1
|
García-Bermúdez MY, Vohra R, Freude K, van Wijngaarden P, Martin K, Thomsen MS, Aldana BI, Kolko M. Potential Retinal Biomarkers in Alzheimer's Disease. Int J Mol Sci 2023; 24:15834. [PMID: 37958816 PMCID: PMC10649108 DOI: 10.3390/ijms242115834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Alzheimer's disease (AD) represents a major diagnostic challenge, as early detection is crucial for effective intervention. This review examines the diagnostic challenges facing current AD evaluations and explores the emerging field of retinal alterations as early indicators. Recognizing the potential of the retina as a noninvasive window to the brain, we emphasize the importance of identifying retinal biomarkers in the early stages of AD. However, the examination of AD is not without its challenges, as the similarities shared with other retinal diseases introduce complexity in the search for AD-specific markers. In this review, we address the relevance of using the retina for the early diagnosis of AD and the complex challenges associated with the search for AD-specific retinal biomarkers. We provide a comprehensive overview of the current landscape and highlight avenues for progress in AD diagnosis by retinal examination.
Collapse
Affiliation(s)
| | - Rupali Vohra
- Eye Translational Research Unit, Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark
| | - Kristine Freude
- Group of Stem Cell Models and Embryology, Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Peter van Wijngaarden
- Center for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Keith Martin
- Center for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Maj Schneider Thomsen
- Neurobiology Research and Drug Delivery, Department of Health, Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| | - Blanca Irene Aldana
- Neurometabolism Research Group, Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Miriam Kolko
- Eye Translational Research Unit, Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark
| |
Collapse
|
2
|
Nag TC. Müller cell vulnerability in aging human retina: Implications on photoreceptor cell survival. Exp Eye Res 2023; 235:109645. [PMID: 37683797 DOI: 10.1016/j.exer.2023.109645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Müller glial cells (MC) support various metabolic functions of the retinal neurons, and maintain the homeostasis. Oxidative stress is intensified with aging, and in human retina, MC and photoreceptors undergo lipid peroxidation and protein nitration. Information on how MC respond to oxidative stress is vital to understand the fate of aging retinal neurons. This study examined age-related changes in MC of donor human retina (age: 35-98 years; N = 18 donors). Ultrastructural and immunohistochemical observations indicate that MC undergo gliosis and increased lipid peroxidation, and show osmotic changes with advanced aging (>80 years). Photoreceptor cells also undergo oxidative-nitrosative stress with aging, and their synapses also show clear osmotic swelling. MC respond to oxidative stress via proliferation of smooth endoplasmic reticulum in their processes, and increased expression of aquaporin-4 in endfeet and outer retina. In advanced aged retinas (81-98 years), they showed mitochondrial disorganisation, accumulation of lipids and autophagosomes, lipofuscin granules and axonal remnants in phagolysosomes in their inner processes, suggesting a reduced phagocytotic potential in them with aging. Glutamine synthetase expression does not alter until advanced aging, when the retinas show its increased expression in endfeet and Henle fiber layer. It is evident that MC are vulnerable with normal aging and this could be a reason for photoreceptor cell abnormalities reported with aging of the human retina.
Collapse
Affiliation(s)
- Tapas C Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
3
|
Li Y, Wang K, Zhu X, Cheng Z, Zhu L, Murray M, Zhou F. Ginkgo biloba extracts protect human retinal Müller glial cells from t-BHP induced oxidative damage by activating the AMPK-Nrf2-NQO-1 axis. J Pharm Pharmacol 2023; 75:385-396. [PMID: 36583518 DOI: 10.1093/jpp/rgac095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/25/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Retinal Müller glial cell loss is almost involved in all retinal diseases, especially diabetic retinopathy (DR). Oxidative stress significantly contributes to the development of Müller glial cell loss. Ginkgo biloba extracts (GBE) have been reported to possess antioxidant property, beneficial in treating human retinal diseases. However, little is known about its role in Müller glial cells. This study investigated the protective effect of GBE (prepared from ginkgo biloba dropping pills) in human Müller glial cells against tert-butyl hydroperoxide (t-BHP)-induced oxidative stress and its underlying molecular mechanism. METHODS MIO-M1 cells were pretreated with or without GBE prior to the exposure to t-BHP-induced oxidative stress. Cell viability, cell death profile and lipid peroxidation were subsequently assessed. Protein expression of the key anti-oxidative signalling factors were investigated. KEY FINDINGS We showed that GBE can effectively protect human MIO-M1 cells from t-BHP-induced oxidative injury by improving cell viability, reducing intracellular ROS accumulation and suppressing lipid peroxidation, which effect is likely mediated through activating AMPK-Nrf2-NQO-1 antioxidant respondent axis. CONCLUSIONS Our study is the first to reveal the great potentials of GBE in protecting human retinal Müller glial cell loss against oxidative stress. GBE might be used to prevent human retinal diseases particularly DR.
