1
|
Gammeri L, Sanfilippo S, Alessandrello C, Gangemi S, Minciullo PL. Mast Cells and Basophils in Major Viral Diseases: What Are the Correlations with SARS-CoV-2, Influenza A Viruses, HIV, and Dengue? Cells 2024; 13:2044. [PMID: 39768136 PMCID: PMC11674676 DOI: 10.3390/cells13242044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
The SARS-CoV-2 pandemic has significantly impacted global health and has led the population and the scientific community to live in fear of a future pandemic. Based on viral infectious diseases, innate immunity cells such as mast cells and basophils play a fundamental role in the pathogenesis of viral diseases. Understanding these mechanisms could be essential to better study practical therapeutic approaches not only to COVID-19 but also to other viral infections widely spread worldwide, such as influenza A, HIV, and dengue. In this literature review, we want to study these concepts. Mast cells and basophils intervene as a bridge between innate and acquired immunity and seem to have a role in the damage mechanisms during infection and in the stimulation of humoral and cellular immunity. In some cases, these cells can act as reservoirs and favor the replication and spread of the virus in the body. Understanding these mechanisms can be useful not only in therapeutic but also in diagnostic and prognostic perspectives. The prospects of applying artificial intelligence and machine learning algorithms for the creation of very accurate diagnostic/prognostic tools are interesting.
Collapse
Affiliation(s)
| | | | | | | | - Paola Lucia Minciullo
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (L.G.); (S.S.); (C.A.); (S.G.)
| |
Collapse
|
2
|
Palma AM, Hanes MR, Marshall JS. Mast Cell Modulation of B Cell Responses: An Under-Appreciated Partnership in Host Defence. Front Immunol 2021; 12:718499. [PMID: 34566974 PMCID: PMC8460918 DOI: 10.3389/fimmu.2021.718499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/23/2021] [Indexed: 12/17/2022] Open
Abstract
Mast cells are well known to be activated via cross-linking of immunoglobulins bound to surface receptors. They are also recognized as key initiators and regulators of both innate and adaptive immune responses against pathogens, especially in the skin and mucosal surfaces. Substantial attention has been given to the role of mast cells in regulating T cell function either directly or indirectly through actions on dendritic cells. In contrast, the ability of mast cells to modify B cell responses has been less explored. Several lines of evidence suggest that mast cells can greatly modify B cell generation and activities. Mast cells co-localise with B cells in many tissue settings and produce substantial amounts of cytokines, such as IL-6, with profound impacts on B cell development, class-switch recombination events, and subsequent antibody production. Mast cells have also been suggested to modulate the development and functions of regulatory B cells. In this review, we discuss the critical impacts of mast cells on B cells using information from both clinical and laboratory studies and consider the implications of these findings on the host response to infections.
Collapse
Affiliation(s)
- Alejandro M Palma
- IWK Health Centre and Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | - Mark R Hanes
- Department of Pathology, Dalhousie University, Halifax, NS, Canada.,Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Jean S Marshall
- Department of Pathology, Dalhousie University, Halifax, NS, Canada.,Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
3
|
Rossi FW, Prevete N, Rivellese F, Lobasso A, Napolitano F, Granata F, Selleri C, de Paulis A. HIV-1 Nef promotes migration and chemokine synthesis of human basophils and mast cells through the interaction with CXCR4. Clin Mol Allergy 2016; 14:15. [PMID: 27822141 PMCID: PMC5088669 DOI: 10.1186/s12948-016-0052-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/25/2016] [Indexed: 01/03/2023] Open
Abstract
Background The Nef protein can be detected in plasma of HIV-1-infected patients and plays a role in the pathogenesis of HIV-1. Nef produced during the early stages of infection is fundamental in creating the ideal environment for viral replication, e.g. by reducing the ability of infected cells to induce an immune response. Aim Based on previous experience showing that both Tat and gp41 of HIV-1 are potent chemotactic factors for basophils and mast cells, and gp120 is a powerful stimulus for the release of histamine and cytokines (IL-4 and IL-13) from basophils, in this study we aimed to verify if the HIV Nef protein can exert some effects on basophils and mast cells purified from healthy volunteers through the interaction with the CXCL12 receptor, CXCR4. Methods Basophils purified from peripheral blood cells of 30 healthy volunteers and mast cells obtained from lung tissue of ten healthy volunteers were tested by flow cytometric analysis, chemotaxis and chemokine production by ELISA assays. Results