1
|
Poort VM, Hagelaar R, van Roosmalen MJ, Trabut L, Buijs-Gladdines JGCAM, van Wijk B, Meijerink J, van Boxtel R. Transient Differentiation-State Plasticity Occurs during Acute Lymphoblastic Leukemia Initiation. Cancer Res 2024; 84:2720-2733. [PMID: 38885294 PMCID: PMC11325147 DOI: 10.1158/0008-5472.can-24-1090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/20/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Leukemia is characterized by oncogenic lesions that result in a block of differentiation, whereas phenotypic plasticity is retained. A better understanding of how these two phenomena arise during leukemogenesis in humans could help inform diagnosis and treatment strategies. Here, we leveraged the well-defined differentiation states during T-cell development to pinpoint the initiation of T-cell acute lymphoblastic leukemia (T-ALL), an aggressive form of childhood leukemia, and study the emergence of phenotypic plasticity. Single-cell whole genome sequencing of leukemic blasts was combined with multiparameter flow cytometry to couple cell identity and clonal lineages. Irrespective of genetic events, leukemia-initiating cells altered their phenotypes by differentiation and dedifferentiation. The construction of the phylogenies of individual leukemias using somatic mutations revealed that phenotypic diversity is reflected by the clonal structure of cancer. The analysis also indicated that the acquired phenotypes are heritable and stable. Together, these results demonstrate a transient period of plasticity during leukemia initiation, where phenotypic switches seem unidirectional. Significance: A method merging multicolor flow cytometry with single-cell whole genome sequencing to couple cell identity with clonal lineages uncovers differentiation-state plasticity in leukemia, reconciling blocked differentiation with phenotypic plasticity in cancer.
Collapse
Affiliation(s)
- Vera M Poort
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Rico Hagelaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Markus J van Roosmalen
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Laurianne Trabut
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | | | - Bram van Wijk
- Department of Pediatric Cardiothoracic Surgery, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jules Meijerink
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| |
Collapse
|
2
|
Zhang X, Yuan L, Zhang W, Zhang Y, Wu Q, Li C, Wu M, Huang Y. Liquid-liquid phase separation in diseases. MedComm (Beijing) 2024; 5:e640. [PMID: 39006762 PMCID: PMC11245632 DOI: 10.1002/mco2.640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024] Open
Abstract
Liquid-liquid phase separation (LLPS), an emerging biophysical phenomenon, can sequester molecules to implement physiological and pathological functions. LLPS implements the assembly of numerous membraneless chambers, including stress granules and P-bodies, containing RNA and protein. RNA-RNA and RNA-protein interactions play a critical role in LLPS. Scaffolding proteins, through multivalent interactions and external factors, support protein-RNA interaction networks to form condensates involved in a variety of diseases, particularly neurodegenerative diseases and cancer. Modulating LLPS phenomenon in multiple pathogenic proteins for the treatment of neurodegenerative diseases and cancer could present a promising direction, though recent advances in this area are limited. Here, we summarize in detail the complexity of LLPS in constructing signaling pathways and highlight the role of LLPS in neurodegenerative diseases and cancers. We also explore RNA modifications on LLPS to alter diseases progression because these modifications can influence LLPS of certain proteins or the formation of stress granules, and discuss the possibility of proper manipulation of LLPS process to restore cellular homeostasis or develop therapeutic drugs for the eradication of diseases. This review attempts to discuss potential therapeutic opportunities by elaborating on the connection between LLPS, RNA modification, and their roles in diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Lin Yuan
- Laboratory of Research in Parkinson's Disease and Related Disorders Health Sciences Institute China Medical University Shenyang China
| | - Wanlu Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Yi Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Qun Wu
- Department of Pediatrics Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai China
| | - Chunting Li
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Min Wu
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang China
- The Joint Research Center Affiliated Xiangshan Hospital of Wenzhou Medical University Ningbo China
| | - Yongye Huang
- College of Life and Health Sciences Northeastern University Shenyang China
- Key Laboratory of Bioresource Research and Development of Liaoning Province College of Life and Health Sciences Northeastern University Shenyang China
| |
Collapse
|
3
|
De Coninck S, Roels J, Lintermans B, T’Sas S, Taghon T, Curtis DJ, Pieters T, Goossens S, Van Vlierberghe P. Tet2 is a tumor suppressor in the preleukemic phase of T-cell acute lymphoblastic leukemia. Blood Adv 2024; 8:2646-2649. [PMID: 38536906 PMCID: PMC11157202 DOI: 10.1182/bloodadvances.2023011970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/28/2024] [Indexed: 05/30/2024] Open
Affiliation(s)
- Stien De Coninck
- Department of Biomolecular Medicine, Laboratory of Normal and Malignant Hematopoiesis, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Diagnostic Sciences, Unit for Translational Research in Oncology, Ghent University, Ghent, Belgium
| | - Juliette Roels
- Department of Biomolecular Medicine, Laboratory of Normal and Malignant Hematopoiesis, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Diagnostic Sciences, Taghon Laboratory, Ghent University, Ghent, Belgium
| | - Béatrice Lintermans
- Department of Biomolecular Medicine, Laboratory of Normal and Malignant Hematopoiesis, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Sara T’Sas
- Department of Biomolecular Medicine, Laboratory of Normal and Malignant Hematopoiesis, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Diagnostic Sciences, Unit for Translational Research in Oncology, Ghent University, Ghent, Belgium
| | - Tom Taghon
- Department of Diagnostic Sciences, Taghon Laboratory, Ghent University, Ghent, Belgium
| | - David J. Curtis
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Clinical Haematology, Alfred Hospital, Prahran, VIC, Australia
| | - Tim Pieters
- Department of Biomolecular Medicine, Laboratory of Normal and Malignant Hematopoiesis, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Diagnostic Sciences, Unit for Translational Research in Oncology, Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Laboratory for research in oncogenesis and resistance to therapy, Ghent University, Ghent, Belgium
| | - Steven Goossens
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Diagnostic Sciences, Unit for Translational Research in Oncology, Ghent University, Ghent, Belgium
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Laboratory of Normal and Malignant Hematopoiesis, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
4
|
Walia Y, de Bock CE, Huang Y. The landscape of alterations affecting epigenetic regulators in T-cell acute lymphoblastic leukemia: Roles in leukemogenesis and therapeutic opportunities. Int J Cancer 2024; 154:1522-1536. [PMID: 38155420 DOI: 10.1002/ijc.34819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy accounting for 10%-15% of pediatric and 20%-25% of adult ALL cases. Epigenetic irregularities in T-ALL include alterations in both DNA methylation and the post-translational modifications on histones which together play a critical role in the initiation and development of T-ALL. Characterizing the oncogenic mutations that result in these epigenetic changes combined with the reversibility of epigenetic modifications represents an opportunity for the development of epigenetic therapies. Oncogenic mutations and deregulated expression of DNA methyltransferases (DNMTs), Ten-Eleven Translocation dioxygenases (TETs), Histone acetyltransferases (HATs) and members of Polycomb Repressor Complex 2 (PRC2) have all been identified in T-ALL. This review focuses on the current understanding of how these mutations lead to epigenetic changes in T-ALL, their association with disease pathogenesis and the current efforts to exploit these clinically through the development of epigenetic therapies in T-ALL treatment.
