1
|
Gellért L, Luhmann HJ, Kilb W. Axonal connections between S1 barrel, M1, and S2 cortex in the newborn mouse. Front Neuroanat 2023; 17:1105998. [PMID: 36760662 PMCID: PMC9905141 DOI: 10.3389/fnana.2023.1105998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
The development of functionally interconnected networks between primary (S1), secondary somatosensory (S2), and motor (M1) cortical areas requires coherent neuronal activity via corticocortical projections. However, the anatomical substrate of functional connections between S1 and M1 or S2 during early development remains elusive. In the present study, we used ex vivo carbocyanine dye (DiI) tracing in paraformaldehyde-fixed newborn mouse brain to investigate axonal projections of neurons in different layers of S1 barrel field (S1Bf), M1, and S2 toward the subplate (SP), a hub layer for sensory information transfer in the immature cortex. In addition, we performed extracellular recordings in neocortical slices to unravel the functional connectivity between these areas. Our experiments demonstrate that already at P0 neurons from the cortical plate (CP), layer 5/6 (L5/6), and the SP of both M1 and S2 send projections through the SP of S1Bf. Reciprocally, neurons from CP to SP of S1Bf send projections through the SP of M1 and S2. Electrophysiological recordings with multi-electrode arrays in cortical slices revealed weak, but functional synaptic connections between SP and L5/6 within and between S1 and M1. An even lower functional connectivity was observed between S1 and S2. In summary, our findings demonstrate that functional connections between SP and upper cortical layers are not confined to the same cortical area, but corticocortical connection between adjacent cortical areas exist already at the day of birth. Hereby, SP can integrate early cortical activity of M1, S1, and S2 and shape the development of sensorimotor integration at an early stage.
Collapse
|
2
|
Battefeld A, Rocha N, Stadler K, Bräuer AU, Strauss U. Distinct perinatal features of the hyperpolarization-activated non-selective cation current I(h) in the rat cortical plate. Neural Dev 2012; 7:21. [PMID: 22694806 PMCID: PMC3518177 DOI: 10.1186/1749-8104-7-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 05/10/2012] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND During neocortical development, multiple voltage- and ligand-gated ion channels are differentially expressed in neurons thereby shaping their intrinsic electrical properties. One of these voltage-gated ion channels, the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel and its current I(h), is an important regulator of neuronal excitability. Thus far, studies on an early I(h) appearance in rodent neocortex are missing or conflicting. Therefore, we focused our study on perinatal neocortical I(h) and its properties. RESULTS In the perinatal rat neocortex we observed a rapid increase in the number of neurons exhibiting I(h). Perinatal I(h) had unique properties: first, a pronounced cAMP sensitivity resulting in a marked shift of the voltage sufficient for half-maximum activation of the current towards depolarized voltages and second, an up to 10 times slower deactivation at physiological membrane potentials when compared to the one at postnatal day 30. The combination of these features was sufficient to suppress membrane resonance in our in silico and in vitro experiments. Although all four HCN subunits were present on the mRNA level we only detected HCN4, HCN3 and HCN1 on the protein level at P0. HCN1 protein at P0, however, appeared incompletely processed. At P30 glycosilated HCN1 and HCN2 dominated. By in silico simulations and heterologous co-expression experiments of a 'slow' and a 'fast' I(h) conducting HCN channel subunit in HEK293 cells, we mimicked most characteristics of the native current, pointing to a functional combination of subunit homo- or heteromeres. CONCLUSION Taken together, these data indicate a HCN subunit shift initiated in the first 24 hours after birth and implicate a prominent perinatal role of the phylogenetically older HCN3 and/or HCN4 subunits in the developing neocortex.