Nef is a potent chemoattractant for basophils and lung mast cells obtained from healthy, HIV-1 and HIV-2 seronegative individuals. Incubation of basophils and mast cells with Nef induces the release of chemokines (CXCL8/IL-8 and CCL3/MIP-1α). The chemotactic activity of Nef on basophils and mast cells is mediated by the interaction with CXCR4 receptors, being blocked by preincubation of FcεRI+ cells with an anti-CXCR4 Ab. Stimulation with Nef or CXCL12/SDF-1α, a CXCR4 ligand, desensitizes basophils to a subsequent challenge with an autologous or heterologous stimulus. Conclusions These results indicate that Nef, a HIV-1-encoded α-chemokine homolog protein, plays a direct role in basophils and mast cell recruitment and activation at sites of HIV-1 replication, by promoting directional migration of human FcεRI+ cells and the release of chemokines from these cells. Together with our previous results, these data suggest that FcεRI+ cells contribute to the dysregulation of the immune system in HIV-1 infection.
Collapse
Affiliation(s)
- Francesca Wanda Rossi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Nella Prevete
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Felice Rivellese
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy ; Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Antonio Lobasso
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Filomena Napolitano
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Francescopaolo Granata
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Carmine Selleri
- Hematology Branch, Department of Medicine, University of Salerno, Salerno, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| |
Collapse
|
4
|
Choi HW, Abraham SN. Mast cell mediator responses and their suppression by pathogenic and commensal microorganisms. Mol Immunol 2014; 63:74-9. [PMID: 24636146 DOI: 10.1016/j.molimm.2014.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/04/2014] [Indexed: 10/25/2022]
Abstract
Mast cells (MCs) are selectively found at the host environment interface and are capable of secreting a wide array of pharmacologically active mediators, many of which are prepackaged in granules. Over the past two decades, it has become clear that these cells have the capacity to recognize a range of infectious agents allowing them to play a key role in initiating and modulating early immune responses to infectious agents. However, a number of pathogenic and commensal microbes appear to have evolved distinct mechanisms to suppress MC mediator release to avoid elimination in the host. Understanding how these microbes suppress MC functions may have significant therapeutic value to relieve inflammatory disorders mediated by MCs.
Collapse
Affiliation(s)
- Hae Woong Choi
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Soman N Abraham
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA; Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore 169857, Singapore.
| |
Collapse
|
5
|
Segundo TK, Souto GR, Costa FO, Mesquita RA. Mast Cells in Periodontal Disease of Individuals With and Without HIV Undergoing Highly Active Antiretroviral Therapy. J Periodontol 2013; 84:995-1001. [DOI: 10.1902/jop.2012.120436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
6
|
Beghdadi W, Madjene LC, Benhamou M, Charles N, Gautier G, Launay P, Blank U. Mast cells as cellular sensors in inflammation and immunity. Front Immunol 2011; 2:37. [PMID: 22566827 PMCID: PMC3342044 DOI: 10.3389/fimmu.2011.00037] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 08/16/2011] [Indexed: 12/28/2022] Open
Abstract
Mast cells are localized in tissues. Intense research on these cells over the years has demonstrated their role as effector cells in the maintenance of tissue integrity following injury produced by infectious agents, toxins, metabolic states, etc. After stimulation they release a sophisticated array of inflammatory mediators, cytokines, and growth factors to orchestrate an inflammatory response. These mediators can directly initiate tissue responses on resident cells, but they have also been shown to regulate other infiltrating immune cell functions. Research in recent years has revealed that the outcome of mast cell actions is not always detrimental for the host but can also limit disease development. In addition, mast cell functions highly depend on the physiological context in the organism. Depending on the genetic background, strength of the injurious event, the particular microenvironment, mast cells direct responses ranging from pro- to anti-inflammatory. It appears that they have evolved as cellular sensors to discern their environment in order to initiate an appropriate physiological response either aimed to favor inflammation for repair or at the contrary limit the inflammatory process to prevent further damage. Like every sophisticated machinery, its dysregulation leads to pathology. Given the broad distribution of mast cells in tissues this also explains their implication in many inflammatory diseases.