Collapse
Affiliation(s)
- Yue Li
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health NSW, 2006, Australia
| | - Ke Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province, 214063, China
| | - Xue Zhu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province, 214063, China
| | - Zhengqi Cheng
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health NSW, 2006, Australia.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
| | - Ling Zhu
- The University of Sydney, Save Sight Institute, Sydney, NSW, 2000, Australia
| | - Michael Murray
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health NSW, 2006, Australia
| | - Fanfan Zhou
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health NSW, 2006, Australia
| |
Collapse
|
4
|
Non-drug interventions in glaucoma: Putative roles for lifestyle, diet and nutritional supplements. Surv Ophthalmol 2021; 67:675-696. [PMID: 34563531 DOI: 10.1016/j.survophthal.2021.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023]
Abstract
Glaucoma is a major ocular neurodegenerative disease characterized by progressive retinal ganglion cells degeneration and sight loss. Current treatment options have been limited to reducing intraocular pressure (IOP), known as the leading risk factor for this disease; however, glaucoma can develop even with low or normal IOP and progress despite controlling IOP values. Lifestyle, dietary habits, and supplementation may influence some of the risk factors and pathophysiological mechanisms underlying glaucoma development and progression; thus, the role of this complementary and alternative medicine in glaucoma has received great interest from both patients and ophthalmologists. We provide a summary of the current evidence concerning the relationship between lifestyle, dietary habits, and effects of supplements on the incidence and progression of glaucoma and their targets and associated mechanisms. The data suggest the existence of a therapeutic potential that needs to be further explored with both preclinical and rigorous clinical studies.
Collapse
|
5
|
Mitochondrial DNA A3243G variant-associated retinopathy: Current perspectives and clinical implications. Surv Ophthalmol 2021; 66:838-855. [PMID: 33610586 DOI: 10.1016/j.survophthal.2021.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
Cellular function and survival are critically dependent on the proper functionality of the mitochondrion. Neurodegenerative cellular processes including cellular adenosine triphosphate production, intermediary metabolism control, and apoptosis regulation are all mitochondrially mediated. The A to G transition at position 3243 in the mitochondrial MTTL1 gene that encodes for the leucine transfer RNA (m.3243A>G) causes a variety of diseases, including maternally inherited loss of hearing and diabetes syndrome (MIDD), mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes syndrome (MELAS). Ophthalmological findings-including posterior sub-capsular cataract, ptosis, external ophthalmoplegia, and pigmentary retinopathy- have all been associated with the m.3243A>G variant. Pigmentary retinopathy is, however, the most common ocular finding, occurring in 38% to 86% of cases. To date, little is known about the pathogenesis, natural history, and heteroplasmic and phenotypic correlations of m.3243A>G-associated pigmentary retinopathy. We summarize the current understanding of mitochondrial genetics and pathogenesis of some associated diseases. We then review the pathophysiology, histology, clinical features, treatment, and important ocular and systemic phenotypic manifestations of m.3243A>G variant associated retinopathy. Mitochondrial diseases require a multidisciplinary team approach to ensure effective treatment, regular follow-up, and accurate genetic counseling.
Collapse
|
6
|
Lin YC, Horng LY, Sung HC, Wu RT. Sodium Iodate Disrupted the Mitochondrial-Lysosomal Axis in Cultured Retinal Pigment Epithelial Cells. J Ocul Pharmacol Ther 2018; 34:500-511. [PMID: 30020815 DOI: 10.1089/jop.2017.0073] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE Low doses of sodium iodate (NaIO3) impair visual function in experimental animals with selective damage to retinal pigment epithelium (RPE) and serve as a useful model to study diseases caused by RPE degeneration. Mitochondrial dysfunction and defective autophagy have been suggested to play important roles in normal aging as well as many neurodegenerative diseases. In this study, we examined whether NaIO3 treatment disrupted the mitochondrial-lysosomal axis in cultured RPE. METHODS The human RPE cell line, ARPE-19, was treated with low concentrations (≤500 μM) of NaIO3. The expression of proteins involved in the autophagic pathway and mitochondrial biogenesis was examined with Western blot. Intracellular acidic compartments and lipofuscinogenesis were evaluated by acridine orange staining and autofluorescence, respectively. Mitochondrial mass, mitochondrial membrane potential (MMP), and mitochondrial function were quantified by MitoTracker Green staining, tetramethylrhodamine methyl ester staining, and the MTT assay, respectively. Phagocytosis and the degradation of photoreceptor outer segments (POS) were assessed by fluorescence-based approaches and Western blot against rhodopsin. RESULTS Treatment with low concentrations of NaIO3 decreased cellular acidity, blocked autophagic flux, and resulted in increased lipofuscinogenesis in ARPE-19 cells. Despite increases in protein levels of Sirtuin 1 and PGC-1α, mitochondrial function was compromised, and this decrease was attributed to disrupted MMP. POS phagocytic activities decreased by 60% in NaIO3-treated cells, and the degradation of ingested POS was also impaired. Pretreatment and cotreatment with rapamycin partially rescued NaIO3-induced RPE dysfunction. CONCLUSIONS Low concentrations of NaIO3 disrupted the mitochondrial-lysosomal axis in RPE and led to impaired phagocytic activities and degradation capacities.
