1
|
Raffaelli B, Do TP, Chaudhry BA, Ashina M, Amin FM, Ashina H. Menstrual migraine is caused by estrogen withdrawal: revisiting the evidence. J Headache Pain 2023; 24:131. [PMID: 37730536 PMCID: PMC10512516 DOI: 10.1186/s10194-023-01664-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023] Open
Abstract
OBJECTIVE To explore and critically appraise the evidence supporting the role of estrogen withdrawal in menstrual migraine. MAIN BODY Menstrual migraine, impacting about 6% of reproductive-age women, manifests as migraine attacks closely related to the menstrual cycle. The estrogen withdrawal hypothesis posits that the premenstrual drop in estrogen levels serves as a trigger of migraine attacks. Despite its wide acceptance, the current body of evidence supporting this hypothesis remains limited, warranting further validation. Estrogen is believed to exert a modulatory effect on pain, particularly within the trigeminovascular system - the anatomic and physiologic substrate of migraine pathogenesis. Nevertheless, existing studies are limited by methodologic inconsistencies, small sample sizes, and variable case definitions, precluding definitive conclusions. To improve our understanding of menstrual migraine, future research should concentrate on untangling the intricate interplay between estrogen, the trigeminovascular system, and migraine itself. This necessitates the use of robust methods, larger sample sizes, and standardized case definitions to surmount the limitations encountered in previous investigations. CONCLUSION Further research is thus needed to ascertain the involvement of estrogen withdrawal in menstrual migraine and advance the development of effective management strategies to address unmet treatment needs.
Collapse
Affiliation(s)
- Bianca Raffaelli
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Clinician Scientist Program, Berlin Institute of Health at Charité (BIH), Berlin, Germany
| | - Thien Phu Do
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Danish Knowledge Center On Headache Disorders, Glostrup, Denmark
| | - Basit Ali Chaudhry
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Messoud Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Danish Knowledge Center On Headache Disorders, Glostrup, Denmark
| | - Faisal Mohammad Amin
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Brain and Spinal Cord Injury, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Håkan Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
- Department of Brain and Spinal Cord Injury, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Collin A, Vein J, Wittrant Y, Pereira B, Amode R, Guillet C, Richard D, Eschalier A, Balayssac D. A new clinically-relevant rat model of letrozole-induced chronic nociceptive disorders. Toxicol Appl Pharmacol 2021; 425:115600. [PMID: 34081940 DOI: 10.1016/j.taap.2021.115600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 05/15/2021] [Accepted: 05/28/2021] [Indexed: 12/21/2022]
Abstract
Among postmenopausal women with estrogen receptor-positive breast cancer, more than 80% receive hormone therapy including aromatase inhibitors (AIs). Half of them develop chronic arthralgia - characterized by symmetric articular pain, carpal tunnel syndrome, morning stiffness, myalgia and a decrease in grip strength - which is associated with treatment discontinuation. Only a few animal studies have linked AI treatment to nociception, and none to arthralgia. Thus, we developed a new chronic AI-induced nociceptive disorder model mimicking clinical symptoms induced by AIs, using subcutaneous letrozole pellets in ovariectomized (OVX) rats. Following plasma letrozole dosage at the end of the experiment (day 73), only rats with at least 90 ng/ml of letrozole were considered significantly exposed to letrozole (OVX + high LTZ group), whereas treated animals with less than 90 ng/ml were pooled in the OVX + low LTZ group. Chronic nociceptive disorder set in rapidly and was maintained for more than 70 days in the OVX + high LTZ group. Furthermore, OVX + high LTZ rats saw no alteration in locomotion, myalgia or experimental anxiety during this period. Bone parameters of the femora were significantly altered in all OVX rats compared to Sham+vehicle pellet. A mechanistic analysis focused on TRPA1, receptor suspected to mediate AI-evoked pain, and showed no modification in its expression in the DRG. This new long-lasting chronic rat model, efficiently reproduces the symptoms of AI-induced nociceptive disorder affecting patients' daily activities and quality-of-life. It should help to study the pathophysiology of this disorder and to promote the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Aurore Collin
- Université Clermont Auvergne, INSERM, U1107, NEURO-DOL, F-63000 Clermont-Ferrand, France.
