1
|
Park R, Chung CH. Advanced Human Papillomavirus-Negative Head and Neck Squamous Cell Carcinoma: Unmet Need and Emerging Therapies. Mol Cancer Ther 2024; 23:1717-1730. [PMID: 39301607 PMCID: PMC11612620 DOI: 10.1158/1535-7163.mct-24-0281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/22/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
Despite notable progress in the treatment of advanced head and neck squamous cell carcinoma (HNSCC), survival remains poor in patients with recurrent and/or metastatic (R/M) human papillomavirus (HPV)-negative HNSCC. Worse outcomes in patients who are HPV-negative may be partly related to loss of cell-cycle regulators and tumor suppressors as well as a noninflamed and hypoxic tumor microenvironment, both of which contribute to treatment resistance and disease progression. Anti-programmed cell death protein 1-based regimens as current standard-of-care treatment for R/M HNSCC are associated with durable responses in a limited number of patients. The anti-EGFR mAb, cetuximab, has antitumor activity in this treatment setting, but responses are short-lived and inevitably curtailed due to treatment resistance. Crosstalk between the EGFR and hepatocyte growth factor-dependent mesenchymal-epithelial transition (c-MET) receptor tyrosine kinase pathway is a known mechanism of resistance to cetuximab. Dual targeting of EGFR and c-MET pathways may overcome resistance to cetuximab in patients with HPV-negative HNSCC. Here, we review clinical data of treatments evaluated in patients with R/M HPV-negative HNSCC and highlight the potential role of combining hepatocyte growth factor/c-MET and EGFR pathway inhibitors to overcome cetuximab resistance in this population.
Collapse
Affiliation(s)
- Robin Park
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Christine H. Chung
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
2
|
Marzban S, Srivastava S, Kartika S, Bravo R, Safriel R, Zarski A, Anderson ARA, Chung CH, Amelio AL, West J. Spatial interactions modulate tumor growth and immune infiltration. NPJ Syst Biol Appl 2024; 10:106. [PMID: 39349537 PMCID: PMC11442770 DOI: 10.1038/s41540-024-00438-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/10/2024] [Indexed: 10/02/2024] Open
Abstract
Direct observation of tumor-immune interactions is unlikely in tumors with currently available technology, but computational simulations based on clinical data can provide insight to test hypotheses. It is hypothesized that patterns of collagen evolve as a mechanism of immune escape, but the exact nature of immune-collagen interactions is poorly understood. Spatial data quantifying collagen fiber alignment in squamous cell carcinomas indicates that late-stage disease is associated with highly aligned fibers. Our computational modeling framework discriminates between two hypotheses: immune cell migration that moves (1) parallel or (2) perpendicular to collagen fiber orientation. The modeling recapitulates immune-extracellular matrix interactions where collagen patterns provide immune protection, leading to an emergent inverse relationship between disease stage and immune coverage. Here, computational modeling provides important mechanistic insights by defining a kernel cell-cell interaction function that considers a spectrum of local (cell-scale) to global (tumor-scale) spatial interactions. Short-range interaction kernels provide a mechanism for tumor cell survival under conditions with strong Allee effects, while asymmetric tumor-immune interaction kernels lead to poor immune response. Thus, the length scale of tumor-immune interaction kernels drives tumor growth and infiltration.
Collapse
Affiliation(s)
- Sadegh Marzban
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Sonal Srivastava
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Sharon Kartika
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, India
| | - Rafael Bravo
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Rachel Safriel
- High School Internship Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Aidan Zarski
- High School Internship Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Alexander R A Anderson
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Christine H Chung
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Antonio L Amelio
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Jeffrey West
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.
