1
|
Saylor EM, Kouba AJ, Boudreau MR, Songsasen N, Kouba CK. Efficacy of salmon GnRHa, Ovaprim® and hCG for hormonal stimulation of spermiation in the Fowler's toad ( Anaxyrus fowleri). CONSERVATION PHYSIOLOGY 2024; 12:coae056. [PMID: 39170830 PMCID: PMC11337219 DOI: 10.1093/conphys/coae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 05/20/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024]
Abstract
Ex situ amphibian populations can experience reproductive dysfunction due to the absence of environmental cues that trigger reproductive events. Assisted reproductive technologies (ART) for amphibians, specifically exogenous hormone regimens, can circumvent these external signals to induce gametogenesis and gamete release. Currently, the use of the mammalian reproductive hormones gonadotropin-releasing hormone (GnRH) and human chorionic gonadotropin (hCG) are used in a species-specific manner to stimulate amphibian breeding. Hormones or hormone mixtures that are effective in all breeding scenarios would provide the best option for conservation practitioners and some commercial products are already in use for breeding other ectotherms. Ovaprim®, which contains salmon GnRH analogue (sGnRHa) and the dopamine antagonist domperidone (DOM), is effective in fish aquaculture and may be effective for amphibians. To test this hypothesis, we treated Fowler's toads (Anaxyrus fowleri) with either sGnRHa alone, a high or low dose of Ovaprim® or hCG. We then compared spermiation response, sperm quantity and quality parameters, and changes in animal mass over time within each treatment. We found administration of Ovaprim® resulted in more males producing sperm with better motility compared to administration of sGnRHa alone. In addition, the Ovaprim® and sGnRHa treatments resulted in lower response rates, lower sperm motilities, more abnormal sperm, and higher aggregations of sperm compared to the hCG treatment. Furthermore, Ovaprim®-treated males gained significant mass, suggesting an anti-diuretic effect of DOM. Together, these results show that neither Ovaprim® nor sGnRHa, at the concentrations tested, are likely suitable replacements for hCG in ex situ bufonid breeding programmes and that hormone mixtures developed for fish may have limited transferability to new world toad species.
Collapse
Affiliation(s)
- Erin M Saylor
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, 32 Creelman St., Mississippi State University, Mississippi State, MS 39762, USA
| | - Andrew J Kouba
- Department of Wildlife, Fisheries and Aquaculture, 775 Stone Blvd, Mississippi State University, Mississippi State, MS 39762, USA
| | - Melanie R Boudreau
- Department of Wildlife, Fisheries and Aquaculture, 775 Stone Blvd, Mississippi State University, Mississippi State, MS 39762, USA
| | - Nucharin Songsasen
- Smithsonian National Zoo and Conservation Biology Institute, 1500 Remount Rd, Front Royal, VA 22630, USA
| | - Carrie K Kouba
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, 32 Creelman St., Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
2
|
Jadhao AG, Pinelli C, D'Aniello B, Tsutsui K. Gonadotropin-inhibitory hormone (GnIH) in the amphibian brain and its relationship with the gonadotropin releasing hormone (GnRH) system: An overview. Gen Comp Endocrinol 2017; 240:69-76. [PMID: 27667155 DOI: 10.1016/j.ygcen.2016.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 09/02/2016] [Accepted: 09/14/2016] [Indexed: 01/28/2023]
Abstract
It is well known that the hypothalamic neuropeptide gonadotropin-releasing hormone (GnRH) plays an important role as a primary factor regulating gonadotropin secretion in reproductive processes in vertebrates. The discovery of the presence of a gonadotropin-inhibitory hormone (GnIH) in the brains of birds has further contributed to our understanding of the reproduction control by the brain. GnIH plays a key role in inhibition of reproduction and acts on the pituitary gland and GnRH neurons via a novel G protein-coupled receptor (GPR147). GnIH decreases gonadotropin synthesis and release, thus inhibiting gonadal development and maintenance. The GnRH and GnIH neuronal peptidergic systems are well reported in mammals and birds, but limited information is available regarding their presence and localization in the brains of other vertebrate species, such as reptiles, amphibians and fishes. The aim of this review is to compile and update information on the localization of GnRH and GnIH neuronal systems, with a particular focus on amphibians, summarizing the neuroanatomical distribution of GnIH and GnRH and emphasizing the discovery of GnIH based on RFamide peptides and GnIH orthologous peptides found in other vertebrates and their functional significance.
