1
|
Argel S, Castaño M, Jimenez DE, Rodríguez S, Vallejo MJ, Castro CI, Osorio MA. Assessment of Bacterial Nanocellulose Loaded with Acetylsalicylic Acid or Povidone-Iodine as Bioactive Dressings for Skin and Soft Tissue Infections. Pharmaceutics 2022; 14:1661. [PMID: 36015286 PMCID: PMC9412879 DOI: 10.3390/pharmaceutics14081661] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial nanocellulose (BNC) is a novel nanomaterial known for its large surface area, biocompatibility, and non-toxicity. BNC contributes to regenerative processes in the skin but lacks antimicrobial and anti-inflammatory properties. Herein, the development of bioactive wound dressings by loading antibacterial povidone-iodine (PVI) or anti-inflammatory acetylsalicylic acid (ASA) into bacterial cellulose is presented. BNC is produced using Hestrin-Schramm culture media and loaded via immersion in PVI and ASA. Through scanning electron microscopy, BNC reveals open porosity where the bioactive compounds are loaded; the mechanical tests show that the dressing prevents mechanical wear. The loading kinetic and release assays (using the Franz cell method) under simulated fluids present a maximum loading of 589.36 mg PVI/g BNC and 38.61 mg ASA/g BNC, and both systems present a slow release profile at 24 h. Through histology, the complete diffusion of the bioactive compounds is observed across the layers of porcine skin. Finally, in the antimicrobial experiment, BNC/PVI produced an inhibition halo for Gram-positive and Gram-negative bacteria, confirming the antibacterial activity. Meanwhile, the protein denaturation test shows effective anti-inflammatory activity in BNC/ASA dressings. Accordingly, BNC is a suitable platform for the development of bioactive wound dressings, particularly those with antibacterial and anti-inflammatory properties.
Collapse
Affiliation(s)
- Shaydier Argel
- Nanotechnology Engineering Program, School of Engineering, Universidad Pontificia Bolivariana, Circular 1 #70-01, Medellin 050031, Colombia
| | - Melissa Castaño
- Nanotechnology Engineering Program, School of Engineering, Universidad Pontificia Bolivariana, Circular 1 #70-01, Medellin 050031, Colombia
| | - Daiver Estiven Jimenez
- Nanotechnology Engineering Program, School of Engineering, Universidad Pontificia Bolivariana, Circular 1 #70-01, Medellin 050031, Colombia
| | - Sebastian Rodríguez
- Nanotechnology Engineering Program, School of Engineering, Universidad Pontificia Bolivariana, Circular 1 #70-01, Medellin 050031, Colombia
| | - Maria Jose Vallejo
- Nanotechnology Engineering Program, School of Engineering, Universidad Pontificia Bolivariana, Circular 1 #70-01, Medellin 050031, Colombia
| | - Cristina Isabel Castro
- Nanotechnology Engineering Program, School of Engineering, Universidad Pontificia Bolivariana, Circular 1 #70-01, Medellin 050031, Colombia
- New Materials Research Group, Universidad Pontificia Bolivariana, Circular 1 #70-01, Medellin 050031, Colombia
| | - Marlon Andres Osorio
- Nanotechnology Engineering Program, School of Engineering, Universidad Pontificia Bolivariana, Circular 1 #70-01, Medellin 050031, Colombia
- New Materials Research Group, Universidad Pontificia Bolivariana, Circular 1 #70-01, Medellin 050031, Colombia
- Biology Systems Research Group, School of Health Science, Universidad Pontificia Bolivariana, Cl. 78b #72a-159, Medellin 050034, Colombia
| |
Collapse
|
2
|
Celik S, Yurdakul S, Erdem B. New silver(I) complex as antibiotic candidate: Synthesis, spectral characterization, DFT, QTAIM and antibacterial investigations and docking properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
3
|
An In Vitro Pilot Study on the Effects of Silver Diamine Fluoride on Periodontal Pathogens and Three-Dimensional Scaffolds of Human Fibroblasts and Epithelial Cells. Int J Dent 2022; 2022:9439096. [PMID: 35620728 PMCID: PMC9129993 DOI: 10.1155/2022/9439096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/24/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022] Open
Abstract
Objective The aims of this study were to investigate the antibacterial and cytotoxic effects of silver diamine fluoride (SDF) on periodontal pathogens and human skin constructs, respectively. Background SDF has been proven to have bactericidal effects on cariogenic bacteria. No studies to date evaluated the bactericidal effects of SDF on periodontal pathogens nor its effect on epithelium and fibroblasts. Methods Streptococcus mutans, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans were cultured in monospecies biofilms, exposed to increasing concentrations of SDF and inoculated on agar plates to assess viability. Human gingival fibroblasts in 2D cultures were exposed to 1 μL of 0.394% of SDF and viewed using real-time imaging. Finally, SDF was applied to human, 3D tissue scaffolds of fibroblasts and keratinocytes, and termed human skin equivalents (HSE). A clinical dose of 38% SDF was applied, and HSE were cultured for 12 hours, 1, 3, 5, and 10 days. The tissue was observed clinically and histologically with hematoxylin and eosin staining and TUNEL. Results S. mutans and A. actinomycetemcomitans growth was completely inhibited using all dilutions of SDF, whereas P. gingivalis was still viable with 0.197% and 0.098% of SDF. Single-layer fibroblasts experienced immediate necrosis upon contact with SDF. Application of SDF to HSE showed maturation of a whitish lesion within 24 hours, followed by pigmented, crusted tissue after 3 days. Histological evaluation of treated tissues showed apoptotic cells in the epithelium and upper half of the connective tissue. Conclusion Our data suggest that SDF has bactericidal properties against two periodontal pathogens: P. gingivalis and A. actinomycetemcomitans. SDF caused immediate necrosis of monolayer fibroblasts, but does not extend to the full extent of layered fibroblasts in HSE.
Collapse
|
4
|
Archana KM, Rajalakshmi S, Kumar PS, Krishnaswamy VG, Rajagopal R, Kumar DT, Priya Doss CG. Effect of shape and anthocyanin capping on antibacterial activity of CuI particles. ENVIRONMENTAL RESEARCH 2021; 200:111759. [PMID: 34310969 DOI: 10.1016/j.envres.2021.111759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 05/27/2023]
Abstract
The recent upsurge of antibiotic-resistant infections has posed to be a serious health concern worldwide. In the present paper, the effect of shape & capping agent on the antibacterial activity (on Skin and Urinary Tract Infection (UTI) causing bacteria) of copper iodide (CuI) particles was probed. CuI synthesized without a capping agent was leaf-like, and that with one was prismatic in shape. XRD of the synthesized CuI confirmed their high crystalline nature and purity. The average crystallite sizes of capped and uncapped CuI were calculated to be 91.10 nm and 89.01 nm respectively from X-Ray powder diffraction data. The average particle size of capped CuI was found to be 492.7 nm and that of uncapped CuI was found to be 2.96 μm using HR-SEM analysis. The crystals obtained were further characterized using EDAX, FTIR spectroscopy and UV-Visible spectroscopy. Antibacterial activity of prismatic CuI capped with the flower extract of Hibiscus rosa-sinensis showed better activity than that of uncapped CuI. AFM analysis was carried out to confirm the proposed mechanism for antibacterial activity through the morphological changes on the bacterial cell wall in the presence of capped CuI. Molecular docking studies were performed to reaffirm the enhanced antibacterial activity of prismatic CuI further. The present study demonstrates the superior antibacterial propensity of prismatic CuI, consequently making it a potent antibacterial agent.
Collapse
Affiliation(s)
- K M Archana
- Department of Chemistry, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, India
| | - S Rajalakshmi
- Department of Biotechnology, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603 110, India.
| | - Veena Gayathri Krishnaswamy
- Department of Biotechnology, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, India
| | - Revathy Rajagopal
- Department of Chemistry, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, India.
| | - D Thirumal Kumar
- Meenakshi Academy of Higher Education and Research, Chennai, 78, India
| | - C George Priya Doss
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
5
|
Alves PJ, Barreto RT, Barrois BM, Gryson LG, Meaume S, Monstrey SJ. Update on the role of antiseptics in the management of chronic wounds with critical colonisation and/or biofilm. Int Wound J 2021; 18:342-358. [PMID: 33314723 PMCID: PMC8244012 DOI: 10.1111/iwj.13537] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/04/2020] [Accepted: 11/07/2020] [Indexed: 12/22/2022] Open
Abstract
Biofilms play a major role in delaying chronic wounds from healing. A wound infiltrated with biofilm, or "critically colonised" wound, may become clinically infected if the number of microbes exceeds a critical level. Chronic wound biofilms represent a significant treatment challenge by demonstrating recalcitrance towards antimicrobial agents. However, a "window of opportunity" may exist after wound debridement when biofilms are more susceptible to topical antiseptics. Here, we discuss the role of antiseptics in the management of chronic wounds and biofilm, focusing on povidone-iodine (PVP-I) in comparison with two commonly used antiseptics: polyhexanide (PHMB) and silver. This article is based on the literature reviewed during a focus group meeting on antiseptics in wound care and biofilm management, and on a PubMed search conducted in March 2020. Compared with PHMB and silver, PVP-I has a broader spectrum of antimicrobial activity, potent antibiofilm efficacy, no acquired bacterial resistance or cross-resistance, low cytotoxicity, good tolerability, and an ability to promote wound healing. PVP-I represents a viable therapeutic option in wound care and biofilm management, with the potential to treat biofilm-infiltrated, critically colonised wounds. We propose a practical algorithm to guide the management of chronic, non-healing wounds due to critical colonisation or biofilm, using PVP-I.