Collapse
|
7
|
Valent P, Cerny-Reiterer S, Herrmann H, Mirkina I, George TI, Sotlar K, Sperr WR, Horny HP. Phenotypic heterogeneity, novel diagnostic markers, and target expression profiles in normal and neoplastic human mast cells. Best Pract Res Clin Haematol 2010; 23:369-78. [PMID: 21112036 DOI: 10.1016/j.beha.2010.07.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mast cells (MC) are specialized immune cells that play a key role in anaphylactic reactions. Growth, differentiation, and function of these cells are regulated by a complex network of cytokines, surface receptors, signaling molecules, the microenvironment, and the genetic background. A number of previous and more recent data suggest that MC are heterogeneous in terms of cytokine-regulation, expression of cytoplasmic and cell surface antigens, and response to ligands. MC heterogeneity is often organ-specific and is considered to be related to MC plasticity, disease-associated factors, and the maturation stage of the cells. The stem cell factor (SCF) receptor KIT (CD117) is expressed on all types of MC independent of maturation and activation-status. In systemic mastocytosis (SM), KIT is often expressed in MC in a mutated and constitutively activated form. In these patients, MC aberrantly display CD2 and CD25, diagnostic markers of neoplastic MC in all SM variants. In advanced SM, MC co-express substantial amounts of CD30, whereas CD2 expression on MC may be decreased compared to indolent SM. Other surface molecules, such as CD63 or CD203c, are overexpressed on neoplastic MC in SM, and are further upregulated upon cross-linking of the IgE receptor. Some of the cell surface antigens expressed on MC or their progenitors may serve as therapeutic targets in the future. These targets include CD25, CD30, CD33, CD44, and CD117/KIT. The current article provides an overview on cell surface antigens and target receptors expressed by MC in physiologic and reactive tissues, and in patients with SM, with special reference to phenotypic heterogeneity and clinical implications.
Collapse
Affiliation(s)
- Peter Valent
- Ludwig Boltzmann Cluster Oncology, Vienna, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Rao KN, Brown MA. Mast cells: multifaceted immune cells with diverse roles in health and disease. Ann N Y Acad Sci 2009; 1143:83-104. [PMID: 19076346 DOI: 10.1196/annals.1443.023] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mast cells were discovered more than 100 years ago and until recently, have been considered renegades of the host with the sole purpose of perpetuating allergy. The discovery of mast cell-deficient mice that could be reconstituted with mast cells (the so called "mast cell knock-in" mice) has allowed the study of the in vivo functions of mast cells and revealed several new facets of these cells. It is now evident that mast cells have a much broader impact on many physiological and pathologic processes. Mast cells, particularly through their dynamic interaction with the nervous system, have been implicated in wound healing, tissue remodeling, and homeostasis. Perhaps the most progress has been made in our understanding of the role of mast cells in immunity outside the realm of allergy, and host defense. Mast cells play critical roles in both innate and adaptive immunity, including immune tolerance. Greater insight into mast cell biology has prompted studies probing the additional consequences of mast cell dysfunction, which reveal a central role for mast cells in the pathogenesis of autoimmune disorders, cardiovascular disorders, and cancer. Here, we review recent developments in the study of mast cells, which present a complex picture of mast cell functions.