| |
Collapse
|
3
|
Park R, Li J, Slebos RJC, Chaudhary R, Poole MI, Ferraris C, Farinhas J, Hernandez-Prera J, Kirtane K, Teer JK, Song X, Hall MS, Tasoulas J, Amelio AL, Chung CH. Phase Ib trial of IRX-2 plus durvalumab in patients with recurrent and/or metastatic head and neck squamous cell carcinoma. Oral Oncol 2024; 154:106866. [PMID: 38820888 DOI: 10.1016/j.oraloncology.2024.106866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/28/2024] [Accepted: 05/19/2024] [Indexed: 06/02/2024]
Abstract
OBJECTIVES IRX-2 is a multi-cytokine immune-activating agent with anti-tumor activity in non-metastatic head and neck squamous cell carcinoma (HNSCC). Here, we evaluated combined IRX-2 and durvalumab in patients with recurrent and/or metastatic HNSCC. MATERIALS AND METHODS This was a phase Ib trial consisting of dose escalation and expansion. Primary endpoints were safety and biomarkers to assess the immune response in the tumor microenvironment including significant increases in PD-L1 expression and CD8 + tumor infiltrating lymphocytes (TIL) comparing pre- and on-treatment tumor biopsies. Secondary endpoints were objective response rates (ORR) and survival outcomes. RESULTS Sixteen patients were evaluable for response, and nine patients were evaluable for biomarkers. Thirteen patients (68 %) had exposure to prior anti-PD-1 therapy. No dose-limiting or grade ≥ 3 treatment-related adverse events were observed. On-treatment biopsies showed significantly increased PD-L1 (p = 0.005), CD3+ (p = 0.020), CD4+ (p = 0.022), and CD8 + T cells (p = 0.017) compared to pre-treatment. Median overall survival and progression-free survival (PFS) were 6.18 months (95 % CI, 2.66-8.61) and 2.53 months (95 % CI, 1.81-4.04), respectively. One patient had an objective response (ORR, 5.3 %) with an ongoing PFS of > 25 months. Disease control rate was 42 %. The responder harbored an ARID1A variant of unknown significance (VUS) that was predicted to bind her HLA-I alleles with a higher affinity than the reference peptide. CONCLUSIONS IRX-2 and durvalumab were safe and elicited the evidence of immune activation in the tumor microenvironment determined by increased PD-L1 expression and CD8+ TILs. CLINICAL TRIAL REGISTRATION NUMBER NCT03381183.
Collapse
Affiliation(s)
- Robin Park
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Jiannong Li
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Robbert J C Slebos
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Ritu Chaudhary
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Maria I Poole
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Carina Ferraris
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA; Nova Southeastern University Medical School, Fort Lauderdale, FL, USA
| | - Joaquim Farinhas
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Kedar Kirtane
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Jamie K Teer
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Xiaofei Song
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - MacLean S Hall
- Department of Immunology, Moffitt Cancer Center, Tampa, FL, USA
| | - Jason Tasoulas
- Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Antonio L Amelio
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA; Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Christine H Chung
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
4
|
Diniz CHDP, Henrique T, Stefanini ACB, De Castro TB, Tajara EH. Cetuximab chemotherapy resistance: Insight into the homeostatic evolution of head and neck cancer (Review). Oncol Rep 2024; 51:80. [PMID: 38639184 PMCID: PMC11056821 DOI: 10.3892/or.2024.8739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/03/2024] [Indexed: 04/20/2024] Open
Abstract
The complex evolution of genetic alterations in cancer that occurs in vivo is a selective process involving numerous factors and mechanisms. Chemotherapeutic agents that prevent the growth and spread of cancer cells induce selective pressure, leading to rapid artificial selection of resistant subclones. This rapid evolution is possible because antineoplastic drugs promote alterations in tumor‑cell metabolism, thus creating a bottleneck event. The few resistant cells that survive in this new environment obtain differential reproductive success that enables them to pass down the newly selected resistant gene pool. The present review aims to summarize key findings of tumor evolution, epithelial‑mesenchymal transition and resistance to cetuximab therapy in head and neck squamous cell carcinoma.