Collapse
Affiliation(s)
- Arne Battefeld
- Institute of Cell Biology and Neurobiology, Center for Anatomy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | | | | | | | | |
Collapse
|
3
|
Hsu CI, Ho TSY, Liou YR, Chang YC. Morphological changes and synaptogenesis of corticothalamic neurons in the somatosensory cortex of rat during perinatal development. Cereb Cortex 2010; 21:884-95. [PMID: 20802242 DOI: 10.1093/cercor/bhq156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
When rat fetuses grew from embryonic day (E) 18 to the day of birth (P0), the corticothalamic (CT) neurons, as identified by back labeling with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine (DiI), in the somatosensory cortex underwent gradual changes in the shape of their cell bodies, in their distribution in the cortical plate and in the complexity of dendritic branching. Fluorescence immunocytochemical studies indicated that in the marginal zone (MZ) the apical dendrites of the CT neurons formed contacts with horizontally oriented axons and contained putative glutamatergic, as clusters exhibiting both synaptophysin and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor GluR1 subunit immunoreactivities, and γ-aminobutyric acid (GABA)-ergic synapses, as clusters exhibiting both synaptophysin and gephyrin immunoreactivities. Quantitative analyses further revealed that during this perinatal period, the proportion of CT neurons containing glutamatergic synapses increased significantly, whereas the proportion of CT neurons containing GABAergic synapses remained virtually unchanged. Our results indicate that glutamatergic and GABAergic synapses between the CT neurons and the axons in the MZ are already formed in rat cortices as early as E18 and further suggest that the activities of the neural networks in the somatosensory cortex could be conveyed to their targets in the thalamus in rat brains at least 3 days before birth.
Collapse
Affiliation(s)
- Cheng-I Hsu
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | |
Collapse
|
4
|
Moore AR, Filipovic R, Mo Z, Rasband MN, Zecevic N, Antic SD. Electrical excitability of early neurons in the human cerebral cortex during the second trimester of gestation. Cereb Cortex 2009; 19:1795-805. [PMID: 19015375 PMCID: PMC2705693 DOI: 10.1093/cercor/bhn206] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Information about development of the human cerebral cortex (proliferation, migration, and differentiation of neurons) is largely based on postmortem histology. Physiological properties of developing human cortical neurons are difficult to access experimentally and therefore remain largely unexplored. Animal studies have shown that information about the arousal of electrical activity in individual cells within fundamental cortical zones (subventricular zone [SVZ], intermediate zone, subplate [SP], and cortical plate [CP]) is necessary for understanding normal brain development. Here we ask where, in what cortical zone, and when, in what gestational week (gw), human neurons acquire the ability to generate nerve impulses (action potentials [APs]). We performed electrical recordings from individual cells in acute brain slices harvested postmortem from the human fetal cerebral cortex (16-22 gw). Tetrodotoxin-sensitive Na(+) current occurs more frequently among CP cells and with significantly greater peak amplitudes than in SVZ. As early as 16 gw, a relatively small population of CP neurons (27%) was able to generate sodium APs upon direct current injection. Neurons located in the SP exhibited the highest level of cellular differentiation, as judged by their ability to fire repetitive APs. At 19 gw, a fraction of human CP and SP neurons possess beta IV spectrin-positive axon initial segments populated with voltage-gated sodium channels (PanNav). These results yield the first physiological characterization of developing human fetal cortical neurons with preserved morphologies in intact surrounding brain tissue.