Collapse
Affiliation(s)
- Arun G Jadhao
- Department of Zoology, RTM Nagpur University Campus, Nagpur 440 033, MS, India.
| | - Claudia Pinelli
- Department of Environmental, Biological, and Pharmaceutical Sciences & Technologies, Second University of Naples, 81100 Caserta, Italy
| | - Biagio D'Aniello
- Department of Biology, University of Naples "Federico II", 80126 Napoli, Italy
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Centre for Medical Life Science, Waseda University, Tokyo 162-8480, Japan
| |
Collapse
|
3
|
Morona R, López JM, González A. Localization of Calbindin-D28k and Calretinin in the Brain of Dermophis Mexicanus (Amphibia: Gymnophiona) and Its Bearing on the Interpretation of Newly Recognized Neuroanatomical Regions. BRAIN, BEHAVIOR AND EVOLUTION 2011; 77:231-69. [DOI: 10.1159/000329521] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 05/12/2011] [Indexed: 12/13/2022]
|
4
|
López JM, Moreno N, Morona R, Muñoz M, Domínguez L, González A. Distribution of somatostatin-like immunoreactivity in the brain of the caecilian Dermophis mexicanus (Amphibia: Gymnophiona): comparative aspects in amphibians. J Comp Neurol 2007; 501:413-30. [PMID: 17245705 DOI: 10.1002/cne.21244] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The organization of the somatostatin-like-immunoreactive (SOM-ir) structures in the brain of anuran and urodele amphibians has been well documented, and significant differences were noted between the two amphibian orders. However, comparable data are not available for the third order of amphibians, the gymnophionans (caecilians). In the present study, we analyzed the anatomical distribution of SOM-ir cells and fibers in the brain of the gymnophionan Dermophis mexicanus. In addition, because of its known relationship with catecholamines in other vertebrates, double immunostaining for SOM and tyrosine hydroxylase was used to investigate this situation in the gymnophionan. Abundant SOM-ir cell bodies and fibers were widely distributed throughout the brain. In the telencephalon, pallial and subpallial cells were labeled, being most numerous in the medial pallium and amygdaloid region. Most of the SOM-ir neurons were found in the preoptic area and hypothalamus and showed a clear projection to the median eminence. Less conspicuously, SOM-ir structures were found in the thalamus, tectum, tegmentum, and reticular formation. Both SOM-ir cells and fibers were demonstrated in the spinal cord. The double-immunohistofluorescence technique revealed that catecholaminergic neurons and SOM-ir cells are largely intermingled in many brain regions but form totally separated populations. Many differences were found between the distribution of SOM-ir structures in Dermophis and that in anurans or urodeles. Some features were shared only with anurans, such as the abundant pallial SOM-ir cells, whereas others were common only to urodeles, such as the organization of the hypothalamohypophysial SOM-ir system. In addition, some characteristics were found only in Dermophis, such as the localization of the SOM-ir spinal cells and the lack of colocalization of catecholamines and SOM throughout the brain. Therefore, any conclusions concerning the SOM system in amphibians are incomplete without considering evidence for gymnophionans.
Collapse
Affiliation(s)
- Jesús M López
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
5
|
López JM, Moreno N, Morona R, González A. Distribution of Neuropeptide FF-Like Immunoreactivity in the Brain of Dermophis mexicanus (Amphibia; Gymnophiona): Comparison with FMRFamide Immunoreactivity. BRAIN, BEHAVIOR AND EVOLUTION 2006; 67:150-64. [PMID: 16415570 DOI: 10.1159/000090979] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Accepted: 09/29/2005] [Indexed: 11/19/2022]
Abstract
Neuropeptide FF (NPFF) is an FMRFamide-related peptide widely distributed in the mammalian brain. NPFF immunohistochemistry labeled cell bodies in a few locations and dense fiber networks throughout the brain. Recently, the distribution of NPFF immunoreactive (NPFF-ir) cells and fibers in the brain of anuran and urodele amphibians was studied and, as in mammals, significant species differences were noted. To further assess general and derived features of the NPFF-containing neuron system in amphibians, we have investigated the distribution of NPFF-ir cell bodies and fibers in the brain of the gymnophionan Dermophis mexicanus by means of an antiserum against bovine NPFF. This distribution was compared to that of FMRFamide immunoreactivity. Major traits shared with anurans and urodeles were the abundant fiber labeling in the ventral telencephalon, hypothalamus, isthmus, ventrolateral medulla and dorsal spinal cord. In addition, in the three amphibian orders the majority of the NPFF-ir cells were located in the preoptic-hypothalamic region. However, distinct particular features were present in the gymnophionan such as the lack of NPFF-ir cells in the telencephalon, brainstem and spinal cord and the absence of NPFF-ir fibers in the hypophysis and the olfactory bulbs. This pattern was distinct from that observed for FMRFamide distribution. Striking differences were noted in the pallium, caudal hypothalamus and midbrain tegmentum where FMRFamide-containing cells were localized. The present results in Dermophis support the idea that data from gymnophionans must be included when stating the amphibian condition of a given system because important variations are obvious when gymnophionans are compared with anurans and urodeles.