Collapse
Affiliation(s)
- Paulo J. Alves
- Wounds Research LaboratoryUniversidade Católica PortuguesaPortoPortugal
| | | | | | - Luc G. Gryson
- Belgian Defence Military Medical ComponentBrusselsBelgium
| | - Sylvie Meaume
- Department of Geriatrics and Wound Care UnitHospital Rothschild, APHP Assistance Publique Hôpitaux de Paris, Sorbonne UniversitéParisFrance
| | - Stan J. Monstrey
- Department of Plastic SurgeryGhent University HospitalGhentBelgium
| |
Collapse
|
6
|
Makhlynets OV, Caputo GA. Characteristics and therapeutic applications of antimicrobial peptides. BIOPHYSICS REVIEWS 2021; 2:011301. [PMID: 38505398 PMCID: PMC10903410 DOI: 10.1063/5.0035731] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022]
Abstract
The demand for novel antimicrobial compounds is rapidly growing due to the phenomenon of antibiotic resistance in bacteria. In response, numerous alternative approaches are being taken including use of polymers, metals, combinatorial approaches, and antimicrobial peptides (AMPs). AMPs are a naturally occurring part of the immune system of all higher organisms and display remarkable broad-spectrum activity and high selectivity for bacterial cells over host cells. However, despite good activity and safety profiles, AMPs have struggled to find success in the clinic. In this review, we outline the fundamental properties of AMPs that make them effective antimicrobials and extend this into three main approaches being used to help AMPs become viable clinical options. These three approaches are the incorporation of non-natural amino acids into the AMP sequence to impart better pharmacological properties, the incorporation of AMPs in hydrogels, and the chemical modification of surfaces with AMPs for device applications. These approaches are being developed to enhance the biocompatibility, stability, and/or bioavailability of AMPs as clinical options.
Collapse
Affiliation(s)
- Olga V. Makhlynets
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, USA
| | | |
Collapse
|
7
|
Betts HD, Whitehead C, Harris HH. Silver in biology and medicine: opportunities for metallomics researchers. Metallomics 2020; 13:6029133. [PMID: 33570135 DOI: 10.1093/mtomcs/mfaa001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 12/06/2020] [Indexed: 12/13/2022]
Abstract
The antibacterial properties of silver have been known for centuries and the threat of antibiotic-resistant bacteria has led to renewed focus on the noble metal. Silver is now commonly included in a range of household and medical items to imbue them with bactericidal properties. Despite this, the chemical fate of the metal in biological systems is poorly understood. Silver(I) is a soft metal with high affinity for soft donor atoms and displays much similarity to the chemistry of Cu(I). In bacteria, interaction of silver with the cell wall/membrane, DNA, and proteins and enzymes can lead to cell death. Additionally, the intracellular generation of reactive oxygen species by silver is posited to be a significant antimicrobial action. While the antibacterial action of silver is well known, bacteria found in silver mines display resistance against it through use of a protein ensemble thought to have been specifically developed for the metal, highlighting the need for judicious use. In mammals, ∼10-20% of ingested silver is retained by the body and thought to predominantly localize in the liver or kidneys. Chronic exposure can result in argyria, a condition characterized by blue staining of the skin, resulting from subdermal deposition of silver [as Ag(0)/sulfides], but more insidious side effects, such as inclusions in the brain, seizures, liver/kidney damage, and immunosuppression, have also been reported. Here, we hope to highlight the current understanding of the biological chemistry of silver and the necessity for continued study of these systems to fill existing gaps in knowledge.
Collapse
Affiliation(s)
- Harley D Betts
- Department of Chemistry, The University of Adelaide, North Terrace, SA 5005, Australia
| | - Carole Whitehead
- Department of Chemistry, The University of Adelaide, North Terrace, SA 5005, Australia
| | - Hugh H Harris
- Department of Chemistry, The University of Adelaide, North Terrace, SA 5005, Australia
| |
Collapse
|
8
|
D'Souza A, Yoon JH, Beaman H, Gosavi P, Lengyel-Zhand Z, Sternisha A, Centola G, Marshall LR, Wehrman MD, Schultz KM, Monroe MB, Makhlynets OV. Nine-Residue Peptide Self-Assembles in the Presence of Silver to Produce a Self-Healing, Cytocompatible, Antimicrobial Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17091-17099. [PMID: 32154701 DOI: 10.1021/acsami.0c01154] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Silver compounds have been used extensively for wound healing because of their antimicrobial properties, but high concentrations of silver are toxic to mammalian cells. We designed a peptide that binds silver and releases only small amounts of this ion over time, therefore overcoming the problem of silver toxicity. Silver binding was achieved through incorporation of an unnatural amino acid, 3'-pyridyl alanine (3'-PyA), into the peptide sequence. Upon the addition of silver ions, the peptide adopts a beta-sheet secondary structure and self-assembles into a strong hydrogel as characterized by rheology, circular dichroism, and transmission electron microscopy. We show that the resulting hydrogel kills Escherichia coli and Staphylococcus aureus but is not toxic to fibroblasts and could be used for wound healing. The amount of Ag(I) released by hydrogels into the solution is less than 4% and this low amount of Ag(I) does not change in the pH range 6-8. These studies provide an initial indication for use of the designed hydrogel as injectable, antimicrobial wound dressing.
Collapse
Affiliation(s)
- Areetha D'Souza
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
| | - Jennifer H Yoon
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
| | - Henry Beaman
- Biomedical & Chemical Engineering, Syracuse University, 318 Bowne Hall, Syracuse, New York 13244, United States
| | - Pallavi Gosavi
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
| | - Zsofia Lengyel-Zhand
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
| | - Alex Sternisha
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
| | - Garrick Centola
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
| | - Liam R Marshall
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
| | - Matthew D Wehrman
- Chemical and Biomolecular Engineering, Lehigh University, Iacocca Hall, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - Kelly M Schultz
- Chemical and Biomolecular Engineering, Lehigh University, Iacocca Hall, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - Mary Beth Monroe
- Biomedical & Chemical Engineering, Syracuse University, 318 Bowne Hall, Syracuse, New York 13244, United States
| | - Olga V Makhlynets
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
| |
Collapse
|
9
|
Daristotle JL, Lau LW, Erdi M, Hunter J, Djoum A, Srinivasan P, Wu X, Basu M, Ayyub OB, Sandler AD, Kofinas P. Sprayable and biodegradable, intrinsically adhesive wound dressing with antimicrobial properties. Bioeng Transl Med 2020; 5:e10149. [PMID: 31989038 PMCID: PMC6971445 DOI: 10.1002/btm2.10149] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/04/2019] [Accepted: 12/03/2019] [Indexed: 01/29/2023] Open
Abstract
Conventional wound dressings are difficult to apply to large total body surface area (TBSA) wounds, as they typically are prefabricated, require a layer of adhesive coating for fixation, and need frequent replacement for entrapped exudate. Large TBSA wounds as well as orthopedic trauma and low-resource surgery also have a high risk of infection. In this report, a sprayable and intrinsically adhesive wound dressing loaded with antimicrobial silver is investigated that provides personalized fabrication with minimal patient contact. The dressing is composed of adhesive and biodegradable poly(lactic-co-glycolic acid) and poly(ethylene glycol) (PLGA/PEG) blend fibers with or without silver salt (AgNO3). in vitro studies demonstrate that the PLGA/PEG/Ag dressing has antimicrobial properties and low cytotoxicity, with antimicrobial silver controllably released over 7-14 days. In a porcine partial-thickness wound model, the wounds treated with both antimicrobial and nonantimicrobial PLGA/PEG dressings heal at rates similar to those of the clinical, thin film polyurethane wound dressing, with similar scarring. However, PLGA/PEG adds a number of features beneficial for wound healing: greater exudate absorption, integration into the wound, a 25% reduction in dressing changes, and tissue regeneration with greater vascularization. There is also modest improvement in epidermis thickness compared to the control wound dressing.
Collapse
Affiliation(s)
- John L. Daristotle
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMaryland
| | - Lung W. Lau
- Sheikh Zayed Institute for Pediatric Surgical InnovationJoseph E. Robert Jr. Center for Surgical Care, Children's National Medical CenterWashingtonDistrict of Columbia
| | - Metecan Erdi
- Department of Chemical and Biomolecular EngineeringUniversity of MarylandCollege ParkMaryland
| | - Joseph Hunter
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMaryland
| | - Albert Djoum
- Department of Chemistry and BiochemistryUniversity of MarylandCollege ParkMaryland
| | - Priya Srinivasan
- Sheikh Zayed Institute for Pediatric Surgical InnovationJoseph E. Robert Jr. Center for Surgical Care, Children's National Medical CenterWashingtonDistrict of Columbia
| | - Xiaofang Wu
- Sheikh Zayed Institute for Pediatric Surgical InnovationJoseph E. Robert Jr. Center for Surgical Care, Children's National Medical CenterWashingtonDistrict of Columbia
| | - Mousumi Basu
- Sheikh Zayed Institute for Pediatric Surgical InnovationJoseph E. Robert Jr. Center for Surgical Care, Children's National Medical CenterWashingtonDistrict of Columbia
| | - Omar B. Ayyub
- Department of Chemical and Biomolecular EngineeringUniversity of MarylandCollege ParkMaryland
| | - Anthony D. Sandler
- Sheikh Zayed Institute for Pediatric Surgical InnovationJoseph E. Robert Jr. Center for Surgical Care, Children's National Medical CenterWashingtonDistrict of Columbia
| | - Peter Kofinas
- Department of Chemical and Biomolecular EngineeringUniversity of MarylandCollege ParkMaryland
| |
Collapse
|
10
|
Ulaeto SB, Mathew GM, Pancrecious JK, Nair JB, Rajan TPD, Maiti KK, Pai BC. Biogenic Ag Nanoparticles from Neem Extract: Their Structural Evaluation and Antimicrobial Effects against Pseudomonas nitroreducens and Aspergillus unguis (NII 08123). ACS Biomater Sci Eng 2019; 6:235-245. [PMID: 33463216 DOI: 10.1021/acsbiomaterials.9b01257] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Silver nanocrystals have been successfully fabricated by the bioreduction route using the ethanolic extract of Azadirachta indica (neem) leaves as the reducing and capping agent without solvent interference. The silver nanocrystals were grown in a single-step method, without the influence of external energy or surfactants, and at room temperature. The nanoparticles were prepared from different ratios of silver ions to reducing agent molecules and were characterized by UV-vis spectroscopy and transmission electron microscopy (TEM). The nanoparticles were roughly spherical and polydispersed with diameters of less than 40 nm, as determined with high-resolution transmission electron microscopy (HRTEM). Fast Fourier transform (FFT) analysis and X-ray diffraction (XRD) analysis elucidated the crystalline nature of the nanoparticles. The presence of participating functional groups was determined with Fourier transform infrared (FTIR) spectroscopy. The synthesized silver nanoparticles were analyzed as a potential surface-enhanced Raman spectroscopy (SERS) substrate by incorporating rhodamine B as the Raman reporter molecule. The bioreduction process was monitored through SERS fingerprint, which was evaluated by the change in vibrational energies of metal-ligand bonds. It was possible to detect the SERS spectral pattern of the probe molecules on the Ag nanoparticles without the use of any aggregating agent. Thus, the formation of probable intra- and interparticle hot spots was attributed to evaporation-induced aggregation. Furthermore, stirring and precursor salt concentration influenced the kinetics involved in the fabrication process. The thermal stability of the lyophilized nanoparticles prepared from 0.1 M AgNO3 was evaluated with thermogravimetric analysis (TGA) and had a residual mass of 60% at 600 °C. X-ray photoelectron spectroscopy (XPS) studies were used to validate the compositional and chemical-state information. The biomass-capped silver nanoparticles provided antimicrobial activity by inhibiting the growth of Pseudomonas nitroreducens, a biofilm-forming bacterium, and the fungus, Aspergillus unguis (NII 08123).