Collapse
Affiliation(s)
- Yashna Walia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, New South Wales, Australia
| | - Charles E de Bock
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, New South Wales, Australia
| | - Yizhou Huang
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, New South Wales, Australia
| |
Collapse
|
5
|
Davydova E, Perenkov A, Vedunova M. Building Minimized Epigenetic Clock by iPlex MassARRAY Platform. Genes (Basel) 2024; 15:425. [PMID: 38674360 PMCID: PMC11049545 DOI: 10.3390/genes15040425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Epigenetic clocks are valuable tools for estimating both chronological and biological age by assessing DNA methylation levels at specific CpG dinucleotides. While conventional epigenetic clocks rely on genome-wide methylation data, targeted approaches offer a more efficient alternative. In this study, we explored the feasibility of constructing a minimized epigenetic clock utilizing data acquired through the iPlex MassARRAY technology. The study enrolled a cohort of relatively healthy individuals, and their methylation levels of eight specific CpG dinucleotides in genes SLC12A5, LDB2, FIGN, ACSS3, FHL2, and EPHX3 were evaluated using the iPlex MassARRAY system and the Illumina EPIC array. The methylation level of five studied CpG sites demonstrated significant correlations with chronological age and an acceptable convergence of data obtained by the iPlex MassARRAY and Illumina EPIC array. At the same time, the methylation level of three CpG sites showed a weak relationship with age and exhibited a low concordance between the data obtained from the two technologies. The construction of the epigenetic clock involved the utilization of different machine-learning models, including linear models, deep neural networks (DNN), and gradient-boosted decision trees (GBDT). The results obtained from these models were compared with each other and with the outcomes generated by other well-established epigenetic clocks. In our study, the TabNet architecture (deep tabular data learning architecture) exhibited the best performance (best MAE = 5.99). Although our minimized epigenetic clock yielded slightly higher age prediction errors compared to other epigenetic clocks, it still represents a viable alternative to the genome-wide epigenotyping array.
Collapse
Affiliation(s)
- Ekaterina Davydova
- Institute of Biology and Biomedicine, Lobachevsky State University, 23 Gagarin Ave., Nizhny Novgorod 603022, Russia (M.V.)
| | | | | |
Collapse
|
6
|
Pinton A, Courtois L, Doublet C, Cabannes-Hamy A, Andrieu G, Smith C, Balducci E, Cieslak A, Touzart A, Simonin M, Lhéritier V, Huguet F, Balsat M, Dombret H, Rousselot P, Spicuglia S, Macintyre E, Boissel N, Asnafi V. PHF6-altered T-ALL Harbor Epigenetic Repressive Switch at Bivalent Promoters and Respond to 5-Azacitidine and Venetoclax. Clin Cancer Res 2024; 30:94-105. [PMID: 37889114 DOI: 10.1158/1078-0432.ccr-23-2159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/27/2023] [Accepted: 10/25/2023] [Indexed: 10/28/2023]
Abstract
PURPOSE To assess the impact of PHF6 alterations on clinical outcome and therapeutical actionability in T-cell acute lymphoblastic leukemia (T-ALL). EXPERIMENTAL DESIGN We described PHF6 alterations in an adult cohort of T-ALL from the French trial Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL)-2003/2005 and retrospectively analyzed clinical outcomes between PHF6-altered (PHF6ALT) and wild-type patients. We also used EPIC and chromatin immunoprecipitation sequencing data of patient samples to analyze the epigenetic landscape of PHF6ALT T-ALLs. We consecutively evaluated 5-azacitidine efficacy, alone or combined with venetoclax, in PHF6ALT T-ALL. RESULTS We show that PHF6 alterations account for 47% of cases in our cohort and demonstrate that PHF6ALT T-ALL presented significantly better clinical outcomes. Integrative analysis of DNA methylation and histone marks shows that PHF6ALT are characterized by DNA hypermethylation and H3K27me3 loss at promoters physiologically bivalent in thymocytes. Using patient-derived xenografts, we show that PHF6ALT T-ALL respond to the 5-azacytidine alone. Finally, synergism with the BCL2-inhibitor venetoclax was demonstrated in refractory/relapsing (R/R) PHF6ALT T-ALL using fresh samples. Importantly, we report three cases of R/R PHF6ALT patients who were successfully treated with this combination. CONCLUSIONS Overall, our study supports the use of PHF6 alterations as a biomarker of sensitivity to 5-azacytidine and venetoclax combination in R/R T-ALL.
