongcheng Liu
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Qingda Li
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Bin Geng
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Yayi Xia
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| |
Collapse
|
5
|
Gomes-Santos IL, Kumar AS, Hausmann F, Meyer MN, Shiferaw SZ, Amoozgar Z, Jain RK, Fukumura D. Exercise intensity governs tumor control in mice with breast cancer. Front Immunol 2024; 15:1339232. [PMID: 38495879 PMCID: PMC10940460 DOI: 10.3389/fimmu.2024.1339232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/09/2024] [Indexed: 03/19/2024] Open
Abstract
Introduction Exercise is recommended as an adjunct therapy in cancer, but its effectiveness varies. Our hypothesis is that the benefit depends on the exercise intensity. Methods We subjected mice to low intensity (Li), moderate intensity (Mi) or high intensity (Hi) exercise, or untrained control (Co) groups based on their individual maximal running capacity. Results We found that exercise intensity played a critical role in tumor control. Only Mi exercise delayed tumor growth and reduced tumor burden, whereas Li or Hi exercise failed to exert similar antitumor effects. While both Li and Mi exercise normalized the tumor vasculature, only Mi exercise increased tumor infiltrated CD8+ T cells, that also displayed enhanced effector function (higher proliferation and expression of CD69, INFγ, GzmB). Moreover, exercise induced an intensity-dependent mobilization of CD8+ T cells into the bloodstream. Conclusion These findings shed light on the intricate relationship between exercise intensity and cancer, with implications for personalized and optimal exercise prescriptions for tumor control.
Collapse
Affiliation(s)
- Igor L. Gomes-Santos
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Ashwin S. Kumar
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Harvard-Massachusetts Institute of Technology (MIT) Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Franziska Hausmann
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Max N. Meyer
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Sarah Z. Shiferaw
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Zohreh Amoozgar
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Rakesh K. Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Dai Fukumura
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|