Collapse
Affiliation(s)
- Sarah B Ulaeto
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.,Department of Chemical Sciences, Rhema University, Aba, Abia State 450271, Nigeria
| | | | - Jerin K Pancrecious
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Jyothi B Nair
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - T P D Rajan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Kaustabh K Maiti
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | | |
Collapse
|
11
|
Huang T, Holden JA, Heath DE, O'Brien-Simpson NM, O'Connor AJ. Engineering highly effective antimicrobial selenium nanoparticles through control of particle size. NANOSCALE 2019; 11:14937-14951. [PMID: 31363721 DOI: 10.1039/c9nr04424h] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The overuse of antibiotics has induced the rapid development of antibiotic resistance in bacteria. As a result, antibiotic efficacy has become limited, and infection with multidrug-resistant bacteria is considered to be one of the largest global human health threats. Consequently, new, effective and safe antimicrobial agents need to be developed urgently. One promising candidate to address this requirement is selenium nanoparticles (Se NPs), which are made from the essential dietary trace element Se and have antimicrobial activity against Gram-positive bacteria. The size of nanomaterials can strongly affect their biophysical properties and functions; however, the effects of the size of Se NPs on their antibacterial efficacy has not been systematically investigated. Therefore, in this work, spherical Se NPs ranging from 43 to 205 nm in diameter were fabricated, and their mammalian cytotoxicity and antibacterial activity as a function of their size were systematically studied. The antibacterial activity of the Se NPs was shown to be strongly size dependent, with 81 nm Se NPs showing the maximal growth inhibition and killing effect of methicillin-sensitive and methicillin-resistant Staphylococcus aureus (MSSA and MRSA). The Se NPs were shown to have multi-modal mechanisms of action that depended on their size, including depleting internal ATP, inducing ROS production, and disrupting membrane potential. All the Se NPs were non-toxic towards mammalian cells up to 25 μg mL-1. Furthermore, the MIC value for the 81 nm particles produced in this research is 16 ± 7 μg mL-1, significantly lower than previously reported MIC values for Se NPs. This data illustrates that Se NP size is a facile yet critical and previously underappreciated parameter that can be tailored for maximal antimicrobial efficacy. We have identified that using Se NPs with a size of 81 nm and concentration of 10 μg mL-1 shows promise as a safe and efficient way to kill S. aureus without damaging mammalian cells.
Collapse
Affiliation(s)
- Tao Huang
- Department of Biomedical Engineering, Particulate Fluids Processing Centre, University of Melbourne, Parkville, VIC 3010, Australia.
| | | | | | | | | |
Collapse
|
12
|
Wiegand C, Fink S, Hipler UC, Beier O, Horn K, Pfuch A, Schimanski A, Grünler B. Cold atmospheric pressure plasmas exhibit antimicrobial properties against critical bacteria and yeast species. J Wound Care 2019; 26:462-468. [PMID: 28795887 DOI: 10.12968/jowc.2017.26.8.462] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Cold atmospheric pressure plasmas (CAPPs) have been used to sterilise implant materials and other thermally unstable medical products and to modify chemical surfaces. This study investigates the antimicrobial effect of the gas and input power used to generate CAPPs on microorganisms causing skin infections, such as Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans and Malassezia pachydermatis. METHOD Microorganisms were cultivated on Mueller Hinton 2 (MH2) agar plates. CAPP treatment was performed using the Plasma BLASTER MEF. To investigate the antimicrobial effects the following CAPP parameters were varied: the gas used, input power, as well as number of treatments and treatment time. RESULTS The antimicrobial efficacy of the CAPPs was found to increase with increasing input power and treatment time (or cycles). Furthermore the plasma generated from nitrogen is more effective than from air. CONCLUSION The study showed that CAPPs demonstrate strong bactericidal and fungicidal properties in vitro. The selective application of CAPPs for the treatment of wound infections may offer a promising supplementary tool alongside current therapies.
Collapse
Affiliation(s)
- C Wiegand
- Biochemist, Scientific Associate, Department of Dermatology, University Hospital Jena, Erfurter Straße 35, D-07740 Jena, Germany
| | - S Fink
- Scientific Associate, Department of Dermatology, University Hospital Jena, Erfurter Straße 35, D-07740 Jena, Germany
| | - U-C Hipler
- Head of Laboratory, Department of Dermatology, University Hospital Jena, Erfurter Straße 35, D-07740 Jena, Germany
| | - O Beier
- Research Scientist, Department of Surface Engineering/Plasma Technology, Innovent e.v. Technology Development Jena, Pruessingstrasse 27B, D-07745 Jena, Germany
| | - K Horn
- Research Scientist, Department of Surface Engineering/Plasma Technology, Innovent e.v. Technology Development Jena, Pruessingstrasse 27B, D-07745 Jena, Germany
| | - A Pfuch
- Head of Department Plasma Technology, Innovent e.v. Technology Development Jena, Pruessingstrasse 27B, D-07745 Jena, Germany
| | - A Schimanski
- Managing Director of Innovent, Innovent e.v. Technology Development Jena, Pruessingstrasse 27B, D-07745 Jena, Germany
| | - B Grünler
- Managing Director of Innovent, Innovent e.v. Technology Development Jena, Pruessingstrasse 27B, D-07745 Jena, Germany
| |
Collapse
|
13
|
Motley TA, Caporusso JM, Lange DL, Eichelkraut RA, Cargill DI, Dickerson JE. Clinical Outcomes for Diabetic Foot Ulcers Treated with Clostridial Collagenase Ointment or with a Product Containing Silver. Adv Wound Care (New Rochelle) 2018; 7:339-348. [PMID: 30374419 PMCID: PMC6203225 DOI: 10.1089/wound.2018.0784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/18/2018] [Indexed: 02/03/2023] Open
Abstract
Objective: To compare outcomes of diabetic foot ulcers (DFUs) treated with clostridial collagenase ointment (CCO) or silver-containing products, both in combination with sharp debridement as needed. Approach: One hundred two subjects with qualifying DFUs were randomized to daily treatment with either CCO or a silver-containing product for 6 weeks followed by a 4 -week follow-up period. The primary outcome was the mean percent reduction in DFU area. A secondary outcome was the incidence of ulcer infections between groups. Results: At the end of treatment, the mean percent reduction in area from baseline of DFUs treated with CCO was 62% (p < 0.0001) and with silver was 40% (p < 0.0001). The difference between groups—22%—was not statistically significant (p = 0.071). Among ulcers closed by the end of treatment, the mean time to closure was 31.1 ± 9.0 days versus 37.1 ± 7.7 days, respectively (not statistically significant). There was a numerically greater incidence of target ulcer infections in the silver group (11, 21.6%) than in the CCO group (5, 9.8%; p = 0.208). No clinically relevant safety signals were identified in either group. Innovation: CCO treatment can progress a wound toward closure. Ulcer infection prophylaxis may not be sacrificed when treating DFU with CCO in lieu of silver-containing products. Conclusion: Both CCO and silver-containing products promote significant reduction in DFU area over 6 weeks of treatment with no clinically relevant safety concerns. Mean percent reduction in lesion area was numerically (22%) but not significantly greater with CCO compared to silver, as was time to ulcer closure, with an incidence of ulcer infection at least as low as for silver-containing products.
Collapse
Affiliation(s)
- Travis A. Motley
- Department of Orthopedics, John Peter Smith Hospital and Acclaim Physician Group, Fort Worth, Texas
| | | | | | | | | | - Jaime E. Dickerson
- Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
14
|
Coelho D, Sampaio A, Silva CJSM, Felgueiras HP, Amorim MTP, Zille A. Antibacterial Electrospun Poly(vinyl alcohol)/Enzymatic Synthesized Poly(catechol) Nanofibrous Midlayer Membrane for Ultrafiltration. ACS APPLIED MATERIALS & INTERFACES 2017; 9:33107-33118. [PMID: 28845971 DOI: 10.1021/acsami.7b09068] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Two different nanofibrous antibacterial membranes containing enzymatically synthesized poly(catechol) (PC) or silver nitrate (AgNO3, positive control) blended with poly(vinyl alcohol) (PVA) and electrospun onto a poly(vinylidene fluoride) (PVDF) basal disc to generate thin-film composite midlayers were produced for water ultrafiltration applications. The developed membranes were thoroughly characterized in terms of morphology, chemical composition, and general mechanical and thermal features, antimicrobial activity, and ultrafiltration capabilities. The electrospun blends were recognized as homogeneous. Data revealed relevant conformational changes in the PVA side groups, attributed to hydrogen bonding, high thermal stability, and residual mass. PVDF+PVA/AgNO3 membrane displayed 100% growth inhibition of both Gram-positive and Gram-negative bacteria strains, despite the wide range of fiber diameters generated, from 24 to 125 nm, formation of numerous beads, and irregular morphology. The PVDF+PVA/PC membrane showed a good growth inhibition of Staphylococcus aureus (92%) and revealed a smooth morphology with no relevant bead formations and diameters ranging from 68 to 131 nm. The ultrafiltration abilities of the membrane containing PVA/PC were tested in a dead-end high-pressure cell (4 bar) using a reactive dye in distilled water and seawater. After 5 cycles, a maximum rejection of ≈85% with an average flux rate of 70 L m-2 h-1 for distilled water and ≈64% with an average flux rate of 62 L m-2 h-1 for seawater were determined with an overall salt rejection of ≈5%.