| | - Julie Vein
- Université Clermont Auvergne, INSERM, U1107, NEURO-DOL, F-63000 Clermont-Ferrand, France
| | - Yohann Wittrant
- Université Clermont Auvergne, INRA, UNH, 63000 Clermont-Ferrand, France; INRAE, UMR 1019, UNH, 63122 Saint-Genès Champanelle, France
| | - Bruno Pereira
- CHU Clermont-Ferrand, Direction de la recherche clinique et de l'innovation, F-63000 Clermont-Ferrand, France
| | - Raalib Amode
- School of Pharmacy, Faculty of Science, University of East Anglia, UK
| | - Christelle Guillet
- Université Clermont Auvergne, INRA, UMR1019, UNH, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Damien Richard
- Université Clermont Auvergne, INSERM U1107, NEURO-DOL, CHU Clermont-Ferrand, Laboratoire de Pharmacologie et de Toxicologie, F-63000 Clermont-Ferrand, France
| | - Alain Eschalier
- Université Clermont Auvergne, INSERM, U1107, NEURO-DOL, F-63000 Clermont-Ferrand, France
| | - David Balayssac
- Université Clermont Auvergne, INSERM U1107, NEURO-DOL, CHU Clermont-Ferrand, Direction de la recherche clinique et de l'innovation, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
3
|
Hernandez-Leon A, De la Luz-Cuellar YE, Granados-Soto V, González-Trujano ME, Fernández-Guasti A. Sex differences and estradiol involvement in hyperalgesia and allodynia in an experimental model of fibromyalgia. Horm Behav 2018; 97:39-46. [PMID: 29080671 DOI: 10.1016/j.yhbeh.2017.10.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/21/2017] [Accepted: 10/24/2017] [Indexed: 01/04/2023]
Abstract
Fibromyalgia (FM) is a musculoskeletal chronic pain syndrome. Its prevalence in women is higher than in men possibly by hormonal factors given that symptoms are aggravated during sex hormone-related events, such as the premenstrual period, pregnancy, postpartum or menopause. The aim of the present study was to investigate whether hyperalgesia and allodynia, in reserpine-induced experimental FM, depend on sex, estrous cycle, ovariectomy and replacement with 17β-estradiol. To fulfill this objective, we compared males, intact females with known estrous cycle phases and ovariectomized (OVX) rats treated with 17β-estradiol. Data demonstrated that reserpine administration disrupted the normal estrous cycle and produced that all females entered metestrus/diestrus. In addition, this treatment leads to muscle hyperalgesia and tactile allodynia in a similar manner in male and intact female rats. However, the absence of ovarian hormones (in OVX rats) increased muscle nociception. 17β-estradiol (2.5-10μg/rat) produced antihyperalgesic and antiallodynic effects 24h, but not 8h, after its administration, suggesting a genomic mechanism. The present results support the validity of the reserpine-induced FM model for searching alternatives of treatment, particularly during endocrine phases when pain is exacerbated such as menopause, and that 17β-estradiol replacement might be useful.
Collapse
Affiliation(s)
- Alberto Hernandez-Leon
- Departamento de Farmacobiología, Cinvestav, Unidad Coapa, Calz. De los Tenorios 235, Col. Granjas Coapa, 14330 Mexico City, Mexico; Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México-Xochimilco 101, Col. San Lorenzo, Huipulco, 14370 Mexico City, Mexico
| | - Yarim Elideth De la Luz-Cuellar
- Departamento de Farmacobiología, Cinvestav, Unidad Coapa, Calz. De los Tenorios 235, Col. Granjas Coapa, 14330 Mexico City, Mexico
| | - Vinicio Granados-Soto
- Departamento de Farmacobiología, Cinvestav, Unidad Coapa, Calz. De los Tenorios 235, Col. Granjas Coapa, 14330 Mexico City, Mexico
| | - María Eva González-Trujano
- Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México-Xochimilco 101, Col. San Lorenzo, Huipulco, 14370 Mexico City, Mexico
| | - Alonso Fernández-Guasti
- Departamento de Farmacobiología, Cinvestav, Unidad Coapa, Calz. De los Tenorios 235, Col. Granjas Coapa, 14330 Mexico City, Mexico.