Collapse
Affiliation(s)
- Antoine Pinton
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique - Hôpitaux de Paris, and Université Paris-Cité, Paris, France
| | - Lucien Courtois
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique - Hôpitaux de Paris, and Université Paris-Cité, Paris, France
| | | | | | - Guillaume Andrieu
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique - Hôpitaux de Paris, and Université Paris-Cité, Paris, France
| | - Charlotte Smith
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique - Hôpitaux de Paris, and Université Paris-Cité, Paris, France
| | - Estelle Balducci
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique - Hôpitaux de Paris, and Université Paris-Cité, Paris, France
| | - Agata Cieslak
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique - Hôpitaux de Paris, and Université Paris-Cité, Paris, France
| | - Aurore Touzart
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique - Hôpitaux de Paris, and Université Paris-Cité, Paris, France
| | - Mathieu Simonin
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique - Hôpitaux de Paris, and Université Paris-Cité, Paris, France
| | - Véronique Lhéritier
- Coordination du Groupe Group for Research in Adult Acute Lymphoblastic Leukemia, Hospices Civils de Lyon, Hôpital Lyon Sud, Lyon, France
| | - Françoise Huguet
- Service d'Hématologie, CHU de Toulouse, IUCT-Oncopole, Toulouse, France
| | - Marie Balsat
- Service d'Hématologie Clinique, Hôpital Lyon Sud, Lyon, France
| | - Hervé Dombret
- Service d'Hématologie Adolescents et Jeunes Adultes, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
- Institut de Recherche Saint-Louis, UPR-3518, Université Paris Cité, Paris, France
| | - Philippe Rousselot
- Centre Hospitalier de Versailles, Versailles, France
- Université Versailles Saint Quentin en Yvelines Paris Saclay, INSERM U1184, Paris, France
| | - Salvatore Spicuglia
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Elizabeth Macintyre
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique - Hôpitaux de Paris, and Université Paris-Cité, Paris, France
| | - Nicolas Boissel
- Service d'Hématologie Adolescents et Jeunes Adultes, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
- Institut de Recherche Saint-Louis, UPR-3518, Université Paris Cité, Paris, France
| | - Vahid Asnafi
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique - Hôpitaux de Paris, and Université Paris-Cité, Paris, France
| |
Collapse
|
7
|
Dufva O, Gandolfi S, Huuhtanen J, Dashevsky O, Duàn H, Saeed K, Klievink J, Nygren P, Bouhlal J, Lahtela J, Näätänen A, Ghimire BR, Hannunen T, Ellonen P, Lähteenmäki H, Rumm P, Theodoropoulos J, Laajala E, Härkönen J, Pölönen P, Heinäniemi M, Hollmén M, Yamano S, Shirasaki R, Barbie DA, Roth JA, Romee R, Sheffer M, Lähdesmäki H, Lee DA, De Matos Simoes R, Kankainen M, Mitsiades CS, Mustjoki S. Single-cell functional genomics reveals determinants of sensitivity and resistance to natural killer cells in blood cancers. Immunity 2023; 56:2816-2835.e13. [PMID: 38091953 DOI: 10.1016/j.immuni.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/19/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023]
Abstract
Cancer cells can evade natural killer (NK) cell activity, thereby limiting anti-tumor immunity. To reveal genetic determinants of susceptibility to NK cell activity, we examined interacting NK cells and blood cancer cells using single-cell and genome-scale functional genomics screens. Interaction of NK and cancer cells induced distinct activation and type I interferon (IFN) states in both cell types depending on the cancer cell lineage and molecular phenotype, ranging from more sensitive myeloid to less sensitive B-lymphoid cancers. CRISPR screens in cancer cells uncovered genes regulating sensitivity and resistance to NK cell-mediated killing, including adhesion-related glycoproteins, protein fucosylation genes, and transcriptional regulators, in addition to confirming the importance of antigen presentation and death receptor signaling pathways. CRISPR screens with a single-cell transcriptomic readout provided insight into underlying mechanisms, including regulation of IFN-γ signaling in cancer cells and NK cell activation states. Our findings highlight the diversity of mechanisms influencing NK cell susceptibility across different cancers and provide a resource for NK cell-based therapies.
Collapse
Affiliation(s)
- Olli Dufva
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland
| | - Sara Gandolfi
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jani Huuhtanen
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland; Department of Computer Science, Aalto University, 02150 Espoo, Finland
| | - Olga Dashevsky
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hanna Duàn
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland
| | - Khalid Saeed
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland
| | - Jay Klievink
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland
| | - Petra Nygren
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland
| | - Jonas Bouhlal
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland
| | - Jenni Lahtela
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Anna Näätänen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Bishwa R Ghimire
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Tiina Hannunen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Pekka Ellonen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Hanna Lähteenmäki
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland
| | - Pauliina Rumm
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland
| | - Jason Theodoropoulos
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland
| | - Essi Laajala
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland
| | - Jouni Härkönen
- Faculty of Health Sciences, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Petri Pölönen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Merja Heinäniemi
- Faculty of Health Sciences, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Maija Hollmén
- Medicity Research Laboratory, University of Turku, 20014 Turku, Finland
| | - Shizuka Yamano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ryosuke Shirasaki
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center, Harvard Medical School, Boston, MA 02215, USA
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jennifer A Roth
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rizwan Romee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center, Harvard Medical School, Boston, MA 02215, USA
| | - Michal Sheffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center, Harvard Medical School, Boston, MA 02215, USA
| | - Harri Lähdesmäki
- Department of Computer Science, Aalto University, 02150 Espoo, Finland
| | - Dean A Lee
- Hematology/Oncology/BMT, Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Ricardo De Matos Simoes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center, Harvard Medical School, Boston, MA 02215, USA
| | - Matti Kankainen
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland; Laboratory of Genetics, HUS Diagnostic Center, Hospital District of Helsinki and Uusima (HUS), 00290 Helsinki, Finland
| | - Constantine S Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland.