Collapse
Affiliation(s)
- Dora Coelho
- Centro de Nanotecnologia e Materiais Técnicos, Funcionais e Inteligentes (CeNTI) , 4760-034 Vila Nova de Famalicão, Portugal
| | - Ana Sampaio
- Centro de Nanotecnologia e Materiais Técnicos, Funcionais e Inteligentes (CeNTI) , 4760-034 Vila Nova de Famalicão, Portugal
| | - Carla J S M Silva
- Centro de Nanotecnologia e Materiais Técnicos, Funcionais e Inteligentes (CeNTI) , 4760-034 Vila Nova de Famalicão, Portugal
| | - Helena P Felgueiras
- 2C2T-Centro de Ciência e Tecnologia Têxtil, Universidade do Minho, Campus de Azurém , 4800-058 Guimarães, Portugal
| | - M Teresa P Amorim
- 2C2T-Centro de Ciência e Tecnologia Têxtil, Universidade do Minho, Campus de Azurém , 4800-058 Guimarães, Portugal
| | - Andrea Zille
- 2C2T-Centro de Ciência e Tecnologia Têxtil, Universidade do Minho, Campus de Azurém , 4800-058 Guimarães, Portugal
| |
Collapse
|
15
|
Wiegand C, Eberlein T, Andriessen A. Antibacterial activity of polihexanide formulations in a co-culture of HaCaT keratinocytes and Staphylococcus aureus and at different pH levels. Wound Repair Regen 2017; 25:423-431. [PMID: 28370821 DOI: 10.1111/wrr.12528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/31/2017] [Indexed: 11/27/2022]
Abstract
Complex stalled wounds feature an alkaline milieu that favors tissue destruction and microbial growth. The presence of bacteria in turn perpetuates the inflammatory response. However, only limited knowledge exists of pH dependency on the antibacterial efficacy of polyhexamethylene biguanide (PHMB) or the influence of surfactants or delivery vehicle used in antiseptic formulations. So far, PHMB alone has been shown to protect the keratinocytes from bacterial damage in such a co-culture system as well as exhibiting increased antimicrobial activity at higher pH values. Here, the interaction of PHMB with the surfactants macrogolum and undecylenamidopropyl betaine that are most commonly used as additives in antiseptics and rinsing solutions such as Lavasept and Prontosan has been explored in addition to the PHMB-containing biocellulose dressing Suprasorb X + PHMB. Undecylenamidopropyl betaine was found to lower the antimicrobial activity of polihexanide in the co-culture system, while macrogolum and the biocellulose increased polihexanide efficiency to reduce Staphylococcus aureus especially in the presence of serum. The increasing antibacterial efficacy of PHMB with rising pH was not altered by undecylenamidopropyl betaine, macrogolum, or the biocellulose. The results suggest that application of PHMB with macrogolum or by delivery through a biocellulose dressing might be advantageous for management of wound infections.
Collapse
Affiliation(s)
- Cornelia Wiegand
- Department of Dermatology, University Hospital Center Jena, Jena, Germany
| | | | - Anneke Andriessen
- Malden & UMC St Radboud, Andriessen Consultants, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Bakare R, Wells L, McLennon N, Singh M, Gugssa A, Stubbs J, Zewde B, Raghavan D. Formulation of silver chloride/poly(3‐hydroxybutyrate‐
co
‐3‐hydroxyvalerate) (AgCl/PHBV) films for potential use in bone tissue engineering. J Appl Polym Sci 2017. [DOI: 10.1002/app.45162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Rotimi Bakare
- Department of ChemistryHoward UniversityWashington DC20059
| | - Lauren Wells
- Department of ChemistryHoward UniversityWashington DC20059
| | | | - Manisha Singh
- Department of ChemistryHoward UniversityWashington DC20059
| | - Ayele Gugssa
- Department of BiologyHoward UniversityWashington DC20059
| | - John Stubbs
- Department of MicrobiologyCollege of Medicine, Howard UniversityWashington DC20059
| | - Berhanu Zewde
- Department of ChemistryHoward UniversityWashington DC20059
| | | |
Collapse
|
17
|
Reddersen K, Finger S, Zieger M, Wiegand C, Buschmann HJ, Elsner P, Hipler UC. Cytocompatibility testing of cyclodextrin-functionalized antimicrobial textiles-a comprehensive approach. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:190. [PMID: 27844305 DOI: 10.1007/s10856-016-5804-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/27/2016] [Indexed: 06/06/2023]
Abstract
Functionalized textiles can be used in wound management to reduce the microbial burden in the wound area, to prevent wound infections, and to avoid cross-contamination between patients. In the present study, a comprehensive in vitro approach to enable the assessment of antibacterial activity of functionalized textiles and cytotoxicity of cyclodextrin (CD)-complexes with chlorhexidine diacetate (CHX), iodine (IOD), and polihexanide (PHMB) is suggested to evaluate their properties for supporting optimal conditions for wound healing. For all β-CD-antiseptic functionalized cotton samples a strong antibacterial effect on the Gram-positive bacteria Staphylococcus aureus and Staphylococcus epidermidis as well as on the Gram-negative bacteria Klebsiella pneumoniae and Escherichia coli was proven. In addition, β-CD-CHX and β-CD-PHMB were effective against the yeast Candida albicans. The growth of Pseudomonas aeruginosa could be reduced significantly by β-CD-IOD and β-CD-PHMB. The established comprehensive testing system for determination of biocompatibility on human HaCaT keratinocytes is suitable for obtaining robust data on cell viability, cytotoxicity and mode of cell death of the β-CD-antiseptic-complexes. The promising results of the high antimicrobial activity of these functionalized textiles show the high potential of such materials in medical applications.
Collapse
Affiliation(s)
| | - Susanne Finger
- Department of Dermatology, University Hospital Jena, Jena, Germany
| | - Michael Zieger
- Department of Dermatology, University Hospital Jena, Jena, Germany
| | - Cornelia Wiegand
- Department of Dermatology, University Hospital Jena, Jena, Germany
| | | | - Peter Elsner
- Department of Dermatology, University Hospital Jena, Jena, Germany
| | | |
Collapse
|
18
|
Wiegand C, Moritz S, Hessler N, Kralisch D, Wesarg F, Müller FA, Fischer D, Hipler UC. Antimicrobial functionalization of bacterial nanocellulose by loading with polihexanide and povidone-iodine. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:245. [PMID: 26411441 DOI: 10.1007/s10856-015-5571-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 09/16/2015] [Indexed: 05/18/2023]
Abstract
Bacterial nanocellulose (BNC) is chemically identical with plant cellulose but free of byproducts like lignin, pectin, and hemicelluloses, featuring a unique reticulate network of fine fibers. BNC sheets are mostly obtained by static cultivation. Now, a Horizontal Lift Reactor may provide a cost efficient method for mass production. This is of particular interest as BNC features several properties of an ideal wound dressing although it exhibits no bactericidal activity. Therefore, BNC was functionalized with the antiseptics povidone-iodine (PI) and polihexanide (PHMB). Drug loading and release, mechanical characteristics, biocompatibility, and antimicrobial efficacy were investigated. Antiseptics release was based on diffusion and swelling according to Ritger-Peppas equation. PI-loaded BNC demonstrated a delayed release compared to PHMB due to a high molar drug mass and structural changes induced by PI insertion into BNC that also increased the compressive strength of BNC samples. Biological assays demonstrated high biocompatibility of PI-loaded BNC in human keratinocytes but a distinctly lower antimicrobial activity against Staphylococcus aureus compared to PHMB-loaded BNC. Overall, BNC loaded with PHMB demonstrated a better therapeutic window. Moreover, compressive and tensile strength were not changed by incorporation of PHMB into BNC, and solidity during loading and release could be confirmed.
Collapse
Affiliation(s)
- Cornelia Wiegand
- Department of Dermatology, University Hospital Center Jena, Erfurter Str. 35, 07740, Jena, Germany.
| | - Sebastian Moritz
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Nadine Hessler
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Dana Kralisch
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Jena, Germany
| | - Falko Wesarg
- Institute of Materials Science and Technology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Frank A Müller
- Institute of Materials Science and Technology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Dagmar Fischer
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Jena, Germany
| | - Uta-Christina Hipler
- Department of Dermatology, University Hospital Center Jena, Erfurter Str. 35, 07740, Jena, Germany
| |
Collapse
|
19
|
Wiegand C, Nikolajski M, Hipler UC, Heinze T. Nanoparticle Formulation of AEA and BAEA Cellulose Carbamates Increases Biocompatibility and Antimicrobial Activity. Macromol Biosci 2015; 15:1242-51. [DOI: 10.1002/mabi.201500031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/28/2015] [Indexed: 01/22/2023]
Affiliation(s)
- Cornelia Wiegand
- Department of Dermatology; University Hospital Jena; Erfurter Str. 35 D-07743 Jena Germany
| | - Melanie Nikolajski
- Center of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular Chemistry; Friedrich-Schiller-University Jena; Humboldtstr. 10 D-07743 Jena Germany
| | - Uta-Christina Hipler
- Department of Dermatology; University Hospital Jena; Erfurter Str. 35 D-07743 Jena Germany
| | - Thomas Heinze
- Center of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular Chemistry; Friedrich-Schiller-University Jena; Humboldtstr. 10 D-07743 Jena Germany
| |
Collapse
|
20
|
Spange S, Pfuch A, Wiegand C, Beier O, Hipler UC, Grünler B. Atmospheric pressure plasma CVD as a tool to functionalise wound dressings. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:76. [PMID: 25631274 DOI: 10.1007/s10856-015-5417-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/23/2014] [Indexed: 06/04/2023]
Abstract
The main goal of this investigation was the preparation of an antibacterial layer system for additional modification of wound dressings with atmospheric plasma. Furthermore, the modified wound dressings were checked on there bactericidal and cytotoxic activity. The layer system was applied by using a novel atmospheric pressure plasma chemical vapour deposition technique on a variety of textile substrates which are suitable as wound dressing materials. The layer system composed of silicon dioxide with in situ generated embedded silver nanoparticles. The bactericidal activity of the produced wound dressings was investigated against different bacteria like Staphylococcus aureus and Klebsiella pneumoniae while the cytotoxic potential of the coated wound dressings was verified using human keratinocytes. Even at low concentrations of silver precursor a strong antibacterial effect was observed in direct contact with S. aureus and K. pneumoniae. Furthermore, extractions produced from the coated textiles showed a good antibacterial effect. By means of optimised coating parameters a therapeutic window for those wound dressings could be identified. Consequently, the atmospheric pressure plasma chemical vapour deposition technique promise an effective and low cost modification of wound dressing materials.