Collapse
Affiliation(s)
- Anna R. Moore
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Radmila Filipovic
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Zhicheng Mo
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Matthew N. Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nada Zecevic
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Srdjan D. Antic
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
5
|
Guseinov AG. Mechanisms of formation of background activity of cerebral neurons in ontogenesis. J EVOL BIOCHEM PHYS+ 2007. [DOI: 10.1134/s0022093007060011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Yamada J, Okabe A, Toyoda H, Kilb W, Luhmann HJ, Fukuda A. Cl- uptake promoting depolarizing GABA actions in immature rat neocortical neurones is mediated by NKCC1. J Physiol 2004; 557:829-41. [PMID: 15090604 PMCID: PMC1665166 DOI: 10.1113/jphysiol.2004.062471] [Citation(s) in RCA: 414] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
GABA is the principal inhibitory neurotransmitter in the mature brain, but during early postnatal development the elevated [Cl(-)](i) in immature neocortical neurones causes GABA(A) receptor activation to be depolarizing. The molecular mechanisms underlying this intracellular Cl(-) accumulation remain controversial. Therefore, the GABA reversal potential (E(GABA)) or [Cl(-)](i) in early postnatal rat neocortical neurones was measured by the gramicidin-perforated patch-clamp method, and the relative expression levels of the cation-Cl(-) cotransporter mRNAs (in the same cells) were examined by semiquantitative single-cell multiplex RT-PCR to look for statistical correlations with [Cl(-)](i). The mRNA expression levels were positively (the Cl(-) accumulating Na(+),K(+)-2Cl(-) cotransporter NKCC1) or negatively (the Cl(-) extruding K(+)-Cl(-) cotransporter KCC2) correlated with [Cl(-)](i). NKCC1 mRNA expression was high in early postnatal days, but decreased during postnatal development, whereas KCC2 mRNA expression displayed the opposite pattern. [Cl(-)](i) and NKCC1 mRNA expression were each higher in cortical plate (CP) neurones than in the presumably older layer V/VI pyramidal neurones in a given slice. The pharmacological effects of bumetanide on E(GABA) were consistent with the different expression levels of NKCC1 mRNA. These data suggest that NKCC1 may play a pivotal role in the generation of GABA-mediated depolarization in immature CP cells, while KCC2 promotes the later maturation of GABAergic inhibition in the rat neocortex.
Collapse
Affiliation(s)
- Junko Yamada
- Department of Biological Information Processing, Graduate School of Electronic Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8011, Japan.
| | | | | | | | | | | |
Collapse
|
7
|
Hanganu IL, Luhmann HJ. Functional nicotinic acetylcholine receptors on subplate neurons in neonatal rat somatosensory cortex. J Neurophysiol 2004; 92:189-98. [PMID: 14999055 DOI: 10.1152/jn.00010.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The establishment of cortical synaptic circuits during early development requires the presence of subplate neurons (SPn's), a heterogeneous population of neurons capable to integrate and process synaptic information from the thalamus, cortical plate, and neighboring SPn's. An accumulation of cholinergic afferents and nicotinic acetylcholine receptors (nAChRs) has been documentated in the subplate around birth. To assess the developmental role of the cholinergic innervation onto SPn's, we used whole cell patch-clamp recordings of visually identified and biocytin-labeled SPn's in neonatal rat somatosensory cortex. Functional nAChRs were present in 92% of the investigated SPn's. Activation of postsynaptic nAChRs by local application of agonists elicited a brief membrane depolarization associated with a barrage of action potentials and large inward currents reversing around 0 mV. According to our pharmacological data, excitation of SPn's is mediated by alpha4beta2 receptors. In contrast, functional alpha7 nAChRs could not be identified on SPn's. Activation of nAChRs affected neither the spontaneous synaptic activity of SPn's nor the synaptic connections between thalamus and SPn's and within subplate. Nicotine, at concentrations reaching the developing brain by maternal smoking, induced a severe desensitization of nAChRs and an increase in the baseline noise. These results indicate that nAChR-mediated excitation of SPn's may stabilize the developing synaptic circuits and suggest the involvement of nAChRs located on SPn's in the fetal tobacco syndrome.
Collapse
Affiliation(s)
- Ileana L Hanganu
- Institute of Physiology and Pathophysiology, Johannes-Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany.