| |
Collapse
|
4
|
Robarge JD, Duarte DB, Shariati B, Wang R, Flockhart DA, Vasko MR. Aromatase inhibitors augment nociceptive behaviors in rats and enhance the excitability of sensory neurons. Exp Neurol 2016; 281:53-65. [PMID: 27072527 DOI: 10.1016/j.expneurol.2016.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/28/2016] [Accepted: 04/05/2016] [Indexed: 12/22/2022]
Abstract
Although aromatase inhibitors (AIs) are commonly used therapies for breast cancer, their use is limited because they produce arthralgia in a large number of patients. To determine whether AIs produce hypersensitivity in animal models of pain, we examined the effects of the AI, letrozole, on mechanical, thermal, and chemical sensitivity in rats. In ovariectomized (OVX) rats, administering a single dose of 1 or 5mg/kg letrozole significantly reduced mechanical paw withdrawal thresholds, without altering thermal sensitivity. Repeated injection of 5mg/kg letrozole in male rats produced mechanical, but not thermal, hypersensitivity that extinguished when drug dosing was stopped. A single dose of 5mg/kg letrozole or daily dosing of letrozole or exemestane in male rats also augmented flinching behavior induced by intraplantar injection of 1000nmol of adenosine 5'-triphosphate (ATP). To determine whether sensitization of sensory neurons contributed to AI-induced hypersensitivity, we evaluated the excitability of neurons isolated from dorsal root ganglia of male rats chronically treated with letrozole. Both small and medium-diameter sensory neurons isolated from letrozole-treated rats were more excitable, as reflected by increased action potential firing in response to a ramp of depolarizing current, a lower resting membrane potential, and a lower rheobase. However, systemic letrozole treatment did not augment the stimulus-evoked release of the neuropeptide calcitonin gene-related peptide (CGRP) from spinal cord slices, suggesting that the enhanced nociceptive responses were not secondary to an increase in peptide release from sensory endings in the spinal cord. These results provide the first evidence that AIs modulate the excitability of sensory neurons, which may be a primary mechanism for the effect of these drugs to augment pain behaviors in rats.
Collapse
Affiliation(s)
- Jason D Robarge
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - Djane B Duarte
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States; Laboratório de Farmacologia Molecular, Faculdade de Ciências da Saúde, Universidade de Brasília, Brazil.
| | - Behzad Shariati
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - Ruizhong Wang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - David A Flockhart
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - Michael R Vasko
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
5
|
Vacca V, Marinelli S, Pieroni L, Urbani A, Luvisetto S, Pavone F. 17beta-estradiol counteracts neuropathic pain: a behavioural, immunohistochemical, and proteomic investigation on sex-related differences in mice. Sci Rep 2016; 6:18980. [PMID: 26742647 PMCID: PMC4705539 DOI: 10.1038/srep18980] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 09/02/2015] [Indexed: 01/31/2023] Open
Abstract
Sex differences play a role in pain sensitivity, efficacy of analgesic drugs and prevalence of neuropathic pain, even if the underlying mechanisms are far from being understood. We demonstrate that male and female mice react differently to structural and functional changes induced by sciatic nerve ligature, used as model of neuropathic pain. Male mice show a gradual decrease of allodynia and a complete recovery while, in females, allodynia and gliosis are still present four months after neuropathy induction. Administration of 17β-estradiol is able to significantly attenuate this difference, reducing allodynia and inducing a complete recovery also in female mice. Parallel to pain attenuation, 17β-estradiol treated-mice show a functional improvement of the injured limb, a faster regenerative process of the peripheral nerve and a decreased neuropathy-induced gliosis. These results indicate beneficial effects of 17β-estradiol on neuropathic pain and neuronal regeneration and focuses on the importance of considering gonadal hormones also in clinical studies.