Collapse
|
21
|
Tran PL, Patel S, Hamood AN, Enos T, Mosley T, Jarvis C, Desai A, Lin P, Reid TW. A Novel Organo-Selenium Bandage that Inhibits Biofilm Development in a Wound by Gram-Positive and Gram-Negative Wound Pathogens. Antibiotics (Basel) 2014; 3:435-49. [PMID: 27025754 PMCID: PMC4790367 DOI: 10.3390/antibiotics3030435] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/07/2014] [Accepted: 08/19/2014] [Indexed: 11/16/2022] Open
Abstract
Biofilm formation in wounds is a serious problem which inhibits proper wound healing. One possible contributor to biofilm formation in a wound is the bacteria growing within the overlying bandage. To test this mechanism, we used bandages that contained a coating of organo-selenium that was covalently attached to the bandage. We tested the ability of this coating to kill bacteria on the bandage and in the underlying tissue. The bandage material was tested with both lab strains and clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa and Staphylococcus epidermidis. It was found that the organo-selenium coated bandage showed inhibition, of biofilm formation on the bandage in vitro (7–8 logs), with all the different bacteria tested, at selenium concentrations in the coating of less than 1.0%. These coatings were found to remain stable for over one month in aqueous solution, 15 min in boiling water, and over 6 years at room temperature. The bandages were also tested on a mouse wound model where the bacteria were injected between the bandage and the wound. Not only did the selenium bandage inhibit biofilm formation in the bandage, but it also inhibited biofilm formation in the wound tissue. Since selenium does not leave the bandage, this would appear to support the idea that a major player in wound biofilm formation is bacteria which grows in the overlying bandage.
Collapse
Affiliation(s)
- Phat L Tran
- Departments of Ophthalmology and Visual Sciences, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Saurabh Patel
- Department of Neonatology, University of Illinois, Chicago, IL 60607, USA.
| | - Abdul N Hamood
- Departments of Medical Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Tyler Enos
- South Western Medical Center, University of Texas, Dallas, TX 75390, USA.
| | - Thomas Mosley
- Departments of Ophthalmology and Visual Sciences, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Courtney Jarvis
- Departments of Ophthalmology and Visual Sciences, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Akash Desai
- Departments of Ophthalmology and Visual Sciences, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Pamela Lin
- Departments of Ophthalmology and Visual Sciences, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Ted W Reid
- Departments of Ophthalmology and Visual Sciences, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
22
|
Jeong L, Cho D, Kwon OH, Min BM, Park WH. Cellular response of silk fibroin nanofibers containing silver nanoparticles In vitro. Macromol Res 2014. [DOI: 10.1007/s13233-014-2104-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Jeong L, Park WH. Preparation and characterization of gelatin nanofibers containing silver nanoparticles. Int J Mol Sci 2014; 15:6857-79. [PMID: 24758929 PMCID: PMC4013666 DOI: 10.3390/ijms15046857] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/03/2014] [Accepted: 03/25/2014] [Indexed: 12/01/2022] Open
Abstract
Ag nanoparticles (NPs) were synthesized in formic acid aqueous solutions through chemical reduction. Formic acid was used for a reducing agent of Ag precursor and solvent of gelatin. Silver acetate, silver tetrafluoroborate, silver nitrate, and silver phosphate were used as Ag precursors. Ag+ ions were reduced into Ag NPs by formic acid. The formation of Ag NPs was characterized by a UV-Vis spectrophotometer. Ag NPs were quickly generated within a few minutes in silver nitrate (AgNO3)/formic acid solution. As the water content of formic acid aqueous solution increased, more Ag NPs were generated, at a higher rate and with greater size. When gelatin was added to the AgNO3/formic acid solution, the Ag NPs were stabilized, resulting in smaller particles. Moreover, gelatin limits further aggregation of Ag NPs, which were effectively dispersed in solution. The amount of Ag NPs formed increased with increasing concentration of AgNO3 and aging time. Gelatin nanofibers containing Ag NPs were fabricated by electrospinning. The average diameters of gelatin nanofibers were 166.52 ± 32.72 nm, but these decreased with the addition of AgNO3. The average diameters of the Ag NPs in gelatin nanofibers ranged between 13 and 25 nm, which was confirmed by transmission electron microscopy (TEM).
Collapse
Affiliation(s)
- Lim Jeong
- Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University, Daejeon 305-764, Korea.
| | - Won Ho Park
- Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University, Daejeon 305-764, Korea.
| |
Collapse
|
24
|
Mohiti-Asli M, Pourdeyhimi B, Loboa EG. Skin tissue engineering for the infected wound site: biodegradable PLA nanofibers and a novel approach for silver ion release evaluated in a 3D coculture system of keratinocytes and Staphylococcus aureus. Tissue Eng Part C Methods 2014; 20:790-7. [PMID: 24494739 DOI: 10.1089/ten.tec.2013.0458] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Wound infection presents a challenging and growing problem. With the increased prevalence and growth of multidrug-resistant bacteria, there is a mounting need to reduce and eliminate wound infections using methodologies that limit the ability of bacteria to evolve into further drug-resistant strains. A well-known strategy for combating bacterial infection and preventing wound sepsis is through the delivery of silver ions to the wound site. High surface area silver nanoparticles (AgNPs) allowing extensive silver ion release have therefore been explored in different wound dressings and/or skin substitutes. However, it has been recently shown that AgNPs can penetrate into the stratum corneum of skin or diffuse into the cellular plasma membrane, and may interfere with a variety of cellular mechanisms. The goal of this study was to introduce and evaluate a new type of high surface area metallic silver in the form of highly porous silver microparticles (AgMPs). Polylactic acid (PLA) nanofibers were successfully loaded with either highly porous AgMPs or AgNPs and the antimicrobial efficacy and cytotoxicity of the two silver-based wound dressings were assessed and compared. To better mimic the physiological environment in vivo where both human cells and bacteria are present, a novel coculture system combining human epidermal keratinocytes and Staphylococcus aureus bacteria was designed to simultaneously evaluate human skin cell cytotoxicity with antimicrobial efficacy in a three-dimensional environment. We found that highly porous AgMPs could be successfully incorporated in nanofibrous wound dressings, and exhibited comparable antimicrobial efficacy and cytotoxicity to AgNPs. Further, PLA nanofibers containing highly porous AgMPs exhibited steady silver ion release, at a greater rate of release, than nanofibers containing AgNPs. The replacement of AgNPs with the newly introduced AgMPs overcomes concerns regarding the use of nanoparticles and holds great promise as skin substitutes or wound dressings for infected wound sites.
Collapse
Affiliation(s)
- Mahsa Mohiti-Asli
- 1 Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina State University , Raleigh, North Carolina
| | | | | |
Collapse
|
25
|
Avalos A, Haza AI, Mateo D, Morales P. Interactions of manufactured silver nanoparticles of different sizes with normal human dermal fibroblasts. Int Wound J 2014; 13:101-9. [PMID: 24612846 DOI: 10.1111/iwj.12244] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/23/2014] [Accepted: 01/27/2014] [Indexed: 11/29/2022] Open
Abstract
Silver compounds have been used for their medicinal properties for centuries. At present, silver nanoparticles (AgNPs) are reemerging as a viable topical treatment option for infections encountered in burns, open wounds and chronic ulcers. This study evaluated the in vitro mechanisms of two different sizes of AgNPs (4·7 and 42 nm) toxicity in normal human dermal fibroblasts. The toxicity was evaluated by observing cell viability and oxidative stress parameters. In all toxicity endpoints studied (MTT and lactate dehydrogenase assays), AgNPs of 4·7 nm were much more toxic than the large AgNPs (42 nm). The cytotoxicity of both AgNPs was greatly decreased by pre-treatment with the antioxidant N-acetyl-L-cysteine. The oxidative stress parameters showed significant increase in reactive oxygen species levels, depletion of glutathione level and slight, but not statistically significant inactivation of superoxide dismutase, suggesting generation of oxidative stress. Thus, AgNPs should be used with caution for the topical treatment of burns and wounds, medical devices etc, because their toxicity depends on the size, the smaller NPs being much more cytotoxic than the large.