Collapse
Affiliation(s)
- Jesús M López
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | | | | | | |
Collapse
|
6
|
Wilczynski W, Lynch KS, O'Bryant EL. Current research in amphibians: studies integrating endocrinology, behavior, and neurobiology. Horm Behav 2005; 48:440-50. [PMID: 16023646 PMCID: PMC2581512 DOI: 10.1016/j.yhbeh.2005.06.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 05/24/2005] [Accepted: 06/04/2005] [Indexed: 11/20/2022]
Abstract
Amphibian behavioral endocrinology has focused on reproductive social behavior and communication in frogs and newts. Androgens and estrogens are critical for the expression of male and female behavior, respectively, and their effects are relatively clear. Corticosteroids have significant modulatory effects on the behavior of both sexes, as does the peptide neuromodulator arginine vasotocin in males, but their effects and interactions with gonadal steroids are often complex and difficult to understand. Recent work has shown that the gonadal hormones and social behavior are mutually reinforcing: engaging in social interactions increases hormone levels just as increasing hormone levels change behavior. The reciprocal interactions of hormones and behavior, as well as the complex interactions among gonadal steroids, adrenal steroids, and peptide hormones have implications for the maintenance and evolution of natural social behavior, and suggest that a deeper understanding of both endocrine mechanisms and social behavior would arise from field studies or other approaches that combine behavioral endocrinology with behavioral ecology.
Collapse
Affiliation(s)
- Walter Wilczynski
- Department of Psychology, University of Texas, Austin, TX 78712, USA.
| | | | | |
Collapse
|
7
|
Burmeister SS, Wilczynski W. Social signals regulate gonadotropin-releasing hormone neurons in the green treefrog. BRAIN, BEHAVIOR AND EVOLUTION 2004; 65:26-32. [PMID: 15489562 PMCID: PMC2581501 DOI: 10.1159/000081108] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Accepted: 04/30/2004] [Indexed: 12/31/2022]
Abstract
Animals coordinate their physiological state with external cues to appropriately time reproduction. These external cues exert effects through influences on the gonadotropin-releasing hormone neurons (GnRH), at the apex of the hypothalamus-pituitary-gonad (HPG) axis. In green treefrogs, mating calls are important regulators of reproductive behavior and physiology. Reception of mating calls causes an increase in androgen levels, and androgens promote the production of mating calls, demonstrating a mutual influence between the communication and endocrine systems. In order to investigate the central nervous system correlates of social regulation of the HPG axis in green treefrogs, we exposed males to a mating chorus or a control stimulus (tones), counted the resulting number of septo-preoptic GnRH-immunoreactive cells (GnRH-ir), and measured changes in plasma androgens. We found that reception of the mating chorus caused an increase in the number of GnRH-ir cells. As previously shown, we also found that the reception of the mating chorus resulted in higher androgen levels, suggesting that the higher GnRH-ir cell number represents increased GnRH production and release. We suggest that mating calls are an important supplementary cue that promotes GnRH production and release within the context of GnRH regulation by seasonal cues. Previous studies have proposed a neuroanatomical link between the anuran auditory system and GnRH neurons. Our results demonstrate a functional role for this proposed sensory-endocrine circuit, and show for the first time an influence of acoustic signals on GnRH neurons.