Collapse
Affiliation(s)
- Valentina Vacca
- CNR-National Research Council, Institute of Cell Biology and Neurobiology, 00143 Roma, Italy.,IRCCS Fondazione Santa Lucia, 00143 Roma, Italy
| | - Sara Marinelli
- CNR-National Research Council, Institute of Cell Biology and Neurobiology, 00143 Roma, Italy.,IRCCS Fondazione Santa Lucia, 00143 Roma, Italy
| | - Luisa Pieroni
- IRCCS Fondazione Santa Lucia, 00143 Roma, Italy.,Department of Experimental Medicine and Surgery, Division of Biochemistry, University of "Tor Vergata", 00133 Roma, Italy
| | - Andrea Urbani
- IRCCS Fondazione Santa Lucia, 00143 Roma, Italy.,Department of Experimental Medicine and Surgery, Division of Biochemistry, University of "Tor Vergata", 00133 Roma, Italy
| | - Siro Luvisetto
- CNR-National Research Council, Institute of Cell Biology and Neurobiology, 00143 Roma, Italy.,IRCCS Fondazione Santa Lucia, 00143 Roma, Italy
| | - Flaminia Pavone
- CNR-National Research Council, Institute of Cell Biology and Neurobiology, 00143 Roma, Italy.,IRCCS Fondazione Santa Lucia, 00143 Roma, Italy
| |
Collapse
|
6
|
Amandusson Å, Blomqvist A. Estrogenic influences in pain processing. Front Neuroendocrinol 2013; 34:329-49. [PMID: 23817054 DOI: 10.1016/j.yfrne.2013.06.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/19/2013] [Accepted: 06/20/2013] [Indexed: 12/24/2022]
Abstract
Gonadal hormones not only play a pivotal role in reproductive behavior and sexual differentiation, they also contribute to thermoregulation, feeding, memory, neuronal survival, and the perception of somatosensory stimuli. Numerous studies on both animals and human subjects have also demonstrated the potential effects of gonadal hormones, such as estrogens, on pain transmission. These effects most likely involve multiple neuroanatomical circuits as well as diverse neurochemical systems and they therefore need to be evaluated specifically to determine the localization and intrinsic characteristics of the neurons engaged. The aim of this review is to summarize the morphological as well as biochemical evidence in support for gonadal hormone modulation of nociceptive processing, with particular focus on estrogens and spinal cord mechanisms.
Collapse
Affiliation(s)
- Åsa Amandusson
- Department of Clinical Neurophysiology, Uppsala University, 751 85 Uppsala, Sweden.
| | | |
Collapse
|
7
|
Tassorelli C, Greco R, Allena M, Terreno E, Nappi RE. Transdermal hormonal therapy in perimenstrual migraine: why, when and how? Curr Pain Headache Rep 2013; 16:467-73. [PMID: 22932815 DOI: 10.1007/s11916-012-0293-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Experimental and clinical evidence is strongly in favor of a role for estrogens in migraine. It is clear that estrogen fluctuations represent trigger factors for the attacks, while the resolution of these fluctuations (menopause) may be associated to the remission or, conversely, to the worsening of the disease. However, the exact mechanisms and mediators underlying the effects of estrogens in migraine are largely unknown. The exact mechanisms and mediators underlying the effects of estrogens in migraine are largely unknown. In this review, we summarize clinical and preclinical data that are relevant for the role of estrogens in migraine and we discuss how estrogen modulation can be exploited positively to improve hormonal-related migraine.
Collapse
Affiliation(s)
- Cristina Tassorelli
- Headache Science Centre, IRCCS National Neurological Institute C. Mondino Foundation, Pavia, Italy.
| | | | | | | | | |
Collapse
|
8
|
Hunter DA, Barr GA, Amador N, Shivers KY, Kemen L, Kreiter CM, Jenab S, Inturrisi CE, Quinones-Jenab V. Estradiol-induced antinociceptive responses on formalin-induced nociception are independent of COX and HPA activation. Synapse 2011; 65:643-51. [PMID: 21132813 PMCID: PMC3075311 DOI: 10.1002/syn.20890] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 11/21/2010] [Accepted: 11/22/2010] [Indexed: 01/23/2023]
Abstract
Estrogen modulates pain perception but how it does so is not fully understood. The aim of this study was to determine if estradiol reduces nociceptive responses in part via hypothalamic-pituitary-adrenal (HPA) axis regulation of cyclooxygenase (COX)-1/COX-2 activity. The first study examined the effects of estradiol (20%) or vehicle with concurrent injection nonsteroidal antiinflammatory drugs (NSAIDs) on formalin-induced nociceptive responding (flinching) in ovariectomized (OVX) rats. The drugs were ibuprofen (COX-1 and COX-2 inhibitor), SC560 (COX-1 inhibitor), or NS398 (COX-2 inhibitor). In a second study, estradiol's effects on formalin-induced nociception were tested in adrenalectomized (ADX), OVX, and ADX+OVX rats. Serum levels of prostaglandins (PG) PGE(2) and corticosterone were measured. Estradiol significantly decreased nociceptive responses in OVX rats with effects during both the first and the second phase of the formalin test. The nonsteroidal antiinflammatory drugs (NSAIDs) did not alter nociception at the doses used here. Adrenalectomy neither altered flinching responses in female rats nor reversed estradiol-induced antinociceptive responses. Estradiol alone had no effect on corticosterone (CORT) or prostaglandin levels after the formalin test, dissociating the effects of estradiol on behavior and these serum markers. Ibuprofen and NS398 significantly reduced PGE2 levels. CORT was not decreased by OVX surgery or by estradiol below that of ADX. Only IBU significantly increased corticosterone levels. Taken together, our results suggest that estradiol-induced antinociception in female rats is independent of COX activity and HPA axis activation.