Collapse
Affiliation(s)
- Kavitha N Rao
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | |
Collapse
|
9
|
Sun Q, Wang D, She R, Li W, Liu S, Han D, Wang Y, Ding Y. Increased mast cell density during the infection with velogenic Newcastle disease virus in chickens. Avian Pathol 2009; 37:579-85. [PMID: 19023756 DOI: 10.1080/03079450802499092] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In addition to their well-characterized role in allergic inflammation, recent data confirm that mast cells play a more extensive role in a variety of viral infections. The contribution of mast cells to Newcastle disease pathogenesis has not been investigated. We evaluated mast cell activity after Newcastle disease virus (NDV) infection in specific pathogen free chickens using cytochemical and immunocytochemical analyses. The results were as follows. Severe tissue damage was observed in the proventriculus, duodenum, jejunum and caecal tonsil, and NDV antigens were detected and presented extensively in these tissues. Second, in the NDV-infected group, the mast cell population was increased markedly in the proventriculus, duodenum, jejunum and caecal tonsil at 24, 48, 72 and 96 h after infection (P<0.01). However, very few mast cells were observed in those same tissues in the control. More intriguingly, the greatest number of mast cells was found in the proventriculus, which also showed the greatest level of NDV antigens. Third, the content of tryptase was significantly higher (P<0.01) in the NDV-infected group compared with the control from 24 to 96 h post infection). Furthermore, as an important protease released by mast cells, tryptase had a positive correlation with mast cell distribution. These data indicated that mast cells were involved in the response to NDV. Our results also suggested that the broad range of mast cell mediators might have a role in the pathology of Newcastle disease.
Collapse
Affiliation(s)
- Quan Sun
- Department of Veterinary Pathology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Filippova LV, Nozdrachev AD. The role of visceral receptors in the mechanisms of neuroimmune interactions in mammalian small intestine. BIOL BULL+ 2007. [DOI: 10.1134/s1062359007030107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Dawicki W, Marshall JS. New and emerging roles for mast cells in host defence. Curr Opin Immunol 2007; 19:31-8. [PMID: 17126541 DOI: 10.1016/j.coi.2006.11.006] [Citation(s) in RCA: 208] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Accepted: 11/15/2006] [Indexed: 12/21/2022]
Abstract
Mast cells are highly effective sentinel cells, found close to blood vessels and especially common sites of potential infection, such as the skin, airways and gastrointestinal tract. Mast cells participate actively in the innate immune responses to many pathogens through a broad spectrum of mediators that can be selectively generated. They also have a role as innate effector cells in enhancing the earliest processes in the development of acquired immune responses. Studies of bacterial and parasitic models have revealed mast cell dependent regulation of effector cell recruitment, mucosal barrier function and lymph node hypertrophy. An important role for mast cells in viral infection is also implied by several in vivo and in vitro studies. There are multiple direct and indirect pathways by which mast cells can be selectively activated by pathogens including Toll-like receptors, co-receptors and complement component receptors. Understanding the mechanisms and scope of the contribution of mast cells to host defence will be crucial to regulating their activity therapeutically.
Collapse
Affiliation(s)
- Wojciech Dawicki
- Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 1X5, Canada
| | | |
Collapse
|
12
|
Chan-Tack KM, Chengappa KS, Wolf JS, Kao GF, Reisler RB. Immune reconstitution inflammatory syndrome presenting as sinusitis with inflammatory pseudotumor in an HIV-infected patient: a case report and review of the literature. AIDS Patient Care STDS 2006; 20:823-8. [PMID: 17192147 DOI: 10.1089/apc.2006.20.823] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Immune reconstitution inflammatory syndrome (IRIS) encompasses a variety of conditions that occur among HIV-infected patients in a temporal relationship with increases in CD4 cell count as a result of highly active antiretroviral therapy (HAART). Most conditions associated with IRIS are infectious. Malignancies, such as Kaposi's sarcoma, have also been reported. We report a case of sinusitis with presumptive inflammatory pseudotumor as a manifestation of IRIS that occurred 20 weeks after the initiation of HAART.