Collapse
|
8
|
Medina MF, Ramos I, Crespo CA, González-Calvar S, Fernández SN. Changes in serum sex steroid levels throughout the reproductive cycle of Bufo arenarum females. Gen Comp Endocrinol 2004; 136:143-51. [PMID: 15028517 DOI: 10.1016/j.ygcen.2003.11.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2002] [Revised: 11/14/2003] [Accepted: 11/26/2003] [Indexed: 11/22/2022]
Abstract
The changes in the serum levels of the sexual steroids estradiol-17beta (E(2)), testosterone (T), dihydrotestosterone (DHT), and progesterone (P) in Bufo arenarum females were determined by radioimmunoassay (RIA) during 3 consecutive cycles (1999-2001). The serum concentrations of T and DHT, which showed a close parallelism during the annual reproductive cycle, exhibited the highest levels during the preovulatory period, when oogenesis is advanced, while lowest serum levels of these hormones were found during the ovulatory period. The data obtained for E(2) showed a pattern contrary to that determined for androgens. The maximum E(2) concentrations detected in the early postovulatory period might be associated with vitellogenesis and follicular growth. Lowest E(2) concentrations were reached during the period in which B. arenarum undergoes its final hibernation stage. Serum P showed a peak during the preovulatoy period, related to the induction of nuclear maturation in full grown oocytes. A strong decrease in the levels of the circulating hormones was observed after ovariectomy. Our results showed that, out of the four hormones examined, T and DHT were the best indicators of ovarian and oviductal stage, as shown by the strong positive correlation found between androgen levels and organ weight, while E(2) showed a weak negative correlation with ovarian and oviductal weight.
Collapse
Affiliation(s)
- Marcela F Medina
- Department of Developmental Biology, National Council for Scientific and Technical Research, National University of Tucumán, Chacabuco 461, Tucumán 4000, Argentina.
| | | | | | | | | |
Collapse
|
9
|
González A, Moreno N, López JM. Distribution of NADPH-diaphorase/nitric oxide synthase in the brain of the caecilian Dermophis mexicanus (amphibia: gymnophiona): comparative aspects in amphibians. BRAIN, BEHAVIOR AND EVOLUTION 2003; 60:80-100. [PMID: 12373060 DOI: 10.1159/000065204] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The organization of nitrergic systems in the brains of anuran and urodele amphibians was recently studied and significant differences were noted between both amphibian orders. However, comparable data are not available for the third order of amphibians, the gymnophionans (caecilians). In the present study we have investigated the distribution of neuronal elements that express nitric oxide synthase (NOS) in the brain of the gymnophionan amphibian Dermophis mexicanus by means of immunohistochemistry with specific antibodies against NOS and enzyme histochemistry for NADPH-diaphorase. Both techniques yielded identical results and were equally suitable to demonstrate the nitrergic system. In addition, they were useful tools in the identification of cell groups and brain structures, otherwise indistinct in the brains of caecilians. The distribution of nitrergic structures observed in Dermophis conforms to the overall amphibian pattern but numerous distinct peculiarities were also noted. These included a dense innervation of the olfactory bulbs but a lack of reactivity in olfactory and vomeronasal fibers and glomeruli. A large population of nitrergic cells in the striatum and the presence of thalamic neurons, as well as the specific distribution of nitrergic cells in the isthmic region, are some of the differential features in the gymnophionan brain. Given the variability among species in the same class of vertebrates any discussion including amphibians should also include evidence for gymnophionans.
Collapse
Affiliation(s)
- Augustín González
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Spain.
| | | | | |
Collapse
|
10
|
González A, López JM, Sánchez-Camacho C, Marín O. Localization of choline acetyltransferase (ChAT) immunoreactivity in the brain of a caecilian amphibian, Dermophis mexicanus (Amphibia: Gymnophiona). J Comp Neurol 2002; 448:249-67. [PMID: 12115707 DOI: 10.1002/cne.10233] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The organization of the cholinergic system in the brain of anuran and urodele amphibians was recently studied, and significant differences were noted between both amphibian orders. However, comparable data are not available for the third order of amphibians, the limbless gymnophionans (caecilians). To further assess general and derived features of the cholinergic system in amphibians, we have investigated the distribution of choline acetyltransferase immunoreactive (ChAT-ir) cell bodies and fibers in the brain of the gymnophionan Dermophis mexicanus. This distribution showed particular features of gymnophionans such as the existence of a particularly large cholinergic population in the striatum, the presence of ChAT-ir cells in the mesencephalic tectum, and the organization of the cranial nerve motor nuclei. These peculiarities probably reflect major adaptations of gymnophionans to a fossorial habit. Comparison of our results with those in other vertebrates, including a segmental approach to correlate cell populations across species, shows that the general pattern of organization of cholinergic systems in vertebrates can be modified in certain species in response to adaptative processes that lead to morphological and behavioral modifications of members of a given class of vertebrates, as shown for gymnophionans.
Collapse
Affiliation(s)
- Agustín González
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|