Collapse
Affiliation(s)
- Deirtra A Hunter
- Hunter College and The Graduate Center, The City University of New York, New York 10065, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Hunter DA, Barr GA, Shivers KY, Amador N, Jenab S, Inturrisi C, Quinones-Jenab V. Interactions of estradiol and NSAIDS on carrageenan-induced hyperalgesia. Brain Res 2011; 1382:181-8. [PMID: 21281615 DOI: 10.1016/j.brainres.2011.01.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 01/20/2011] [Accepted: 01/22/2011] [Indexed: 11/28/2022]
Abstract
How exogenous estrogen affects inflammatory responses is poorly understood despite the large numbers of women receiving estrogen-alone hormone therapy. The aim of this study was to determine if estradiol alters injury- or inflammation-induced nociceptive responses after carrageenan administration in females and whether its effects are mediated through cyclo-oxygenase (COX) and prostaglandins (PG). To this end, paw withdrawal latencies and serum levels of PGE2 and PGD2 were measured in rats treated with estradiol (0, 10, 20, and 30%) and/or SC560 (COX-1 inhibitor) or NS398 (COX-2 inhibitor) after intraplantar carrageenan administration. Estradiol significantly increased withdrawal latencies before (baseline condition) and after carrageenan administration to one hindpaw. NS398 was anti-nociceptive only in carrageenan treated animals. SC560 increased withdrawal latencies in both paws at 1 and 5hours after carrageenan administration. Co-administration of estradiol and NS398, but not SC560, was additive except for a prolonged anti-nociceptive effects of estradiol combined with NS398. The anti-nociceptive effect extended beyond that observed with either drug or estradiol alone at the 5-hour time point. Estradiol had no significant effect on PGE2 serum levels, but both COX antagonists decreased them. Although neither estradiol nor the COX inhibitors alone had an effect on PGD2 serum levels, co-administration of NS398 and estradiol significantly elevated PGD2 levels. Taken together, our results suggest that estradiol is anti-nociceptive in the thermal test and reduces carrageenan-induced hyperalgesia. These effects are minimally altered through PG-mediated mechanisms.
Collapse
Affiliation(s)
- Deirtra A Hunter
- Hunter College and The Graduate Center, The City University of New York, NY, 10065, USA; New York State Psychiatric Institute, New York, NY, 10032, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Increase in formalin-induced tonic pain by 5alpha-reductase and aromatase inhibition in female rats. Pharmacol Biochem Behav 2010; 98:62-6. [PMID: 21184774 DOI: 10.1016/j.pbb.2010.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 12/10/2010] [Accepted: 12/14/2010] [Indexed: 11/20/2022]
Abstract
Little is known about the role of steroidogenic enzymes in pain modulation. This study examined the effects of 5α-reductase and aromatase inhibition on formalin-induced tonic pain (FITP) in adult female rats. The animals received subcutaneous injection (5 mg/kg) of finasteride (an inhibitor of 5α-reductase) and letrozole (an inhibitor of aromatase), either separately or in combination, 15 min before formalin injection at a low (0.25%) and high (2.5%) concentration. Pretreatment with inhibitors increased FITP evoked by injection of 0.25% formalin, but they were not effective on 2.5% formalin pain. The enhancing effects of finasteride and letrozole on FITP induced by 2.5% formalin was demonstrated by inhibitory actions of these drugs on morphine (7 and 10 mg/kg, intraperitoneal) induced antinociception. The nervous system could be considered as the main target of the enzymes inhibition, since the pronociceptive effect was also observed after administration of inhibitors to ovariectomized rats. Altogether, these findings suggest that the biological activity of the enzymes 5α-reductase and aromatase modulates FITP and may help to develop effective therapeutic strategies to counteract pain.