Collapse
Affiliation(s)
- Alicia Avalos
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana I Haza
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Diego Mateo
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Paloma Morales
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
26
|
Tran PL, Hamood AN, Reid TW. Antimicrobial Coatings to Prevent Biofilm Formation on Medical Devices. SPRINGER SERIES ON BIOFILMS 2014. [DOI: 10.1007/978-3-642-53833-9_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Wiegand C, Bauer M, Hipler UC, Fischer D. Poly(ethyleneimines) in dermal applications: biocompatibility and antimicrobial effects. Int J Pharm 2013; 456:165-74. [PMID: 23948135 DOI: 10.1016/j.ijpharm.2013.08.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/26/2013] [Accepted: 08/01/2013] [Indexed: 01/28/2023]
Abstract
Cationic polyamines, such as poly(ethyleneimines) (PEIs), may recommend themselves for antimicrobial applications as they can interact with microbial membranes resulting in their disruption. The purpose of the study was the assessment of biocompatibility and antibacterial activity of PEIs with different architectures (branched (b) and linear (l)) and molar masses (0.8-750 kDa). lPEI and bPEI exhibited a strong antibacterial activity against Staphylococcus aureus and Escherichia coli with a more pronounced effect on the Gram-positive bacteria. lPEIs further demonstrated a higher antibacterial efficacy compared to bPEIs but no significant differences between 5 and 25 kDa were observed. In accordance, antibacterial activity of bPEI did not specifically depend on molar mass. Only slightly lower minimal inhibitory concentrations (MIC) were observed at 5 kDa (S. aureus) and 25 kDa (E. coli) in the tests. As PEIs are compelling candidates for use in antimicrobial treatment, two basic aspects have to be investigated: treatment effectiveness and safety. PEIs clearly induced molecular weight dependent cytotoxic effects in vitro. PEIs with low molecular weight (0.8 and 5 kDa) exhibited higher biocompatibility. Nonetheless, the results confirmed a low genotoxic potential of lPEI and bPEIs. In conclusion, 2.5 kDa-lPEI and 0.8 kDa-bPEI can be recommended for use as antimicrobial polymers in dermal applications due to their high biocompatibility with concomitant antibacterial efficacy.
Collapse
Affiliation(s)
- Cornelia Wiegand
- Department of Dermatology, University Medical Center Jena, Erfurter Str. 35, D-07740 Jena, Germany.
| | | | | | | |
Collapse
|
28
|
Wiegand C, Beier O, Horn K, Pfuch A, Tölke T, Hipler UC, Schimanski A. Antimicrobial impact of cold atmospheric pressure plasma on medical critical yeasts and bacteria cultures. Skin Pharmacol Physiol 2013; 27:25-35. [PMID: 23921169 DOI: 10.1159/000351353] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 03/24/2013] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Plasma medicine focuses on the application of cold atmospheric pressure plasmas (CAPs) in or on the human body. So far, plasmas have been used to sterilize implant materials or other thermally unstable medical products and have been applied for chemical surface modifications. This study investigates the antimicrobial effect of physical plasmas on microorganisms which cause skin infections, such as Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans, depending on the plasma source and the kind of plasma excitation used. MATERIALS Microorganisms were plated onto MH2 agar plates. Plasma treatment was performed using the plasma sources BLASTER MEF and kinpen 09. To investigate the antimicrobial effects, the following plasma parameters have been varied: working gas, distance from nozzle to surface, electrical power, grid spacing of treatment lines, number of treatments and work piece velocity. RESULTS The generated plasmas had an antimicrobial effect that depended on the chosen plasma parameters, in particular on the process gas used, the plasma power and the number of treatments performed. Thus, different reactive species were observed by optical emission spectroscopy measurement in the generated plasmas. CONCLUSIONS The study showed that CAPs exhibit profound bactericidal and fungicidal properties in vitro. However, an important factor for the antimicrobial efficacy is the composition of the 'chemical soup' supplied by the CAP system which can be regulated by the process gases used.
Collapse
Affiliation(s)
- C Wiegand
- Department of Dermatology, University Medical Center Jena, Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Wiegand C, Hipler UC, Boldt S, Strehle J, Wollina U. Skin-protective effects of a zinc oxide-functionalized textile and its relevance for atopic dermatitis. Clin Cosmet Investig Dermatol 2013; 6:115-21. [PMID: 23696710 PMCID: PMC3656624 DOI: 10.2147/ccid.s44865] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory disease characterized by the impairment of the skin-barrier function, increased oxidative cellular stress, and bacterial colonization. Hence, medical therapies of AD aim to control infection, reduce inflammation, and restore skin-barrier function by use of topical and systemic antibacterial drugs, topical corticosteroids, topical calcineurin inhibitors, and moisturizers. Textiles have the longest and most intense contact with the human skin, and functional textiles with intrinsic properties such as antioxidative capacity and antibacterial activity have been gaining in importance in medical applications. Specially designed textiles may support AD treatment and improve quality of life of AD. Here, we investigated the role of ZnO-functionalized textile fibers in the control of oxidative stress in AD in vitro and in vivo. In addition, the antibacterial effect and biocompatibility of the Zn textile was evaluated in vitro. We observed a rapid improvement of AD severity, pruritus, and subjective sleep quality when AD patients wore the ZnO textiles overnight on 3 consecutive days. This is possibly due to the high antioxidative capacity of the ZnO textile, as well as the allocation of strong antibacterial activity. Moreover, it was shown that the ZnO textiles possess very good biocompatibility and were well tolerated by AD patients.
Collapse
Affiliation(s)
- Cornelia Wiegand
- Department of Dermatology, University Medical Center Jena, Jena, Germany
| | | | | | | | | |
Collapse
|
30
|
Hrkac T, Röhl C, Podschun R, Zaporojtchenko V, Strunskus T, Papavlassopoulos H, Garbe-Schönberg D, Faupel F. Huge increase of therapeutic window at a bioactive silver/titania nanocomposite coating surface compared to solution. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:2367-75. [DOI: 10.1016/j.msec.2013.01.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 01/30/2013] [Accepted: 01/31/2013] [Indexed: 12/31/2022]
|
31
|
Abstract
BACKGROUND Cis-2 decenoic acid (C2DA) disperses biofilm in many strains of microorganisms. However, whether C2DA inhibits bacterial growth or has potential to boost the actions of antibiotics is unknown. QUESTIONS/PURPOSES We asked whether (1) C2DA inhibited MRSA growth and biofilm, (2) antibiotics increased inhibitory effects, (3) inhibitory concentrations of C2DA were cytotoxic to human cells, and (4) effective concentrations could be delivered from a chitosan sponge drug delivery device. METHODS Broth containing seven concentrations of C2DA and six concentrations of either daptomycin, vancomycin, or linezolid was inoculated with a clinical isolate of MRSA and added to a total of 504 coated microtiter plate wells in triplicate (n = 3) for turbidity bacterial growth and crystal violet biofilm mass quantification. We used fibroblast cell viability assays of six C2DA concentrations (n = 4) to evaluate preliminary biocompatibility. We measured the elution of C2DA from a chitosan sponge drug delivery device with two representative loading concentrations (n = 3). RESULTS C2DA at concentrations of 500 μg/mL and above inhibited growth, while 125 μg/mL C2DA inhibited biofilm. Combination with antibiotics increased these effects. At concentrations up to 500 μg/mL, there were no cytotoxic effects on fibroblasts. Chitosan sponges loaded with 100 mg of C2DA eluted concentrations at or above biofilm-inhibitory concentrations for 5 days. CONCLUSIONS C2DA inhibited biofilm formation by MRSA at biocompatible concentrations, with increasing biofilm reduction with added antibiotics. Elution of C2DA from a chitosan sponge can be modified through adjusting loading concentration. CLINICAL RELEVANCE By inhibiting biofilm formation on implant surfaces, C2DA may reduce the number of infections in musculoskeletal trauma.
Collapse
|
32
|
Rattanaruengsrikul V, Pimpha N, Supaphol P. In vitro efficacy and toxicology evaluation of silver nanoparticle-loaded gelatin hydrogel pads as antibacterial wound dressings. J Appl Polym Sci 2011. [DOI: 10.1002/app.35195] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Ebert M, Assadian O, Hübner NO, Koburger T, Kramer A. Antimicrobial efficacy of the silver wound dressing Biatain Ag in a disc carrier test simulating wound secretion. Skin Pharmacol Physiol 2011; 24:337-41. [PMID: 21832866 DOI: 10.1159/000330761] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 05/19/2011] [Indexed: 11/19/2022]
Abstract
AIM The efficacy of antimicrobial compounds included in wound dressings has been determined using the quantitative suspension test according to EN 13727 before. However, as suspension tests are not an accurate reflection of the conditions under which wound antiseptics are used, it was investigated if a disc carrier test would yield results simulating practical conditions on wound surfaces. A silver-leaching foam wound dressing was used for evaluation of the disc carrier test method. METHOD The disc carriers consisted of circular stainless-steel discs measuring 2 cm in diameter and 1.5 mm in thickness, complying with the requirements of EN 10088-2. Carriers were contaminated with Staphylococcus aureus, methicillin-resistant S. aureus or Pseudomonas aeruginosa, respectively, together with an artificial wound secretion and left to dry at room temperature for 30 min. The wound dressings being tested were placed on the discs for the length of the exposure time, and after neutralization by thioglycolate in phosphate-buffered saline the number of surviving test organisms was then counted. The logarithmic reduction factor was calculated from the difference between the initial inoculum and the number of recovered test organisms. RESULTS The disc carrier test allowed determination of an antimicrobial efficacy in a realistic setting. It also imposed more stringent requirements on efficacy over time than the quantitative suspension test. The silver foam wound dressing showed a time-dependent antimicrobial efficacy. After 24-hour application time, the reduction factors against S. aureus, P. aeruginosa and the methicillin-resistant S. aureus were 1.9 ± 0.15, 2.1 ± 0.14 and 3.1 ± 0.18, respectively. CONCLUSION The disc carrier test was a useful method for testing the antimicrobial efficacy of a foam silver dressing. The antimicrobial dressing exhibited an antimicrobial effect after 3 h and achieved a reduction >2 log against the tested bacterial strains in the presence of a simulated wound secretion after 24 h.