Collapse
Affiliation(s)
- Carlos Henrique De Paula Diniz
- Department of Molecular Biology, School of Medicine of São José do Rio Preto-FAMERP, São José do Rio Preto, São Paulo, SP 15090-000, Brazil
| | - Tiago Henrique
- Department of Molecular Biology, School of Medicine of São José do Rio Preto-FAMERP, São José do Rio Preto, São Paulo, SP 15090-000, Brazil
| | - Ana Carolina B. Stefanini
- Department of Molecular Biology, School of Medicine of São José do Rio Preto-FAMERP, São José do Rio Preto, São Paulo, SP 15090-000, Brazil
- Department of Experimental Research, Albert Einstein Education and Research Israeli Institute, IIEPAE, São Paulo, SP 05652-900, Brazil
| | - Tialfi Bergamin De Castro
- Department of Molecular Biology, School of Medicine of São José do Rio Preto-FAMERP, São José do Rio Preto, São Paulo, SP 15090-000, Brazil
- Microbial Pathogenesis Department, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Eloiza H. Tajara
- Department of Molecular Biology, School of Medicine of São José do Rio Preto-FAMERP, São José do Rio Preto, São Paulo, SP 15090-000, Brazil
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP 05508-090, Brazil
| |
Collapse
|
5
|
Marzban S, Srivastava S, Kartika S, Bravo R, Safriel R, Zarski A, Anderson A, Chung CH, Amelio AL, West J. Spatial interactions modulate tumor growth and immune infiltration. RESEARCH SQUARE 2024:rs.3.rs-3962451. [PMID: 38826398 PMCID: PMC11142313 DOI: 10.21203/rs.3.rs-3962451/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Lenia, a cellular automata framework used in artificial life, provides a natural setting to implement mathematical models of cancer incorporating features such as morphogenesis, homeostasis, motility, reproduction, growth, stimuli response, evolvability, and adaptation. Historically, agent-based models of cancer progression have been constructed with rules that govern birth, death and migration, with attempts to map local rules to emergent global growth dynamics. In contrast, Lenia provides a flexible framework for considering a spectrum of local (cell-scale) to global (tumor-scale) dynamics by defining an interaction kernel governing density-dependent growth dynamics. Lenia can recapitulate a range of cancer model classifications including local or global, deterministic or stochastic, non-spatial or spatial, single or multi-population, and off or on-lattice. Lenia is subsequently used to develop data-informed models of 1) single-population growth dynamics, 2) multi-population cell-cell competition models, and 3) cell migration or chemotaxis. Mathematical modeling provides important mechanistic insights. First, short-range interaction kernels provide a mechanism for tumor cell survival under conditions with strong Allee effects. Next, we find that asymmetric interaction tumor-immune kernels lead to poor immune response. Finally, modeling recapitulates immune-ECM interactions where patterns of collagen formation provide immune protection, indicated by an emergent inverse relationship between disease stage and immune coverage.
Collapse
Affiliation(s)
- Sadegh Marzban
- Integrated Mathematical Oncology Dept., H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Sonal Srivastava
- Dept. of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Sharon Kartika
- Dept. of Biological Sciences, Indian Institute of Science Education and Research Kolkata
| | - Rafael Bravo
- Integrated Mathematical Oncology Dept., H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Rachel Safriel
- High School Internship Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Aidan Zarski
- High School Internship Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Alexander Anderson
- Integrated Mathematical Oncology Dept., H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Christine H. Chung
- Dept. of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Antonio L. Amelio
- Dept. of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Dept. of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Jeffrey West
- Integrated Mathematical Oncology Dept., H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| |
Collapse
|
6
|
Marzban S, Srivastava S, Kartika S, Bravo R, Safriel R, Zarski A, Anderson A, Chung CH, Amelio AL, West J. Spatial interactions modulate tumor growth and immune infiltration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575036. [PMID: 38370722 PMCID: PMC10871273 DOI: 10.1101/2024.01.10.575036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Direct observation of immune cell trafficking patterns and tumor-immune interactions is unlikely in human tumors with currently available technology, but computational simulations based on clinical data can provide insight to test hypotheses. It is hypothesized that patterns of collagen formation evolve as a mechanism of immune escape, but the exact nature of the interaction between immune cells and collagen is poorly understood. Spatial data quantifying the degree of collagen fiber alignment in squamous cell carcinomas indicates that late stage disease is associated with highly aligned fibers. Here, we introduce a computational modeling framework (called Lenia) to discriminate between two hypotheses: immune cell migration that moves 1) parallel or 2) perpendicular to collagen fiber orientation. The modeling recapitulates immune-ECM interactions where collagen patterns provide immune protection, leading to an emergent inverse relationship between disease stage and immune coverage. We also illustrate the capabilities of Lenia to model the evolution of tumor progression and immune predation. Lenia provides a flexible framework for considering a spectrum of local (cell-scale) to global (tumor-scale) dynamics by defining a kernel cell-cell interaction function that governs tumor growth dynamics under immune predation with immune cell migration. Mathematical modeling provides important mechanistic insights into cell interactions. Short-range interaction kernels provide a mechanism for tumor cell survival under conditions with strong Allee effects, while asymmetric tumor-immune interaction kernels lead to poor immune response. Thus, the length scale of tumor-immune interactions drives tumor growth and infiltration.