Collapse
|
11
|
Ovarian hormones and pain response: A review of clinical and basic science studies. ACTA ACUST UNITED AC 2009; 6 Suppl 2:168-92. [DOI: 10.1016/j.genm.2009.03.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2008] [Indexed: 12/18/2022]
|
12
|
Piu F, Cheevers C, Hyldtoft L, Gardell LR, Del Tredici AL, Andersen CB, Fairbairn LC, Lund BW, Gustafsson M, Schiffer HH, Donello JE, Olsson R, Gil DW, Brann MR. Broad modulation of neuropathic pain states by a selective estrogen receptor beta agonist. Eur J Pharmacol 2008; 590:423-9. [DOI: 10.1016/j.ejphar.2008.05.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 04/25/2008] [Accepted: 05/19/2008] [Indexed: 11/16/2022]
|
13
|
Foradori CD, Lund TD, Nagahara AH, Koenig JI, Handa RJ. Corticotropin-releasing hormone heterogeneous nuclear RNA (hnRNA) and immunoreactivity are induced in extrahypothalamic brain sites by kainic-acid-induced seizures and are modulated by estrogen. Brain Res 2007; 1164:44-54. [PMID: 17631870 DOI: 10.1016/j.brainres.2007.05.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2007] [Revised: 05/21/2007] [Accepted: 05/22/2007] [Indexed: 11/23/2022]
Abstract
Corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) are pivotal mediators of the hormonal response to stressors and are found within neurons of the paraventricular nucleus of the hypothalamus (PVN) and several extrahypothalamic sites where expression is activity-dependent. Previous work has shown increased CRH immunoreactivity in extrahypothalamic sites after kainic-acid (KA)-induced seizures in male rats. This study examined the induction of CRH heterogeneous nuclear RNA (hnRNA), AVP hnRNA and c-fos as a measure of gene transcription and cell activation following kainic-acid (KA)-induced seizures. KA or saline was administered to intact male rats, ovariectomized (OVX) females and OVX females treated with 17beta-estradiol (E2). Animals were sacrificed 0, 15, 60 or 120 min following KA treatment. In the PVN, CRH hnRNA levels were increased by KA treatment at 15, 60, and 120 min. AVP hnRNA and c-fos mRNA in the PVN were also significantly elevated above controls at all time points. Elevations in CRH hnRNA were also identified in hippocampus, the lateral bed nucleus of the stria terminalis (BNST) and globus pallidus at 60 and 120 min following KA and in the piriform cortex, and central nucleus of the amygdala at 120 min after KA. CRH hnRNA levels at 120 min in the PVN, amygdala, cingulate cortex, hippocampus (CA1), piriform cortex, and BNST were lower in OVX+E2 females compared to females without E2. To determine if the increases in CRH hnRNA translated to increased CRH peptide, immunocytochemistry was performed. CRH immunoreactivity was increased in the amygdala, BNST, cingulate cortex, PVN and globus pallidus within 3 h after KA treatment and in the piriform cortex and hippocampus by 6 h after KA. These results suggest a time-dependent activation of the CRH system following activation of kainate receptors, which may result in long-term changes in the expression of extrahypothalamic CRH.
Collapse
Affiliation(s)
- Chad D Foradori
- Department of Biomedical Sciences, Anatomy and Neurobiology Section, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | |
Collapse
|
14
|
Nickerson M, Kennedy SL, Johnson JD, Fleshner M. Sexual dimorphism of the intracellular heat shock protein 72 response. J Appl Physiol (1985) 2006; 101:566-75. [PMID: 16690792 DOI: 10.1152/japplphysiol.00259.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The majority of previous work examining stress responses has been done in males. Recently, it has become clear that the impact of stressor exposure is modulated by sex. One stress response that may be affected by sex is the induction of intracellular heat shock protein (HSP) 72, which is a stress- responsive molecular chaperone that refolds denatured proteins and promotes cellular survival. The following study compared HSP72 in males and females and also examined whether the estrous cycle altered HSP72 induction in females. We hypothesized that females compared with males would have a constrained HSP72 response after an acute stressor and that the stress-induced HSP72 response in females would fluctuate with the estrous cycle. Male and female F344 rats were either left in their home cage or exposed to acute tail-shock stress (8–10/group). Immediately following stressor, trunk blood was collected and tissues were flash frozen. Vaginal smear and estrogen enzyme immunoassay were used to categorize the phase of estrous. Results show that female rats had a greater corticosterone response than males, that both males and females exhibit a stress-induced release of progesterone, and that males and females had equal levels of stress-induced circulating norepinephrine. Sexual dimorphism of the HSP72 (ELISA) response existed in pituitary gland, mesenteric lymph nodes, and liver such that female rats had an attenuated HSP72 response compared with males after stress. The adrenal glands, spleen, and heart did not exhibit sexual dimorphism of the HSP72 response. The estrous cycle did not have a significant effect on basal or stress-induced HSP72 in females.