| |
Collapse
|
8
|
Abdulla HD, Alserihi R, Flensburg C, Abeysekera W, Luo MX, Gray DH, Liu X, Smyth GK, Alexander WS, Majewski IJ, McCormack MP. Overexpression of Lmo2 initiates T-lymphoblastic leukemia via impaired thymocyte competition. J Exp Med 2023; 220:e20212383. [PMID: 36920307 PMCID: PMC10037042 DOI: 10.1084/jem.20212383] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/19/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
Cell competition has recently emerged as an important tumor suppressor mechanism in the thymus that inhibits autonomous thymic maintenance. Here, we show that the oncogenic transcription factor Lmo2 causes autonomous thymic maintenance in transgenic mice by inhibiting early T cell differentiation. This autonomous thymic maintenance results in the development of self-renewing preleukemic stem cells (pre-LSCs) and subsequent leukemogenesis, both of which are profoundly inhibited by restoration of thymic competition or expression of the antiapoptotic factor BCL2. Genomic analyses revealed the presence of Notch1 mutations in pre-LSCs before subsequent loss of tumor suppressors promotes the transition to overt leukemogenesis. These studies demonstrate a critical role for impaired cell competition in the development of pre-LSCs in a transgenic mouse model of T cell acute lymphoblastic leukemia (T-ALL), implying that this process plays a role in the ontogeny of human T-ALL.
Collapse
Affiliation(s)
- Hesham D. Abdulla
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Raed Alserihi
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- College of Applied Medical Sciences, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Christoffer Flensburg
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Waruni Abeysekera
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Meng-Xiao Luo
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Daniel H.D. Gray
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Xiaodong Liu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Institute for Advanced Study, Hangzhou, China
| | - Gordon K. Smyth
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- School of Mathematics and Statistics, University of Melbourne, Parkville, Australia
| | - Warren S. Alexander
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Ian J. Majewski
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Matthew P. McCormack
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
- iCamuno Biotherapeutics, Melbourne, Australia
| |
Collapse
|
9
|
Pre-Clinical Evaluation of the Hypomethylating Agent Decitabine for the Treatment of T-Cell Lymphoblastic Lymphoma. Cancers (Basel) 2023; 15:cancers15030647. [PMID: 36765607 PMCID: PMC9913791 DOI: 10.3390/cancers15030647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
T-cell lymphoblastic lymphoma (T-LBL) is a rare and aggressive lymphatic cancer, often diagnosed at a young age. Patients are treated with intensive chemotherapy, potentially followed by a hematopoietic stem cell transplantation. Although prognosis of T-LBL has improved with intensified treatment protocols, they are associated with side effects and 10-20% of patients still die from relapsed or refractory disease. Given this, the search toward less toxic anti-lymphoma therapies is ongoing. Here, we targeted the recently described DNA hypermethylated profile in T-LBL with the DNA hypomethylating agent decitabine. We evaluated the anti-lymphoma properties and downstream effects of decitabine, using patient derived xenograft (PDX) models. Decitabine treatment resulted in prolonged lymphoma-free survival in all T-LBL PDX models, which was associated with downregulation of the oncogenic MYC pathway. However, some PDX models showed more benefit of decitabine treatment compared to others. In more sensitive models, differentially methylated CpG regions resulted in more differentially expressed genes in open chromatin regions. This resulted in stronger downregulation of cell cycle genes and upregulation of immune response activating transcripts. Finally, we suggest a gene signature for high decitabine sensitivity in T-LBL. Altogether, we here delivered pre-clinical proof of the potential use of decitabine as a new therapeutic agent in T-LBL.
Collapse
|
10
|
Drobna‐Śledzińska M, Maćkowska‐Maślak N, Jaksik R, Kosmalska M, Szarzyńska B, Lejman M, Sędek Ł, Szczepański T, Taghon T, Van Vlierberghe P, Witt M, Dawidowska M. Multiomics to investigate the mechanisms contributing to repression of PTPRC and SOCS2 in pediatric T-ALL: Focus on miR-363-3p and promoter methylation. Genes Chromosomes Cancer 2022; 61:720-733. [PMID: 35778917 PMCID: PMC9796420 DOI: 10.1002/gcc.23085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 01/01/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous and aggressive malignancy arising from T-cell precursors. MiRNAs are implicated in negative regulation of gene expression and when aberrantly expressed contribute to various cancer types, including T-ALL. Previously we demonstrated the oncogenic potential of miR-363-3p overexpression in a subgroup of T-ALL patients. Here, using combined proteomic and transcriptomic approaches, we show that miR-363-3p enhances cell growth of T-ALL in vitro via inhibition of PTPRC and SOCS2, which are implicated in repression of the JAK-STAT pathway. We propose that overexpression of miR-363-3p is a novel mechanism potentially contributing to overactivation of JAK-STAT pathway. Additionally, by combining the transcriptomic and methylation data of T-ALL patients, we show that promoter methylation may also contribute to downregulation of SOCS2 expression and thus potentially to JAK-STAT activation. In conclusion, we highlight aberrant miRNA expression and aberrant promoter methylation as mechanisms, alternative to mutations of JAK-STAT-related genes, which might lead to the upregulation of JAK-dependent signaling in T-ALL.
Collapse
Affiliation(s)
| | | | - Roman Jaksik
- Department of Systems Biology and EngineeringSilesian University of TechnologyGliwicePoland
| | - Maria Kosmalska
- Institute of Human Genetics Polish Academy of SciencesPoznańPoland
| | - Bronisława Szarzyńska
- Institute of Human Genetics Polish Academy of SciencesPoznańPoland,Polish Stem Cells BankWarsawPoland
| | - Monika Lejman
- Laboratory of Genetic DiagnosticsMedical University of LublinLublinPoland
| | - Łukasz Sędek
- Department of Microbiology and ImmunologyZabrze, Medical University of Silesia in KatowiceZabrzePoland
| | - Tomasz Szczepański
- Department of Pediatric Hematology and OncologyMedical University of Silesia in KatowiceZabrzePoland
| | - Tom Taghon
- Department of Diagnostic SciencesGhent UniversityGhentBelgium,Cancer Research Institute GhentGhentBelgium
| | - Pieter Van Vlierberghe
- Cancer Research Institute GhentGhentBelgium,Department of Biomolecular MedicineGhent UniversityGhentBelgium
| | - Michał Witt
- Institute of Human Genetics Polish Academy of SciencesPoznańPoland
| | | |
Collapse
|
11
|
Boehme L, Roels J, Taghon T. Development of γδ T cells in the thymus - A human perspective. Semin Immunol 2022; 61-64:101662. [PMID: 36374779 DOI: 10.1016/j.smim.2022.101662] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 12/14/2022]
Abstract
γδ T cells are increasingly emerging as crucial immune regulators that can take on innate and adaptive roles in the defence against pathogens. Although they arise within the thymus from the same hematopoietic precursors as conventional αβ T cells, the development of γδ T cells is less well understood. In this review, we focus on summarising the current state of knowledge about the cellular and molecular processes involved in the generation of γδ T cells in human.