Collapse
Affiliation(s)
- M Ebert
- Institute for Hygiene and Environmental Medicine, Ernst Moritz Arndt University, Greifswald, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Paasche G, Ceschi P, Löbler M, Rösl C, Gomes P, Hahn A, Rohm HW, Sternberg K, Lenarz T, Schmitz KP, Barcikowski S, Stöver T. Effects of metal ions on fibroblasts and spiral ganglion cells. J Neurosci Res 2011; 89:611-7. [PMID: 21312225 DOI: 10.1002/jnr.22569] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 10/13/2010] [Accepted: 11/04/2010] [Indexed: 11/11/2022]
Abstract
Degeneration of spiral ganglion cells (SGC) after deafness and fibrous tissue growth around the electrode carrier after cochlear implantation are two of the major challenges in current cochlear implant research. Metal ions are known to possess antimicrobial and antiproliferative potential. The use of metal ions could therefore provide a way to reduce tissue growth around the electrode array after cochlear implantation. Here, we report on in vitro experiments with different concentrations of metal salts with antiproliferative and toxic effects on fibroblasts, PC-12 cells, and freshly isolated spiral ganglion cells, the target cells for electrical stimulation by a cochlear implant. Standard cell lines (NIH/3T3 and L-929 fibroblasts and PC-12 cells) and freshly isolated SGC were incubated with concentrations of metal ions between 0.3 μmol/liter and 10 mmol/liter for 48 hr. Cell survival was investigated by neutral red uptake, CellQuantiBlue assay, or counting of stained surviving neurons. Silver ions exhibited distinct thresholds for proliferating and confluent cells. For zinc ions, the effective concentration was lower for fibroblasts than for PC-12 cells. SGC showed comparable thresholds for reduced cell survival not only for silver and zinc ions but also for copper(II) ions, indicating that these ions might be promising for reducing tissue growth on the surface of CI electrode arrays. These effects were also observed when combinations of two of these ions were investigated.
Collapse
Affiliation(s)
- G Paasche
- Department of Otolaryngology, Medical University of Hannover, Hannover, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Roland S, Jolivalt C, Cresteil T, Eloy L, Bouhours P, Hequet A, Mansuy V, Vanucci C, Paris JM. Investigation of a Series of Silver-N-Heterocyclic Carbenes as Antibacterial Agents: Activity, Synergistic Effects, and Cytotoxicity. Chemistry 2011; 17:1442-6. [DOI: 10.1002/chem.201002812] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Indexed: 12/29/2022]
|
36
|
Simbula G, Dettori C, Camboni T, Cotti E. Comparison of Tetraacetylethylendiamine + Sodium Perborate and Sodium Hypochlorite Cytotoxicity on L929 Fibroblasts. J Endod 2010; 36:1516-20. [DOI: 10.1016/j.joen.2010.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Revised: 05/07/2010] [Accepted: 05/19/2010] [Indexed: 10/19/2022]
|
37
|
Wiegand C, Hipler UC. Polymer-based Biomaterials as Dressings for Chronic Stagnating Wounds. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/masy.200900028] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
38
|
Lansdown ABG. A pharmacological and toxicological profile of silver as an antimicrobial agent in medical devices. Adv Pharmacol Sci 2010; 2010:910686. [PMID: 21188244 PMCID: PMC3003978 DOI: 10.1155/2010/910686] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 07/13/2010] [Accepted: 07/13/2010] [Indexed: 11/17/2022] Open
Abstract
Silver is used widely in wound dressings and medical devices as a broad-spectrum antibiotic. Metallic silver and most inorganic silver compounds ionise in moisture, body fluids, and secretions to release biologically active Ag(+). The ion is absorbed into the systemic circulation from the diet and drinking water, by inhalation and through intraparenteral administration. Percutaneous absorption of Ag(+) through intact or damaged skin is low. Ag(+) binds strongly to metallothionein, albumins, and macroglobulins and is metabolised to all tissues other than the brain and the central nervous system. Silver sulphide or silver selenide precipitates, bound lysosomally in soft tissues, are inert and not associated with an irreversible toxic change. Argyria and argyrosis are the principle effects associated with heavy deposition of insoluble silver precipitates in the dermis and cornea/conjunctiva. Whilst these changes may be profoundly disfiguring and persistent, they are not associated with pathological damage in any tissue. The present paper discusses the mechanisms of absorption and metabolism of silver in the human body, presumed mechanisms of argyria and argyrosis, and the elimination of silver-protein complexes in the bile and urine. Minimum blood silver levels consistent with early signs of argyria or argyrosis are not known. Silver allergy does occur but the extent of the problem is not known. Reference values for silver exposure are discussed.
Collapse
Affiliation(s)
- Alan B. G. Lansdown
- Division of Investigative Medicine, Faculty of Medicine, Imperial College, London W6 8RP, UK
| |
Collapse
|
39
|
Chun JY, Kang HK, Jeong L, Kang YO, Oh JE, Yeo IS, Jung SY, Park WH, Min BM. Epidermal cellular response to poly(vinyl alcohol) nanofibers containing silver nanoparticles. Colloids Surf B Biointerfaces 2010; 78:334-42. [PMID: 20399628 DOI: 10.1016/j.colsurfb.2010.03.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 02/01/2010] [Accepted: 03/22/2010] [Indexed: 10/19/2022]
Abstract
A heat-treated PVA nanofibrous matrix containing silver (Ag) was prepared by electrospinning an aqueous 10 wt% PVA solution and followed by heat treatment at 150 degrees C for 10 min. The average diameter of the as-spun and heat-treated PVA nanofibers was 330 nm. The heat-treated PVA nanofibrous matrix containing Ag was irradiated with UV light to transform the Ag ions in the nanofibrous matrix into Ag nanoparticles. The in vitro cytotoxicity of the Ag ions and/or nanoparticles on normal human epidermal keratinocytes (NHEK) and fibroblasts (NHEF) cultures was examined. The PVA nanofibrous matrix containing Ag showed slightly higher level of attachment and spreading in the early stage culture (1 h) than the PVA nanofibers without Ag (control). However, compared with the PVA nanofibers without Ag, the heat-treated and UV-irradiated PVA nanofibers, containing mainly Ag ions and nanoparticles, respectively, showed reduced cell attachment and spreading. This shows that both Ag ions and Ag nanoparticles are cytotoxic to NHEK and NHEF. There was no significant difference in cytotoxicity to NHEK and NHEF between Ag ions and Ag nanoparticles. NHEF appeared to be more sensitive to Ag ions or particles than NHEK. In addition, the residual nitrate ions (NO3(-)) in the PVA nanofibers had an adverse effect on the culture of both cells.
Collapse
Affiliation(s)
- Ja Young Chun
- Department of Advance Organic Materials and Textile System Engineering, Chungnam National University, Daejeon 305-764, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Du Toit DF, Page BJ. An in vitro evaluation of the cell toxicity of honey and silver dressings. J Wound Care 2009; 18:383-9. [PMID: 19789475 DOI: 10.12968/jowc.2009.18.9.44307] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To establish whether honey and silver-impregnated dressings used by wound-healing practitioners are cytotoxic in vitro to human skin keratinocytes and dermal fibroblasts. METHOD Human keratinocyte and fibroblast tissue cultures were established in vitro. Untreated cultures served as controls (group I). Small dressing implants of monofloral, medicinal honey (L-Mesitran) (group 2) and nanocrystalline silver (Acticoat) (group 3) were placed in test wells and co-cultured with each of the two cell lines. Morphological changes, including cell toxicity, were assessed using inverted microscopy, trypan blue staining and the Rosdy and Clauss cell toxicity scoring system. RESULTS Untreated cultures consisting of both keratinocytes and fibroblasts (group 1) were established in 90% of all cases. In group 2, cultures with honey-impregnated implants, cell proliferation remained present at two and four months. Cell viability remained intact and cell toxicity was not evident at four months after continuous tissue culture. In group 3, marked toxicity was observed with high non-viability staining and cell-scoring counts compared with groups 1 and 2 (p<0.05). This demonstrates that the silver interfered with epidermal cell proliferation and migration, implying that it contains cytotoxic material. CONCLUSION The honey-based product showed excellent cytocompatibility with tissue cell cultures compared with the silver dressing, which demonstrated consistent culture and cell toxicity. Further studies are needed to assess if these comparative in-vitro findings should influence a clinician's choice of wound dressing.
Collapse
Affiliation(s)
- D F Du Toit
- Division of Anatomy and Histology, Academic Department of Biomedical Sciences, Faculty of Health Sciences, University of Stellenbosch, Tygerberg Campus, Parow, South Africa.
| | | |
Collapse
|
41
|
Agarwal A, Weis TL, Schurr MJ, Faith NG, Czuprynski CJ, McAnulty JF, Murphy CJ, Abbott NL. Surfaces modified with nanometer-thick silver-impregnated polymeric films that kill bacteria but support growth of mammalian cells. Biomaterials 2009; 31:680-90. [PMID: 19864019 DOI: 10.1016/j.biomaterials.2009.09.092] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Accepted: 09/25/2009] [Indexed: 10/20/2022]
Abstract
Silver is widely used as a biocidal agent in ointments and wound dressings. However, it has also been associated with tissue toxicity and impaired healing. In vitro characterization has also revealed that typical loadings of silver employed in ointments and dressings (approximately 100 microg/cm(2)) lead to cytotoxicity. In this paper, we report the results of an initial study that sought to determine if localization of carefully controlled loadings of silver nanoparticles within molecularly thin films immobilized on surfaces can lead to antimicrobial activity without inducing cytotoxicity. Polymeric thin films of poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) were prepared by layer-by-layer deposition and loaded with approximately 0.4 microg/cm(2) to approximately 23.6 microg/cm(2) of silver nanoparticles. Bacterial killing efficiencies of the silver-loaded films were investigated against Staphylococcus epidermidis, a gram-positive bacterium, and it was determined that as little as approximately 0.4 microg/cm(2) of silver in the polymeric films caused a reduction of 6log(10)CFU/mL (99.9999%) bacteria in suspensions incubated in contact with the films (water-borne assays). Significantly, whereas the antibacterial films containing high loadings of silver were found to be toxic to a murine fibroblast cell line (NIH-3T3), the polymeric films containing approximately 0.4 microg/cm(2) of silver were not toxic and allowed attachment, and growth of the mammalian cells. Thus, the results of this study go beyond prior reports by identifying silver-impregnated, polymeric thin films that are compatible with in vitro mammalian cell culture yet exhibit antibacterial activity. These results support the hypothesis that localization of carefully controlled loadings of silver nanoparticles within molecularly thin polymeric films can lead to antimicrobial activity without cytotoxicity. More broadly, this strategy of modifying surfaces with minimal loadings of bioactive molecules indicates the basis of approaches that may permit management of microbial burden in wound beds without impairment of wound healing.