Collapse
Affiliation(s)
- M Nickerson
- Dept. of IPHY, CB 354, Boulder, CO 80309, USA.
| | | | | | | |
Collapse
|
15
|
Kuba T, Wu HBK, Nazarian A, Festa ED, Barr GA, Jenab S, Inturrisi CE, Quinones-Jenab V. Estradiol and progesterone differentially regulate formalin-induced nociception in ovariectomized female rats. Horm Behav 2006; 49:441-9. [PMID: 16257405 DOI: 10.1016/j.yhbeh.2005.09.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 09/20/2005] [Accepted: 09/21/2005] [Indexed: 10/25/2022]
Abstract
Clinical and preclinical studies have found sex-specific differences in the discrimination and perception of inflammatory stimuli. The emerging picture suggests that the biological basis of these differences resides in the regulatory activity of gonadal hormones in the central nervous system. This study describes the effects of ovarian hormones in inflammatory pain processes. Ovariectomized rats received estradiol and/or progesterone, and the number of paw flinches was measured after 1, 2.5 or 5% formalin administration. Both estradiol and progesterone altered the number of flinches only after 1% formalin administration. Estradiol significantly reduced the overall number of flinches during Phase II of the formalin nociceptive response while progesterone attenuated Phase I of the response. After co-administration of estradiol and progesterone, progesterone reversed estradiol's analgesic effect in Phase II, however, estradiol did not reverse progesterone's analgesic activity in Phase I. To determine if estradiol effects are receptor-mediated, tamoxifen (selective estrogen receptor mediator, 15 mg/kg) or alpha-estradiol (an inactive isomer of estradiol, 20 microg) were utilized. Tamoxifen decreased the number of formalin-induced flinches during Phase II while alpha-estradiol did not affect any formalin-induced responses. When co-administered with estradiol, tamoxifen failed to reverse estradiol's effect, suggesting both tamoxifen and estradiol activate similar intracellular mechanisms. Although Western blot analysis detected the presence of estradiol alpha and beta and progesterone B receptors in the spinal cord, hormone replacement treatments had no effects on the levels of these receptors. We postulate that the mechanisms by which estradiol and progesterone induce analgesia occur through the activation of their receptor at the spinal cord level.
Collapse
Affiliation(s)
- Tzipora Kuba
- Department of Psychology, Hunter College and The Graduate Center of the City University of New York, 695 Park Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Kuba T, Quinones-Jenab V. The role of female gonadal hormones in behavioral sex differences in persistent and chronic pain: Clinical versus preclinical studies. Brain Res Bull 2005; 66:179-88. [PMID: 16023915 DOI: 10.1016/j.brainresbull.2005.05.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 04/07/2005] [Accepted: 05/06/2005] [Indexed: 02/07/2023]
Abstract
Clinical and preclinical studies have found sex-specific differences in the discrimination and perception of nociceptive stimuli. This article reviews the current literature concerning the biological basis of sex differences in the behavioral response to persistent inflammatory and chronic pain stimuli. The emerging picture from both clinical and preclinical studies suggests that the basis of these differences in nociceptive responses to such stimuli resides in the regulatory activity of gonadal hormones in the central nervous system. Published reports suggest that pain management targeted at female patients should consider hormonal factors during the female reproductive cycle.
Collapse
Affiliation(s)
- Tzipora Kuba
- Department of Psychology, Hunter College, The City University of New York, 695 Park Avenue, New York, NY 10021, USA
| | | |
Collapse
|
17
|
Kuba T, Kemen LM, Quinones-Jenab V. Estradiol administration mediates the inflammatory response to formalin in female rats. Brain Res 2005; 1047:119-22. [PMID: 15893295 DOI: 10.1016/j.brainres.2005.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 03/23/2005] [Accepted: 04/01/2005] [Indexed: 11/27/2022]
Abstract
Female rats demonstrate higher pain sensitivity than do males in various nociceptive assays of inflammation. In the present study, we found that estradiol (20%) replacement in ovariectomized rats attenuated the chronic phase of the formalin response but only at high formalin concentrations thought to rely on peripheral inflammation. An inactive isomer of estradiol, alpha-estradiol, failed to result in the same attenuation (P > 0.05). Our results suggest that estradiol's actions in inflammatory responses are mediated through genomic estrogen receptor-mediated mechanisms.