Collapse
Affiliation(s)
- Kirk M Chan-Tack
- Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, UMBI, N540, Baltimore, Maryland 21201, USA.
| | | | | | | | | |
Collapse
|
13
|
Orinska Z, Bulanova E, Budagian V, Metz M, Maurer M, Bulfone-Paus S. TLR3-induced activation of mast cells modulates CD8+ T-cell recruitment. Blood 2005; 106:978-87. [PMID: 15840693 DOI: 10.1182/blood-2004-07-2656] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mast cells play an important role in host defense against various pathogens, but their role in viral infection has not been clarified in detail. dsRNA, synthesized by various types of viruses and mimicked by polyinosinic-polycytidylic acid (poly(I:C)) is recognized by Toll-like receptor 3 (TLR3). In this study, we demonstrate that poly(I:C) injection in vivo potently stimulates peritoneal mast cells to up-regulate a number of different costimulatory molecules. Therefore, we examined the expression and the functional significance of TLR3 activation in mast cells. Mast cells express TLR3 on the cell surface and intracellularly. After stimulation of mast cells with poly(I:C) and Newcastle disease virus (NDV), TLR3 is phosphorylated and the expression of key antiviral response cytokines (interferon beta, ISG15) and chemokines (IP10, RANTES) is upregulated. Interestingly, mast cells activated via TLR3-poly(I:C) potently stimulate CD8+ T-cell recruitment. Indeed, mast-cell-deficient mice (KitW/KitW-v) given an intraperitoneal injection of poly(I:C) show a decreased CD8+ T-cell recruitment, whereas granulocytes normally migrate to the peritoneal cavity. Mast-cell reconstitution of KitW/KitW-v mice normalizes the CD8+ T-cell influx. Thus, mast cells stimulated through engagement of TLR3 are potent regulators of CD8+ T-cell activities in vitro and in vivo.
Collapse
Affiliation(s)
- Zane Orinska
- Department of Immunology and Cellular Biology, Research Center Borstel, Parkallee 22, D-23845 Borstel, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Mast cells have been most extensively studied in their traditional role as an early effector cell of allergic disease. However, in the majority of individuals, it might be the role of this cell as a sentinel in host defense that is most important. Mast cells have been repeatedly demonstrated to play a critical role in defense against bacterial infections, and evidence for their involvement in early responses to viral and fungal pathogens is growing. Mast cells are activated during innate immune responses by multiple mechanisms, including well-established responses to complement components. In addition, novel mechanisms have emerged as a result of the explosion of knowledge in our understanding of pattern-recognition receptors. The mast cell shares many features with other innate immune effector cells, such as neutrophils and macrophages. However, a unique role for mast cells is defined not only by their extensive mediator profile but also by their ability to interact with the vasculature, to expedite selective cell recruitment, and to set the stage for an appropriate acquired response.
Collapse
Affiliation(s)
- Jean S Marshall
- Dalhousie Inflammation Group, the Departments of Pathology and Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|
15
|
Viewpoint 1. Exp Dermatol 2003. [DOI: 10.1111/j.0906-6705.2003.0109b.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Affiliation(s)
- Zhongli Gao
- Medicinal Chemistry, Aventis Pharmaceuticals, Route 202-206, Bridgewater, New Jersey 08807-0800, USA
| | | |
Collapse
|
17
|
Ono SJ, Nakamura T, Miyazaki D, Ohbayashi M, Dawson M, Toda M. Chemokines: roles in leukocyte development, trafficking, and effector function. J Allergy Clin Immunol 2003; 111:1185-99; quiz 1200. [PMID: 12789214 DOI: 10.1067/mai.2003.1594] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chemokines, representing a large superfamily of 8- to 15-kd proteins, were originally discovered through their ability to recruit various cell types into sites of inflammation. It is now clear that these molecules play a much wider role in immune homeostasis, playing key roles in driving the maturation, homing, and activation of leukocytes. In this review we analyze the roles chemokines play in the development, recruitment, and activation of leukocytes. Because signaling from the receptors drives these processes, signal transduction from chemokine receptors will also be reviewed. Taken together, we highlight the various points at which chemokines contribute to allergic inflammation and at which their targeting might contribute to new therapies for type I hypersensitivity reactions.
Collapse
Affiliation(s)
- Santa Jeremy Ono
- Department of Immunology, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | | | | | | | | | | |
Collapse
|