Collapse
Affiliation(s)
- Lena Boehme
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Juliette Roels
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Tom Taghon
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
12
|
A Comprehensive Overview of Recent Advances in Epigenetics in Pediatric Acute Lymphoblastic Leukemia. Cancers (Basel) 2022; 14:cancers14215384. [DOI: 10.3390/cancers14215384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/21/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Recent years have brought a novel insight into our understanding of childhood acute lymphoblastic leukemia (ALL), along with several breakthrough treatment methods. However, multiple aspects of mechanisms behind this disease remain to be elucidated. Evidence suggests that leukemogenesis in ALL is widely influenced by epigenetic modifications. These changes include: DNA hypermethylation, histone modification and miRNA alteration. DNA hypermethylation in promoter regions, which leads to silencing of tumor suppressor genes, is a common epigenetic alteration in ALL. Histone modifications are mainly caused by an increased expression of histone deacetylases. A dysregulation of miRNA results in changes in the expression of their target genes. To date, several hundred genes were identified as suppressed by epigenetic mechanisms in ALL. What is promising is that epigenetic alterations in ALL may be used as potential biomarkers for classification of subtypes, predicting relapse and disease progression and assessing minimal residual disease. Furthermore, since epigenetic lesions are potentially reversible, an activation of epigenetically silenced genes with the use of hypomethylating agents or histone deacetylase inhibitors may be utilized as a therapeutic strategy for ALL. The following review summarizes our current knowledge about epigenetic modifications in ALL and describes potential uses of epigenetics in the clinical management of this disease.
Collapse
|
13
|
Hetzel S, Mattei AL, Kretzmer H, Qu C, Chen X, Fan Y, Wu G, Roberts KG, Luger S, Litzow M, Rowe J, Paietta E, Stock W, Mardis ER, Wilson RK, Downing JR, Mullighan CG, Meissner A. Acute lymphoblastic leukemia displays a distinct highly methylated genome. NATURE CANCER 2022; 3:768-782. [PMID: 35590059 PMCID: PMC9236905 DOI: 10.1038/s43018-022-00370-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 03/25/2022] [Indexed: 04/13/2023]
Abstract
DNA methylation is tightly regulated during development and is stably maintained in healthy cells. In contrast, cancer cells are commonly characterized by a global loss of DNA methylation co-occurring with CpG island hypermethylation. In acute lymphoblastic leukemia (ALL), the commonest childhood cancer, perturbations of CpG methylation have been reported to be associated with genetic disease subtype and outcome, but data from large cohorts at a genome-wide scale are lacking. Here, we performed whole-genome bisulfite sequencing across ALL subtypes, leukemia cell lines and healthy hematopoietic cells, and show that unlike most cancers, ALL samples exhibit CpG island hypermethylation but minimal global loss of methylation. This was most pronounced in T cell ALL and accompanied by an exceptionally broad range of hypermethylation of CpG islands between patients, which is influenced by TET2 and DNMT3B. These findings demonstrate that ALL is characterized by an unusually highly methylated genome and provide further insights into the non-canonical regulation of methylation in cancer.
Collapse
Affiliation(s)
- Sara Hetzel
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexandra L Mattei
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Chunxu Qu
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiang Chen
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Gang Wu
- Center for Applied Bioinformatics, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Kathryn G Roberts
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Selina Luger
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark Litzow
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jacob Rowe
- Department of Hematology, Shaare Zedek Medical Center, Jerusalem, Israel
| | | | - Wendy Stock
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| | - Elaine R Mardis
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Richard K Wilson
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - James R Downing
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles G Mullighan
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Biology, Chemistry and Pharmacy, Freie Universität, Berlin, Germany.
| |
Collapse
|
14
|
Genescà E, González-Gil C. Latest Contributions of Genomics to T-Cell Acute Lymphoblastic Leukemia (T-ALL). Cancers (Basel) 2022; 14:2474. [PMID: 35626077 PMCID: PMC9140158 DOI: 10.3390/cancers14102474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/04/2022] Open
Abstract
As for many neoplasms, initial genetic data about T-cell acute lymphoblastic leukemia (T-ALL) came from the application of cytogenetics. This information helped identify some recurrent chromosomal alterations in T-ALL at the time of diagnosis, although it was difficult to determine their prognostic impact because of their low incidence in the specific T-ALL cohort analyzed. Genetic knowledge accumulated rapidly following the application of genomic techniques, drawing attention to the importance of using high-resolution genetic techniques to detect cryptic aberrations present in T-ALL, which are not usually detected by cytogenetics. We now have a clearer appreciation of the genetic landscape of the different T-ALL subtypes at diagnosis, explaining the particular oncogenetic processes taking place in each T-ALL, and we have begun to understand relapse-specific mechanisms. This review aims to summarize the latest advances in our knowledge of the genome in T-ALL. We highlight areas where the research in this subtype of ALL is progressing with the aim of identifying key questions that need to be answered in the medium-long term if this knowledge is to be applied in clinics.