Collapse
Affiliation(s)
- Tzipora Kuba
- Department of Psychology, Biopsychology Subprogram, Hunter College, The City University of New York, 695 Park Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
18
|
Ramakrishnan R, Werbeck J, Khurana KK, Khan SA. Expression of interleukin-6 and tumor necrosis factor alpha and histopathologic findings in painful and nonpainful breast tissue. Breast J 2003; 9:91-7. [PMID: 12603381 DOI: 10.1046/j.1524-4741.2003.09206.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mastalgia is a common condition that is thought to be hormonally related, but the mechanisms of pain causation are unknown. Inflammatory cytokines are implicated in pain modulation, but have not been studied with regard to mastalgia. We compared the relationship of mastalgia to the expression of the cytokines interleukin (IL)-6, IL-1beta, and tumor necrosis factor (TNF)-alpha and the degree of tissue infiltration with inflammatory cells in breast tissue from 29 premenopausal women with breast pain and 29 age-matched pain-free controls. Paraffin sections from breast biopsy samples were scored for the presence of inflammatory infiltrate and were evaluated for the expression of IL-6, IL-1beta, and TNF-alpha using standard immunohistochemical procedures. TNF-alpha and IL-6 expression displayed a trend toward slightly lower values in patients with pain (median TNF-alpha score, 3 versus 5; median IL-6 score, 3 versus 4). In the luteal phase, patients with mastalgia showed a trend toward lower expression of IL-6 (p = 0.4) in comparison to those without pain. A similar trend was also seen with TNF-alpha expression (p = 0.4). IL-1beta expression was extremely scant in the first 30 samples and was not investigated further. The degree of inflammatory infiltrate in the tissue was unrelated to the presence of breast pain. These data suggest that the three cytokines tested in this study do not play a significant role in the causation of mastalgia and lend weight to the previous finding that there are no identifiable histologic correlates of this troubling condition. Further investigation of the role of cytokines in breast pain is warranted, especially in view of the possible association between mastalgia and breast cancer risk.
Collapse
Affiliation(s)
- Rathi Ramakrishnan
- Department of Surgery, Northwestern Medical School, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
19
|
Shir Y, Campbell JN, Raja SN, Seltzer Z. The Correlation Between Dietary Soy Phytoestrogens and Neuropathic Pain Behavior in Rats After Partial Denervation. Anesth Analg 2002. [DOI: 10.1213/00000539-200202000-00037] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Shir Y, Campbell JN, Raja SN, Seltzer Z. The correlation between dietary soy phytoestrogens and neuropathic pain behavior in rats after partial denervation. Anesth Analg 2002; 94:421-6, table of contents. [PMID: 11812712 DOI: 10.1097/00000539-200202000-00037] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
UNLABELLED Soy diets suppress the development of neuropathic pain behavior in rats undergoing partial sciatic nerve ligation (PSL) injury. Phytoestrogens, plant isoflavones and lignans, abundantly found in soy products, have powerful estrogenic properties. Because, in some preparations, steroid estrogens were found to exert antinociception, we examined whether the analgesic effect of dietary soy is mediated by phytoestrogens. Male Wistar rats were fed five different diets containing 8-180 microg of phytoestrogens per gram. These diets were administered 2 wk before and 2 wk after PSL injury. Levels of tactile allodynia and mechanical and heat hyperalgesia of these rats were determined on Days 3, 8, and 14 after PSL injury. Plasma levels of two major phytoestrogens (genistein and daidzein) and two daidzein metabolites (equol and dihydrodaidzein) were assessed on Day 14 postoperatively. We found that the plasma concentration of these phytoestrogens and the levels of allodynia and hyperalgesia varied highly among dietary groups. Average plasma concentrations of phytoestrogens were associated with reduced levels of tactile allodynia and mechanical hyperalgesia, but not with reduced heat allodynia. Low and high plasma phytoestrogen levels were not analgesic in these tests. This report is the first to show that, at certain plasma concentrations, phytoestrogens reduce neuropathic pain in rats. IMPLICATIONS Dietary soy suppresses neuropathic pain in rats after partial sciatic nerve ligation. Some of the pain-suppression properties of soy can be attributed to phytoestrogens, isoflavones abundantly found in soy products. Average, but not low or high, plasma levels of phytoestrogens are associated with analgesia.
Collapse
Affiliation(s)
- Yoram Shir
- Department of Anesthesiology and Pain Relief Unit, Hadassah University Hospital, Jerusalem, Israel.
| | | | | | | |
Collapse
|