Collapse
Affiliation(s)
- Sadegh Marzban
- Integrated Mathematical Oncology Dept., H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Sonal Srivastava
- Dept. of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Sharon Kartika
- Dept. of Biological Sciences, Indian Institute of Science Education and Research Kolkata
| | - Rafael Bravo
- Integrated Mathematical Oncology Dept., H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Rachel Safriel
- High School Internship Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Aidan Zarski
- High School Internship Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Alexander Anderson
- Integrated Mathematical Oncology Dept., H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Christine H. Chung
- Dept. of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Antonio L. Amelio
- Dept. of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Dept. of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Jeffrey West
- Integrated Mathematical Oncology Dept., H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| |
Collapse
|
7
|
Pandey S, Cholak ME, Yadali R, Sosman JA, Tetreault MP, Fang D, Pollack SM, Gnjatic S, Obeng RC, Lyerly HK, Sonabend AM, Guevara-Patiño JA, Butterfield LH, Zhang B, Maecker HT, Le Poole IC. Immune Assessment Today: Optimizing and Standardizing Efforts to Monitor Immune Responses in Cancer and Beyond. Cancers (Basel) 2024; 16:475. [PMID: 38339227 PMCID: PMC10854499 DOI: 10.3390/cancers16030475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
As part of a symposium, current and former directors of Immune Monitoring cores and investigative oncologists presented insights into the past, present and future of immune assessment. Dr. Gnjatic presented a classification of immune monitoring technologies ranging from universally applicable to experimental protocols, while emphasizing the need for assay harmonization. Dr. Obeng discussed physiologic differences among CD8 T cells that align with anti-tumor responses. Dr. Lyerly presented the Soldano Ferrone lecture, commemorating the passionate tumor immunologist who inspired many, and covered a timeline of monitoring technology development and its importance to immuno-oncology. Dr. Sonabend presented recent achievements in glioblastoma treatment, accentuating the range of monitoring techniques that allowed him to refine patient selection for clinical trials. Dr. Guevara-Patiño focused on hypoxia within the tumor environment and stressed that T cell viability is not to be confused with functionality. Dr. Butterfield accentuated monitoring of dendritic cell metabolic (dys)function as a determinant for tumor vaccine success. Lectures were interspersed with select abstract presentations. To summarize the concepts, Dr. Maecker from Stanford led an informative forum discussion, pointing towards the future of immune monitoring. Immune monitoring continues to be a guiding light towards effective immunotherapeutic strategies.
Collapse
Affiliation(s)
- Surya Pandey
- Immunotherapy Assessment Core, Chicago, IL 60611, USA; (S.P.); (M.E.C.); (R.Y.); (B.Z.)
| | - Meghan E. Cholak
- Immunotherapy Assessment Core, Chicago, IL 60611, USA; (S.P.); (M.E.C.); (R.Y.); (B.Z.)
| | - Rishita Yadali
- Immunotherapy Assessment Core, Chicago, IL 60611, USA; (S.P.); (M.E.C.); (R.Y.); (B.Z.)