Collapse
Affiliation(s)
- Eulàlia Genescà
- Institut d’Investigació Contra la Leucemia Josep Carreras (IJC), Campus ICO-Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain;
| | | |
Collapse
|
15
|
Maimaitiyiming Y, Ye L, Yang T, Yu W, Naranmandura H. Linear and Circular Long Non-Coding RNAs in Acute Lymphoblastic Leukemia: From Pathogenesis to Classification and Treatment. Int J Mol Sci 2022; 23:ijms23084442. [PMID: 35457264 PMCID: PMC9033105 DOI: 10.3390/ijms23084442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023] Open
Abstract
The coding regions account for only a small part of the human genome, and the remaining vast majority of the regions generate large amounts of non-coding RNAs. Although non-coding RNAs do not code for any protein, they are suggested to work as either tumor suppressers or oncogenes through modulating the expression of genes and functions of proteins at transcriptional, posttranscriptional and post-translational levels. Acute Lymphoblastic Leukemia (ALL) originates from malignant transformed B/T-precursor-stage lymphoid progenitors in the bone marrow (BM). The pathogenesis of ALL is closely associated with aberrant genetic alterations that block lymphoid differentiation and drive abnormal cell proliferation as well as survival. While treatment of pediatric ALL represents a major success story in chemotherapy-based elimination of a malignancy, adult ALL remains a devastating disease with relatively poor prognosis. Thus, novel aspects in the pathogenesis and progression of ALL, especially in the adult population, need to be further explored. Accumulating evidence indicated that genetic changes alone are rarely sufficient for development of ALL. Recent advances in cytogenic and sequencing technologies revealed epigenetic alterations including that of non-coding RNAs as cooperating events in ALL etiology and progression. While the role of micro RNAs in ALL has been extensively reviewed, less attention, relatively, has been paid to other non-coding RNAs. Herein, we review the involvement of linear and circular long non-coding RNAs in the etiology, maintenance, and progression of ALL, highlighting the contribution of these non-coding RNAs in ALL classification and diagnosis, risk stratification as well as treatment.
Collapse
Affiliation(s)
- Yasen Maimaitiyiming
- The Affiliated Sir Run Run Shaw Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; (Y.M.); (L.Y.); (T.Y.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Linyan Ye
- The Affiliated Sir Run Run Shaw Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; (Y.M.); (L.Y.); (T.Y.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Tao Yang
- The Affiliated Sir Run Run Shaw Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; (Y.M.); (L.Y.); (T.Y.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Wenjuan Yu
- Department of Hematology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Correspondence: (W.Y.); (H.N.)
| | - Hua Naranmandura
- The Affiliated Sir Run Run Shaw Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; (Y.M.); (L.Y.); (T.Y.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Department of Hematology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
- Correspondence: (W.Y.); (H.N.)
| |
Collapse
|
16
|
Yates J, Boeva V. Deciphering the etiology and role in oncogenic transformation of the CpG island methylator phenotype: a pan-cancer analysis. Brief Bioinform 2022; 23:6520307. [PMID: 35134107 PMCID: PMC8921629 DOI: 10.1093/bib/bbab610] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/06/2021] [Accepted: 12/30/2021] [Indexed: 12/25/2022] Open
Abstract
Numerous cancer types have shown to present hypermethylation of CpG islands, also known as a CpG island methylator phenotype (CIMP), often associated with survival variation. Despite extensive research on CIMP, the etiology of this variability remains elusive, possibly due to lack of consistency in defining CIMP. In this work, we utilize a pan-cancer approach to further explore CIMP, focusing on 26 cancer types profiled in the Cancer Genome Atlas (TCGA). We defined CIMP systematically and agnostically, discarding any effects associated with age, gender or tumor purity. We then clustered samples based on their most variable DNA methylation values and analyzed resulting patient groups. Our results confirmed the existence of CIMP in 19 cancers, including gliomas and colorectal cancer. We further showed that CIMP was associated with survival differences in eight cancer types and, in five, represented a prognostic biomarker independent of clinical factors. By analyzing genetic and transcriptomic data, we further uncovered potential drivers of CIMP and classified them in four categories: mutations in genes directly involved in DNA demethylation; mutations in histone methyltransferases; mutations in genes not involved in methylation turnover, such as KRAS and BRAF; and microsatellite instability. Among the 19 CIMP-positive cancers, very few shared potential driver events, and those drivers were only IDH1 and SETD2 mutations. Finally, we found that CIMP was strongly correlated with tumor microenvironment characteristics, such as lymphocyte infiltration. Overall, our results indicate that CIMP does not exhibit a pan-cancer manifestation; rather, general dysregulation of CpG DNA methylation is caused by heterogeneous mechanisms.
Collapse
Affiliation(s)
- Josephine Yates
- Institute for Machine Learning, Department of Computer Science, ETH Zürich, Zurich 8092, Switzerland
| | - Valentina Boeva
- Institute for Machine Learning, Department of Computer Science, ETH Zürich, Zurich 8092, Switzerland.,Swiss Institute for Bioinformatics (SIB), Zürich, Switzerland.,Cochin Institute, Inserm U1016, CNRS UMR 8104, Paris Descartes University UMR-S1016, Paris 75014, France
| |
Collapse
|
17
|
Su Y, Maimaitiyiming Y, Wang L, Cheng X, Hsu CH. Modulation of Phase Separation by RNA: A Glimpse on N 6-Methyladenosine Modification. Front Cell Dev Biol 2021; 9:786454. [PMID: 34957114 PMCID: PMC8703171 DOI: 10.3389/fcell.2021.786454] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/15/2021] [Indexed: 12/15/2022] Open
Abstract
Phase separation is the driving force behind formation of various biomolecular condensates (BioMCs), which sub-compartmentalize certain cellular components in a membraneless manner to orchestrate numerous biological processes. Many BioMCs are composed of proteins and RNAs. While the features and functions of proteins are well studied, less attention was paid to the other essential component RNAs. Here, we describe how RNA contributes to the biogenesis, dissolution, and properties of BioMCs as a multivalence providing scaffold for proteins/RNA to undergo phase separation. Specifically, we focus on N6-methyladenosine (m6A), the most widely distributed dynamic post-transcriptional modification, which would change the charge, conformation, and RNA-binding protein (RBP) anchoring of modified RNA. m6A RNA-modulated phase separation is a new perspective to illustrate m6A-mediated various biological processes. We summarize m6A main functions as “beacon” to recruit reader proteins and “structural switcher” to alter RNA–protein and RNA–RNA interactions to modulate phase separation and regulate the related biological processes.