Collapse
Affiliation(s)
- Ankit Agarwal
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, WI 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Wiegand C, Abel M, Ruth P, Hipler UC. HaCaT keratinocytes in co-culture withStaphylococcus aureuscan be protected from bacterial damage by polihexanide. Wound Repair Regen 2009; 17:730-8. [DOI: 10.1111/j.1524-475x.2009.00536.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Wiegand C, Heinze T, Hipler UC. Comparative in vitro study on cytotoxicity, antimicrobial activity, and binding capacity for pathophysiological factors in chronic wounds of alginate and silver-containing alginate. Wound Repair Regen 2009; 17:511-21. [DOI: 10.1111/j.1524-475x.2009.00503.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Organoselenium coating on cellulose inhibits the formation of biofilms by Pseudomonas aeruginosa and Staphylococcus aureus. Appl Environ Microbiol 2009; 75:3586-92. [PMID: 19346348 DOI: 10.1128/aem.02683-08] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Among the most difficult bacterial infections encountered in treating patients are wound infections, which may occur in burn victims, patients with traumatic wounds, necrotic lesions in people with diabetes, and patients with surgical wounds. Within a wound, infecting bacteria frequently develop biofilms. Many current wound dressings are impregnated with antimicrobial agents, such as silver or antibiotics. Diffusion of the agent(s) from the dressing may damage or destroy nearby healthy tissue as well as compromise the effectiveness of the dressing. In contrast, the antimicrobial agent selenium can be covalently attached to the surfaces of a dressing, prolonging its effectiveness. We examined the effectiveness of an organoselenium coating on cellulose discs in inhibiting Pseudomonas aeruginosa and Staphylococcus aureus biofilm formation. Colony biofilm assays revealed that cellulose discs coated with organoselenium completely inhibited P. aeruginosa and S. aureus biofilm formation. Scanning electron microscopy of the cellulose discs confirmed these results. Additionally, the coating on the cellulose discs was stable and effective after a week of incubation in phosphate-buffered saline. These results demonstrate that 0.2% selenium in a coating on cellulose discs effectively inhibits bacterial attachment and biofilm formation and that, unlike other antimicrobial agents, longer periods of exposure to an aqueous environment do not compromise the effectiveness of the coating.
Collapse
|
45
|
Gabriel A, Shores J, Heinrich C, Baqai W, Kalina S, Sogioka N, Gupta S. Negative pressure wound therapy with instillation: a pilot study describing a new method for treating infected wounds. Int Wound J 2008; 5:399-413. [PMID: 18593390 DOI: 10.1111/j.1742-481x.2007.00423.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This data review reports the results of 15 patients who were treated with Vacuum-Assisted Closure (VAC) negative pressure therapy system in addition to the timed, intermittent delivery of an instilled topical solution for management of their complex, infected wounds. Prospective data for 15 patients treated with negative pressure wound therapy (NPWT)-instillation was recorded and analysed. Primary endpoints were compared to a retrospective control group of 15 patients treated with our institution's standard moist wound-care therapy. Culture-specific systemic antibiotics were prescribed as per specific patient need in both groups. All data were checked for normality of distribution and equality of variance and appropriate parametric and non parametric analyses were conducted. Compared with the standard moist wound-care therapy control group, patients in the NPWT-instillation group required fewer days of treatment (36.5 +/- 13.1 versus 9.9 +/- 4.3 days, P < 0.001), cleared of clinical infection earlier (25.9 +/- 6.6 versus 6.0 +/- 1.5 days, P < 0.001), had wounds close earlier (29.6 +/- 6.5 versus 13.2 +/- 6.8 days, P < 0.001) and had fewer in-hospital stay days (39.2 +/- 12.1 versus 14.7 +/- 9.2 days, P < 0.001). In this pilot study, NPWT instillation showed a significant decrease in the mean time to bioburden reduction, wound closure and hospital discharge compared with traditional wet-to-moist wound care. Outcomes from this study analysis suggest that the use of NPWT instillation may reduce cost and decrease inpatient care requirements for these complex, infected wounds.
Collapse
Affiliation(s)
- Allen Gabriel
- Department of Plastic Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Kumar R, Howdle S, Münstedt H. Polyamide/silver antimicrobials: effect of filler types on the silver ion release. J Biomed Mater Res B Appl Biomater 2008; 75:311-9. [PMID: 16001422 DOI: 10.1002/jbm.b.30306] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The efficiency of various silver-based antimicrobial fillers (elementary silver and silver substituted materials) in polyamide (PA) toward their silver ion (Ag+) release characteristics in an aqueous medium was investigated and discussed. Anode stripping voltammetry (ASV) was used for the quantitative estimation of Ag+ release from these composites. The biocidal (Ag+) release from the composites was found to be dependent on the time of soaking in water and the nature of the filler. The long-term Ag+ release capability of the elementary silver-based PA/Ag composite is promising compared with the commercial counterparts. The silver ion release potential of polyamide composites where the silver filling was performed by using supercritical carbon dioxide (scCO2) is also discussed. The composites release Ag+ at a concentration level capable of rendering antimicrobial efficacy and proved to be active against the microbes. A good agreement exists between the Ag+ release experiments and antimicrobial test results. The observed results on the influence of the nature of the filler and crystallinity on the biocidal release and the varying long-term release properties could be helpful in the design of industrially relevant biomaterials.
Collapse
Affiliation(s)
- Radhesh Kumar
- Institute of Polymer Materials, Friedrich Alexander University, Erlangen-Nurenberg, Martensstrasse 7, 91058 Erlangen, Germany
| | | | | |
Collapse
|
47
|
Cellular responses induced by silver nanoparticles: In vitro studies. Toxicol Lett 2008; 179:93-100. [DOI: 10.1016/j.toxlet.2008.04.009] [Citation(s) in RCA: 535] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 04/16/2008] [Accepted: 04/16/2008] [Indexed: 01/28/2023]
|
48
|
Fonder MA, Lazarus GS, Cowan DA, Aronson-Cook B, Kohli AR, Mamelak AJ. Treating the chronic wound: A practical approach to the care of nonhealing wounds and wound care dressings. J Am Acad Dermatol 2008; 58:185-206. [PMID: 18222318 DOI: 10.1016/j.jaad.2007.08.048] [Citation(s) in RCA: 366] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 08/17/2007] [Accepted: 08/17/2007] [Indexed: 11/20/2022]
Abstract
UNLABELLED Chronic wounds are a major healthcare problem costing the United States billions of dollars a year. The American Academy of Dermatology has underscored the significance of wound care in dermatological practice. It is critical for all dermatologists to understand the elements of diagnosis and therapy. We emphasize major aspects of diagnosis and present a simple classification of wound dressings with guidelines for usage and relative cost data. LEARNING OBJECTIVE After completing this learning activity, participants should be able to diagnose common types of chronic wounds, formulate a therapeutic plan, and describe the major classes of topical therapies and dressings for the chronic wound.
Collapse
Affiliation(s)
- Margaret A Fonder
- Department of Dermatology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | | | | |
Collapse
|
49
|
Burd A, Kwok CH, Hung SC, Chan HS, Gu H, Lam WK, Huang L. A comparative study of the cytotoxicity of silver-based dressings in monolayer cell, tissue explant, and animal models. Wound Repair Regen 2007; 15:94-104. [PMID: 17244325 DOI: 10.1111/j.1524-475x.2006.00190.x] [Citation(s) in RCA: 266] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Over the past decade, a variety of advanced silver-based dressings have been developed. There are considerable variations in the structure, composition, and silver content of these new preparations. In the present study, we examined five commercially available silver-based dressings (Acticoat, Aquacel Ag, Contreet Foam, PolyMem Silver, Urgotul SSD). We assessed their cytotoxicity in a monolayer cell culture, a tissue explant culture model, and a mouse excisional wound model. The results showed that Acticoat, Aquacel Ag, and Contreet Foam, when pretreated with specific solutes, were likely to produce the most significant cytotoxic effects on both cultured keratinocytes and fibroblasts, while PolyMem Silver and Urgotul SSD demonstrated the least cytotoxicity. The cytotoxicity correlated with the silver released from the dressings as measured by silver concentration in the culture medium. In the tissue explant culture model, in which the epidermal cell proliferation was evaluated, all silver dressings resulted in a significant delay of reepithelialization. In the mouse excisional wound model, Acticoat and Contreet Foam indicated a strong inhibition of wound reepithelialization on the postwounding-day 7. These findings may, in part, explain the clinical observations of delayed wound healing or inhibition of wound epithelialization after the use of certain topical silver dressings. Caution should be exercised in using silver-based dressings in clean superficial wounds such as donor sites and superficial burns and also when cultured cells are being applied to wounds.
Collapse
Affiliation(s)
- Andrew Burd
- Division of Plastic and Reconstructive Surgery, Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong.
| | | | | | | | | | | | | |
Collapse
|
50
|
Lansdown ABG. A review of the use of silver in wound care: facts and fallacies. ACTA ACUST UNITED AC 2004; 13:S6-19. [PMID: 15126971 DOI: 10.12968/bjon.2004.13.sup1.12535] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/01/2004] [Indexed: 11/11/2022]
Abstract
This review traces the use of silver in wound care, discussing its merits as an antibacterial agent and constituent of many new dressings, which are increasingly tailored to the treatment of wounds ranging from acute surgical lesions to chronic and diabetic leg ulcers. Misconceptions regarding the biological properties of silver, its possible physiological value in the human body and wound bed, absorption through the skin, and safety factors are addressed. The article aims to present silver and the new range of sustained silver-release dressings as important features in the management of skin wounds, providing effective control of wound infections while ensuring patient comfort and quality of life.
Collapse
|