| | | |
Collapse
|
8
|
Benítez-Diaz P, Miranda-Contreras L, Mendoza-Briceño RV, Peña-Contreras Z, Palacios-Prü E. Prenatal and Postnatal Contents of Amino Acid Neurotransmitters in Mouse Parietal Cortex. Dev Neurosci 2003; 25:366-74. [PMID: 14614264 DOI: 10.1159/000073514] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2003] [Accepted: 06/21/2003] [Indexed: 11/19/2022] Open
Abstract
This study documents the variation in the amino acid neurotransmitter contents during mouse parietal cortex development, from embryonic day 13 (E13) until young adulthood, between postnatal day 21 (P21) and P30. Taurine, an inhibitory neurotransmitter and neuromodulator, is the most abundant neurotransmitter in the developing neocortex, whereas, at the adult stage, glutamate is the more prominent neurotransmitter playing an excitatory role, and GABA is the major inhibitory neurotransmitter. During the proliferative stage of neurogenesis in the mouse cerebral cortex, between E13 and E17, relatively high levels of glutamate, aspartate, taurine and glycine were detected, consistent with a possible trophic influence of these neurotransmitters during cortical development prior to synaptogenesis. Between E17 and E19, a significant decline in the contents of these neurotransmitters was observed, consistent with earlier reports of cell death in the ventricular and subventricular zones during this stage of development. During the perinatal period, a progressive increment in glutamate level was seen between E21 and P5, and then the values remained constant until the second postnatal week. Glutamate also decreased by about 25% between P11 and P15, on the other hand, aspartate diminished by about 20% between P7 and P9. These results were consistent with previous reports of histogenetic cell death during the first 2 postnatal weeks in mouse neocortex. GABA increased from the embryonic period until young adulthood, in contrast, the glycine content decreased; thus, in the adult parietal cortex, the GABA content was about 2.6-fold higher than that of glycine. During the first postnatal week, the concentrations of glutamate and GABA showed significant increments between P0 and P5, while those of aspartate and glycine remained constant. During this period, amino acids are predominantly excitatory and the cerebral cortex is vulnerable to epileptiform activity; the significant increment in taurine content between P0 and P3 suggests a neuroprotective action of taurine against excitotoxicity. At P15, coinciding with the period of maximum cortical synaptogenesis, significant increments in GABA and glycine contents were observed which could be related to the maturation of inhibitory synaptic transmission. At the young adult stage, there was a rise in the levels of both excitatory neurotransmitters, glutamate and aspartate, and a significant reduction in the contents of all three inhibitory neurotransmitters, GABA, glycine and taurine.
Collapse
Affiliation(s)
- Pedro Benítez-Diaz
- Electron Microscopy Center, University of Los Andes, Calle 32, Avs. 4 y Tulio Febres Cordero, Apartado Postal: 163-175, Mérida 5101, Venezuela
| | | | | | | | | |
Collapse
|
9
|
Picken Bahrey HL, Moody WJ. Early development of voltage-gated ion currents and firing properties in neurons of the mouse cerebral cortex. J Neurophysiol 2003; 89:1761-73. [PMID: 12611962 DOI: 10.1152/jn.00972.2002] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Voltage- and current-clamp recordings were made from acute slices of mouse cerebral cortex from embryonic day 14 to postnatal day 17. We targeted cells in the migratory population of the embryonic intermediate zone (IZ) and in deep layers of embryonic and postnatal cortical plate (CP). IZ neurons maintain fairly consistent properties through the embryonic period, all expressing high-input resistance, inward Na(+) currents and outward K(+) currents, and none showing any hyperpolarization-activated currents. In CP neurons, several changes in physiological properties occur in the late embryonic and early postnatal period: inward Na(+) current density is strongly upregulated while outward K(+) current density remains almost unchanged, input resistance drops dramatically, and a hyperpolarization-activated current resembling I(h) appears. As a result of these changes, the action potential becomes larger, shorter in duration, and its threshold shifts to more negative potentials. In addition, CP cells become capable of firing repetitively and an increasing fraction show spontaneous action potentials. This coordinated development of ion channel properties may help to time the occurrence of developmentally relevant spontaneous activity in the immature cortex.