| | - Jeffrey A. Sosman
- Lurie Comprehensive Cancer Center, Northwestern University at Chicago, Chicago, IL 60611, USA; (J.A.S.); (M.-P.T.); (D.F.); (S.M.P.); (A.M.S.)
| | - Marie-Pier Tetreault
- Lurie Comprehensive Cancer Center, Northwestern University at Chicago, Chicago, IL 60611, USA; (J.A.S.); (M.-P.T.); (D.F.); (S.M.P.); (A.M.S.)
| | - Deyu Fang
- Lurie Comprehensive Cancer Center, Northwestern University at Chicago, Chicago, IL 60611, USA; (J.A.S.); (M.-P.T.); (D.F.); (S.M.P.); (A.M.S.)
| | - Seth M. Pollack
- Lurie Comprehensive Cancer Center, Northwestern University at Chicago, Chicago, IL 60611, USA; (J.A.S.); (M.-P.T.); (D.F.); (S.M.P.); (A.M.S.)
| | - Sacha Gnjatic
- Human Immune Monitoring Center, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Rebecca C. Obeng
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - H. Kim Lyerly
- Center for Applied Therapeutics, Duke Cancer Center, Duke University, Durham, NC 27710, USA;
| | - Adam M. Sonabend
- Lurie Comprehensive Cancer Center, Northwestern University at Chicago, Chicago, IL 60611, USA; (J.A.S.); (M.-P.T.); (D.F.); (S.M.P.); (A.M.S.)
| | | | - Lisa H. Butterfield
- Merck Research Laboratories, Boston, MA 02115, USA;
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143, USA
| | - Bin Zhang
- Immunotherapy Assessment Core, Chicago, IL 60611, USA; (S.P.); (M.E.C.); (R.Y.); (B.Z.)
- Lurie Comprehensive Cancer Center, Northwestern University at Chicago, Chicago, IL 60611, USA; (J.A.S.); (M.-P.T.); (D.F.); (S.M.P.); (A.M.S.)
| | - Holden T. Maecker
- Human Immune Monitoring Center, Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - I. Caroline Le Poole
- Immunotherapy Assessment Core, Chicago, IL 60611, USA; (S.P.); (M.E.C.); (R.Y.); (B.Z.)
- Lurie Comprehensive Cancer Center, Northwestern University at Chicago, Chicago, IL 60611, USA; (J.A.S.); (M.-P.T.); (D.F.); (S.M.P.); (A.M.S.)
| |
Collapse
|
8
|
Hu M, Coleman S, Fadlullah MZH, Spakowicz D, Chung CH, Tan AC. Deciphering the Tumor-Immune-Microbe Interactions in HPV-Negative Head and Neck Cancer. Genes (Basel) 2023; 14:1599. [PMID: 37628651 PMCID: PMC10454300 DOI: 10.3390/genes14081599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Patients with human papillomavirus-negative head and neck squamous cell carcinoma (HPV-negative HNSCC) have worse outcomes than HPV-positive HNSCC. In our study, we used a published dataset and investigated the microbes enriched in molecularly classified tumor groups. We showed that microbial signatures could distinguish Hypoxia/Immune phenotypes similar to the gene expression signatures. Furthermore, we identified three highly-correlated microbes with immune processes that are crucial for immunotherapy response. The survival of patients in a molecularly heterogenous group shows significant differences based on the co-abundance of the three microbes. Overall, we present evidence that tumor-associated microbiota are critical components of the tumor ecosystem that may impact tumor microenvironment and immunotherapy response. The results of our study warrant future investigation to experimentally validate the conclusions, which have significant impacts on clinical decision-making, such as treatment selection.
Collapse
Affiliation(s)
- Min Hu
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; (M.H.); (S.C.); (M.Z.H.F.)
| | - Samuel Coleman
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; (M.H.); (S.C.); (M.Z.H.F.)
| | | | - Daniel Spakowicz
- Pelotonia Institute for Immuno-Oncology and Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA;
| | - Christine H. Chung
- Department of Head and Neck Endocrine Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Aik Choon Tan
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; (M.H.); (S.C.); (M.Z.H.F.)
- Department of Biomedical Informatics, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|