1
|
Kim J, Kim TJ, Chae S, Ha H, Park Y, Park S, Yoon CJ, Lim SA, Lee H, Kim J, Kim J, Im K, Lee K, Kim J, Kim D, Lee E, Shin MH, Park SI, Rhee I, Jung K, Lee J, Lee KH, Hwang D, Lee KM. Targeted deletion of CD244 on monocytes promotes differentiation into anti-tumorigenic macrophages and potentiates PD-L1 blockade in melanoma. Mol Cancer 2024; 23:45. [PMID: 38424542 PMCID: PMC10903025 DOI: 10.1186/s12943-024-01936-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/07/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND In the myeloid compartment of the tumor microenvironment, CD244 signaling has been implicated in immunosuppressive phenotype of monocytes. However, the precise molecular mechanism and contribution of CD244 to tumor immunity in monocytes/macrophages remains elusive due to the co-existing lymphoid cells expressing CD244. METHODS To directly assess the role of CD244 in tumor-associated macrophages, monocyte-lineage-specific CD244-deficient mice were generated using cre-lox recombination and challenged with B16F10 melanoma. The phenotype and function of tumor-infiltrating macrophages along with antigen-specific CD8 T cells were analyzed by flow cytometry and single cell RNA sequencing data analysis, and the molecular mechanism underlying anti-tumorigenic macrophage differentiation, antigen presentation, phagocytosis was investigated ex vivo. Finally, the clinical feasibility of CD244-negative monocytes as a therapeutic modality in melanoma was confirmed by adoptive transfer experiments. RESULTS CD244fl/flLysMcre mice demonstrated a significant reduction in tumor volume (61% relative to that of the CD244fl/fl control group) 14 days after tumor implantation. Within tumor mass, CD244fl/flLysMcre mice also showed higher percentages of Ly6Clow macrophages, along with elevated gp100+IFN-γ+ CD8 T cells. Flow cytometry and RNA sequencing data demonstrated that ER stress resulted in increased CD244 expression on monocytes. This, in turn, impeded the generation of anti-tumorigenic Ly6Clow macrophages, phagocytosis and MHC-I antigen presentation by suppressing autophagy pathways. Combining anti-PD-L1 antibody with CD244-/- bone marrow-derived macrophages markedly improved tumor rejection compared to the anti-PD-L1 antibody alone or in combination with wild-type macrophages. Consistent with the murine data, transcriptome analysis of human melanoma tissue single-cell RNA-sequencing dataset revealed close association between CD244 and the inhibition of macrophage maturation and function. Furthermore, the presence of CD244-negative monocytes/macrophages significantly increased patient survival in primary and metastatic tumors. CONCLUSION Our study highlights the novel role of CD244 on monocytes/macrophages in restraining anti-tumorigenic macrophage generation and tumor antigen-specific T cell response in melanoma. Importantly, our findings suggest that CD244-deficient macrophages could potentially be used as a therapeutic agent in combination with immune checkpoint inhibitors. Furthermore, CD244 expression in monocyte-lineage cells serve as a prognostic marker in cancer patients.
Collapse
Affiliation(s)
- Jeongsoo Kim
- Department of Biochemistry and Molecular biology, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Tae-Jin Kim
- Department of Biochemistry and Molecular biology, College of Medicine, Korea University, Seoul, 02841, South Korea
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, South Korea
| | - Sehyun Chae
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon, 24341, South Korea
| | - Hyojeong Ha
- Department of Biochemistry and Molecular biology, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Yejin Park
- Department of Biochemistry and Molecular biology, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Sunghee Park
- Department of Biochemistry and Molecular biology, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Chul Joo Yoon
- Department of Chemical and Biological Engineering, College of Engineering, Korea University, Seoul, 02841, South Korea
| | - Seon Ah Lim
- Department of Life Science, Ewha Womans University, Seoul, 03760, South Korea
| | - Hyemin Lee
- Department of Biochemistry and Molecular biology, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Jiyoung Kim
- Department of Biochemistry and Molecular biology, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Jungwon Kim
- Department of Biochemistry and Molecular biology, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Kyungtaek Im
- Department of Biochemistry and Molecular biology, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Kyunghye Lee
- Department of Biochemistry and Molecular biology, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Jeongmin Kim
- Department of Biochemistry and Molecular biology, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Daham Kim
- Department of Biochemistry and Molecular biology, College of Medicine, Korea University, Seoul, 02841, South Korea
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, South Korea
| | - Eunju Lee
- Department of Biochemistry and Molecular biology, College of Medicine, Korea University, Seoul, 02841, South Korea
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, South Korea
| | - Min Hwa Shin
- Department of Biochemistry and Molecular biology, College of Medicine, Korea University, Seoul, 02841, South Korea
- Immune Research Institute, Seegene Medical Foundation, Seoul, 04805, South Korea
| | - Serk In Park
- Department of Biochemistry and Molecular biology, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Inmoo Rhee
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, 05006, South Korea
| | - Keehoon Jung
- Department of Biomedical Sciences, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jeewon Lee
- Department of Chemical and Biological Engineering, College of Engineering, Korea University, Seoul, 02841, South Korea
| | - Keun Hwa Lee
- Department of Microbiology, College of Medicine, Hanyang University, Seoul, 04763, South Korea.
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea.
| | - Kyung-Mi Lee
- Department of Biochemistry and Molecular biology, College of Medicine, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|