Collapse
Affiliation(s)
- Yingfeng Su
- Women's Hospital, Institute of Genetics, Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yasen Maimaitiyiming
- Women's Hospital, Institute of Genetics, Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Department of Hematology of First Affiliated Hospital, Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingfang Wang
- Women's Hospital, Institute of Genetics, Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaodong Cheng
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chih-Hung Hsu
- Women's Hospital, Institute of Genetics, Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
18
|
Xu H, Yu H, Jin R, Wu X, Chen H. Genetic and Epigenetic Targeting Therapy for Pediatric Acute Lymphoblastic Leukemia. Cells 2021; 10:cells10123349. [PMID: 34943855 PMCID: PMC8699354 DOI: 10.3390/cells10123349] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/06/2021] [Accepted: 11/25/2021] [Indexed: 12/31/2022] Open
Abstract
Acute lymphoblastic leukemia is the most common malignancy in children and is characterized by numerous genetic and epigenetic abnormalities. Epigenetic mechanisms, including DNA methylations and histone modifications, result in the heritable silencing of genes without a change in their coding sequence. Emerging studies are increasing our understanding of the epigenetic role of leukemogenesis and have demonstrated the potential of DNA methylations and histone modifications as a biomarker for lineage and subtypes classification, predicting relapse, and disease progression in acute lymphoblastic leukemia. Epigenetic abnormalities are relatively reversible when treated with some small molecule-based agents compared to genetic alterations. In this review, we conclude the genetic and epigenetic characteristics in ALL and discuss the future role of DNA methylation and histone modifications in predicting relapse, finally focus on the individual and precision therapy targeting epigenetic alterations.
Collapse
|
19
|
Iacobucci I, Kimura S, Mullighan CG. Biologic and Therapeutic Implications of Genomic Alterations in Acute Lymphoblastic Leukemia. J Clin Med 2021; 10:3792. [PMID: 34501239 PMCID: PMC8432032 DOI: 10.3390/jcm10173792] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most successful paradigm of how risk-adapted therapy and detailed understanding of the genetic alterations driving leukemogenesis and therapeutic response may dramatically improve treatment outcomes, with cure rates now exceeding 90% in children. However, ALL still represents a leading cause of cancer-related death in the young, and the outcome for older adolescents and young adults with ALL remains poor. In the past decade, next generation sequencing has enabled critical advances in our understanding of leukemogenesis. These include the identification of risk-associated ALL subtypes (e.g., those with rearrangements of MEF2D, DUX4, NUTM1, ZNF384 and BCL11B; the PAX5 P80R and IKZF1 N159Y mutations; and genomic phenocopies such as Ph-like ALL) and the genomic basis of disease evolution. These advances have been complemented by the development of novel therapeutic approaches, including those that are of mutation-specific, such as tyrosine kinase inhibitors, and those that are mutation-agnostic, including antibody and cellular immunotherapies, and protein degradation strategies such as proteolysis-targeting chimeras. Herein, we review the genetic taxonomy of ALL with a focus on clinical implications and the implementation of genomic diagnostic approaches.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA;
| | - Shunsuke Kimura
- Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA;
| | - Charles G. Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA;
- Comprehensive Cancer Center, Hematological Malignancies Program, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
20
|
T-Cell Acute Lymphoblastic Leukemia: Biomarkers and Their Clinical Usefulness. Genes (Basel) 2021; 12:genes12081118. [PMID: 34440292 PMCID: PMC8394887 DOI: 10.3390/genes12081118] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
T-cell acute lymphoblastic leukemias (T-ALL) are immature lymphoid tumors localizing in the bone marrow, mediastinum, central nervous system, and lymphoid organs. They account for 10-15% of pediatric and about 25% of adult acute lymphoblastic leukemia (ALL) cases. It is a widely heterogeneous disease that is caused by the co-occurrence of multiple genetic abnormalities, which are acquired over time, and once accumulated, lead to full-blown leukemia. Recurrently affected genes deregulate pivotal cell processes, such as cycling (CDKN1B, RB1, TP53), signaling transduction (RAS pathway, IL7R/JAK/STAT, PI3K/AKT), epigenetics (PRC2 members, PHF6), and protein translation (RPL10, CNOT3). A remarkable role is played by NOTCH1 and CDKN2A, as they are altered in more than half of the cases. The activation of the NOTCH1 signaling affects thymocyte specification and development, while CDKN2A haploinsufficiency/inactivation, promotes cell cycle progression. Among recurrently involved oncogenes, a major role is exerted by T-cell-specific transcription factors, whose deregulated expression interferes with normal thymocyte development and causes a stage-specific differentiation arrest. Hence, TAL and/or LMO deregulation is typical of T-ALL with a mature phenotype (sCD3 positive) that of TLX1, NKX2-1, or TLX3, of cortical T-ALL (CD1a positive); HOXA and MEF2C are instead over-expressed in subsets of Early T-cell Precursor (ETP; immature phenotype) and early T-ALL. Among immature T-ALL, genomic alterations, that cause BCL11B transcriptional deregulation, identify a specific genetic subgroup. Although comprehensive cytogenetic and molecular studies have shed light on the genetic background of T-ALL, biomarkers are not currently adopted in the diagnostic workup of T-ALL, and only a limited number of studies have assessed their clinical implications. In this review, we will focus on recurrent T-ALL abnormalities that define specific leukemogenic pathways and on oncogenes/oncosuppressors that can serve as diagnostic biomarkers. Moreover, we will discuss how the complex genomic profile of T-ALL can be used to address and test innovative/targeted therapeutic options.