Collapse
|
10
|
Staiger JF, Schubert D, Zuschratter W, Kötter R, Luhmann HJ, Zilles K. Innervation of interneurons immunoreactive for VIP by intrinsically bursting pyramidal cells and fast-spiking interneurons in infragranular layers of juvenile rat neocortex. Eur J Neurosci 2002; 16:11-20. [PMID: 12153527 DOI: 10.1046/j.1460-9568.2002.02048.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cortical columns contain specific neuronal populations with characteristic sets of connections. This wiring forms the structural basis of dynamic information processing. However, at the single-cell level little is known about specific connectivity patterns. We performed experiments in infragranular layers (V and VI) of rat somatosensory cortex, to clarify further the input patterns of inhibitory interneurons immunoreactive (ir) for vasoactive intestinal polypeptide (VIP). Neurons in acute slices were electrophysiologically characterized using whole-cell recordings and filled with biocytin. This allowed us to determine their firing pattern as regular-spiking, intrinsically bursting and fast-spiking, respectively. Biocytin was revealed histochemically and VIP immunohistochemically. Sections were examined for contacts between the axons of the filled neurons and the VIP-ir targets. Twenty pyramidal cells and five nonpyramidal (inter)neurons were recovered and sufficiently stained for further analysis. Regular-spiking pyramidal cells displayed no axonal boutons in contact with VIP-ir targets. In contrast, intrinsically bursting layer V pyramidal cells showed four putative single contacts with a proximal dendrite of VIP neurons. Fast-spiking interneurons formed contacts with two to six VIP neurons, preferentially at their somata. Single as well as multiple contacts on individual target cells were found. Electron microscopic examinations showed that light-microscopically determined contacts represent sites of synaptic interactions. Our results suggest that, within infragranular local cortical circuits, (i) fast-spiking interneurons are more likely to influence VIP cells than are pyramidal cells and (ii) pyramidal cell input probably needs to be highly convergent to fire VIP target cells.
Collapse
Affiliation(s)
- Jochen F Staiger
- C. and O. Vogt-Institute for Brain Research, University Düsseldorf, POB 101007, D-40001 Düsseldorf, Germany.
| | | | | | | | | | | |
Collapse
|
11
|
Luhmann HJ, Reiprich RA, Hanganu I, Kilb W. Cellular physiology of the neonatal rat cerebral cortex: intrinsic membrane properties, sodium and calcium currents. J Neurosci Res 2000; 62:574-84. [PMID: 11070501 DOI: 10.1002/1097-4547(20001115)62:4<574::aid-jnr12>3.0.co;2-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The cellular physiology of the primary somatosensory cortex was studied in postnatal day (P) 0 to P5 rats using whole-cell patch-clamp recordings. Visually identified Cajal-Retzius, subplate, bifurcated pyramidal, and immature, putatively migrating neurons showed resting membrane potentials between -44 and -50 mV and TTX-sensitive action potentials. Immature pyramidal neurons with the smallest surface area ( approximately 1,600 microm(2)) revealed the largest input resistance ( approximately 1.8 GOmega), and subplate cells with the largest surface area ( approximately 6,200 microm(2)) showed an input resistance of approximately 1 GOmega. Ontogenetically older Cajal-Retzius and subplate cells revealed shorter and larger action potentials compared to bifurcated and immature pyramidal neurons. Whereas Cajal-Retzius and subplate cells responded to injection of depolarizing current pulses with a repetitive nonadapting and fast spiking firing pattern, immature pyramidal neurons showed strong adaptation. Subplate cells revealed the fastest action potentials, largest sodium current amplitude (-714 pA), and highest sodium current density (-38 microA/cm(2)), enabling these cells to transmit afferent activity faithfully to postsynaptic neurons. Whereas all cell types expressed a high-voltage-activated (HVA) calcium current, none of them showed a significant low-voltage-activated calcium current. The largest peak (-25.5 microA/cm(2)) and steady-state (-7.6 microA/cm(2)) HVA calcium current density could be observed in immature presumed migrating neurons. In contrast, Cajal-Retzius and subplate neurons showed a significantly lower peak (-4.9 microA/cm(2)) and steady-state (<-3.3 microA/cm(2)) HVA calcium current density. Whereas a large HVA calcium current may promote neuronal migration of immature neurons, low intracellular calcium levels may provoke apoptosis in Cajal-Retzius and subplate cells.
Collapse
Affiliation(s)
- H J Luhmann
- Institute of Neurophysiology, University of Düsseldorf, Düsseldorf, Germany.
| | | | | | | |
Collapse
|