Collapse
|
21
|
Touzart A, Mayakonda A, Smith C, Hey J, Toth R, Cieslak A, Andrieu GP, Tran Quang C, Latiri M, Ghysdael J, Spicuglia S, Dombret H, Ifrah N, Macintyre E, Lutsik P, Boissel N, Plass C, Asnafi V. Epigenetic analysis of patients with T-ALL identifies poor outcomes and a hypomethylating agent-responsive subgroup. Sci Transl Med 2021; 13:13/595/eabc4834. [PMID: 34039737 DOI: 10.1126/scitranslmed.abc4834] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/10/2020] [Accepted: 05/07/2021] [Indexed: 12/14/2022]
Abstract
Adult "T cell" acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy that is associated with poor outcomes, requiring additional therapeutic options. The DNA methylation landscapes of adult T-ALL remain undercharacterized. Here, we systematically analyzed the DNA methylation profiles of normal thymic-sorted T cell subpopulations and 143 primary adult T-ALLs as part of the French GRAALL 2003-2005 trial. Our results indicated that T-ALL is epigenetically heterogeneous consisting of five subtypes (C1-C5), which were either associated with co-occurring DNA methyltransferase 3 alpha (DNMT3A)/isocitrate dehydrogenase [NADP(+)] 2 (IDH2) mutations (C1), TAL bHLH transcription factor 1, erythroid differentiation factor (TAL1) deregulation (C2), T cell leukemia homeobox 3 (TLX3) (C3), TLX1/in cis-homeobox A9 (HOXA9) (C4), or in trans-HOXA9 overexpression (C5). Integrative analysis of DNA methylation and gene expression identified potential cluster-specific oncogenes and tumor suppressor genes. In addition to an aggressive hypomethylated subgroup (C1), our data identified an unexpected subset of hypermethylated T-ALL (C5) associated with poor outcome and primary therapeutic response. Using mouse xenografts, we demonstrated that hypermethylated T-ALL samples exhibited therapeutic responses to the DNA hypomethylating agent 5-azacytidine, which significantly (survival probability; P = 0.001 for C3, 0.01 for C4, and 0.0253 for C5) delayed tumor progression. These findings suggest that epigenetic-based therapies may provide an alternative treatment option in hypermethylated T-ALL.
Collapse
Affiliation(s)
- Aurore Touzart
- Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Université de Paris (Descartes), Institut Necker -Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75743 Paris, France
| | - Anand Mayakonda
- Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Charlotte Smith
- Université de Paris (Descartes), Institut Necker -Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75743 Paris, France
| | - Joschka Hey
- Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany.,Germany-Israeli Helmholtz Research School in Cancer Biology, 69120 Heidelberg, Germany
| | - Reka Toth
- Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Agata Cieslak
- Université de Paris (Descartes), Institut Necker -Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75743 Paris, France
| | - Guillaume P Andrieu
- Université de Paris (Descartes), Institut Necker -Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75743 Paris, France
| | - Christine Tran Quang
- Institut Curie, Orsay, France.,CNRS UMR3348, Institut Curie, Orsay, France.,INSERM 1278, Centre Universitaire, Orsay, France.,PSL Research University, Paris, France.,Paris-Saclay, 91400 Orsay, France
| | - Mehdi Latiri
- Université de Paris (Descartes), Institut Necker -Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75743 Paris, France
| | - Jacques Ghysdael
- Institut Curie, Orsay, France.,CNRS UMR3348, Institut Curie, Orsay, France.,INSERM 1278, Centre Universitaire, Orsay, France.,PSL Research University, Paris, France.,Paris-Saclay, 91400 Orsay, France
| | - Salvatore Spicuglia
- Aix-Marseille University, Inserm, Theories and Approaches of Genomic Complexity (TAGC), Equipe labellisée Ligue, UMR1090, 13288 Marseille, France
| | - Hervé Dombret
- Université Paris Diderot, Institut Universitaire d'Hématologie, EA-3518, Assistance Publique-Hôpitaux de Paris, University Hospital Saint-Louis, 75010 Paris, France
| | - Norbert Ifrah
- PRES LUNAM, CHU Angers service des Maladies du Sang et INSERM U 892, 49933 Angers, France
| | - Elizabeth Macintyre
- Université de Paris (Descartes), Institut Necker -Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75743 Paris, France
| | - Pavlo Lutsik
- Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,German Cancer Research Consortium (DKTK), 69120 Heidelberg, Germany
| | - Nicolas Boissel
- Université Paris Diderot, Institut Universitaire d'Hématologie, EA-3518, Assistance Publique-Hôpitaux de Paris, University Hospital Saint-Louis, 75010 Paris, France
| | - Christoph Plass
- Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany. .,German Cancer Research Consortium (DKTK), 69120 Heidelberg, Germany
| | - Vahid Asnafi
- Université de Paris (Descartes), Institut Necker -Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75743 Paris, France.
| |
Collapse
|
22
|
Maćkowska N, Drobna-Śledzińska M, Witt M, Dawidowska M. DNA Methylation in T-Cell Acute Lymphoblastic Leukemia: In Search for Clinical and Biological Meaning. Int J Mol Sci 2021; 22:ijms22031388. [PMID: 33573325 PMCID: PMC7866817 DOI: 10.3390/ijms22031388] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 12/21/2022] Open
Abstract
Distinct DNA methylation signatures, related to different prognosis, have been observed across many cancers, including T-cell acute lymphoblastic leukemia (T-ALL), an aggressive hematological neoplasm. By global methylation analysis, two major phenotypes might be observed in T-ALL: hypermethylation related to better outcome and hypomethylation, which is a candidate marker of poor prognosis. Moreover, DNA methylation holds more than a clinical meaning. It reflects the replicative history of leukemic cells and most likely different mechanisms underlying leukemia development in these T-ALL subtypes. The elucidation of the mechanisms and aberrations specific to (epi-)genomic subtypes might pave the way towards predictive diagnostics and precision medicine in T-ALL. We present the current state of knowledge on the role of DNA methylation in T-ALL. We describe the involvement of DNA methylation in normal hematopoiesis and T-cell development, focusing on epigenetic aberrations contributing to this leukemia. We further review the research investigating distinct methylation phenotypes in T-ALL, related to different outcomes, pointing to the most recent research aimed to unravel the biological mechanisms behind differential methylation. We highlight how technological advancements facilitated broadening the perspective of the investigation into DNA methylation and how this has changed our understanding of the roles of this epigenetic modification in T-ALL.
Collapse
|