Collapse
Affiliation(s)
- Ying-Cheng Lin
- 1 Institute of Biopharmaceutical Sciences, School of Pharmaceutical Sciences, National Yang-Ming University , Taipei, Taiwan .,2 Department of Ophthalmology, Yang-Ming branch, Taipei City Hospital , Taipei, Taiwan
| | - Lin-Yea Horng
- 1 Institute of Biopharmaceutical Sciences, School of Pharmaceutical Sciences, National Yang-Ming University , Taipei, Taiwan .,3 Research Center for Drug Discovery, National Yang-Ming University , Taipei, Taiwan
| | - Hui-Ching Sung
- 3 Research Center for Drug Discovery, National Yang-Ming University , Taipei, Taiwan
| | - Rong-Tsun Wu
- 1 Institute of Biopharmaceutical Sciences, School of Pharmaceutical Sciences, National Yang-Ming University , Taipei, Taiwan .,3 Research Center for Drug Discovery, National Yang-Ming University , Taipei, Taiwan .,4 Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University , Kaohsiung, Taiwan
| |
Collapse
|
7
|
Mitochondrial dysfunction underlying outer retinal diseases. Mitochondrion 2017; 36:66-76. [PMID: 28365408 DOI: 10.1016/j.mito.2017.03.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 03/06/2017] [Accepted: 03/27/2017] [Indexed: 01/21/2023]
Abstract
Dysfunction of photoreceptors, retinal pigment epithelium (RPE) or both contribute to the initiation and progression of several outer retinal disorders. Disrupted Müller glia function might additionally subsidize to these diseases. Mitochondrial malfunctioning is importantly associated with outer retina pathologies, which can be classified as primary and secondary mitochondrial disorders. This review highlights the importance of oxidative stress and mitochondrial DNA damage, underlying outer retinal disorders. Indeed, the metabolically active photoreceptors/RPE are highly prone to these hallmarks of mitochondrial dysfunction, indicating that mitochondria represent a weak link in the antioxidant defenses of outer retinal cells.
Collapse
|
8
|
|
9
|
Schmidl D, Garhöfer G, Schmetterer L. Nutritional supplements in age-related macular degeneration. Acta Ophthalmol 2015; 93:105-21. [PMID: 25586104 DOI: 10.1111/aos.12650] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 11/28/2014] [Indexed: 12/22/2022]
Abstract
Age-related macular degeneration (AMD) is the most frequent cause of blindness in the Western World. While with new therapies that are directed towards vascular endothelial growth factor (VEGF), a potentially efficient treatment option for the wet form of the disease has been introduced, a therapeutic regimen for dry AMD is still lacking. There is evidence from several studies that oral intake of supplements is beneficial in preventing progression of the disease. Several formulations of micronutrients are currently available. The present review focuses on the role of supplements in the treatment and prevention of AMD and sums up the current knowledge about the most frequently used micronutrients. In addition, regulatory issues are discussed, and future directions for the role of supplementation in AMD are highlighted.
Collapse
Affiliation(s)
- Doreen Schmidl
- Department of Clinical Pharmacology; Medical University of Vienna; Vienna Austria
| | - Gerhard Garhöfer
- Department of Clinical Pharmacology; Medical University of Vienna; Vienna Austria
| | - Leopold Schmetterer
- Department of Clinical Pharmacology; Medical University of Vienna; Vienna Austria
- Center for Medical Physics and Biomedical Engineering; Medical University of Vienna; Vienna Austria
| |
Collapse
|
10
|
Cao S, Gao M, Wang N, Liu N, Du G, Lu J. Prevention of Selenite-Induced Cataratogenesis by Ginkgo biloba Extract (Egb761) in Wistar Rats. Curr Eye Res 2014; 40:1028-33. [PMID: 25380229 DOI: 10.3109/02713683.2014.980005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To investigate whether Ginkgo biloba extract retards selenite-induced cataractogenesis in Wistar rat pups. METHODS On postpartum day eight, Group I rat pups (n = 12) received an intraperitoneal injection of physiological saline. Groups II and III rat pups (n = 12) received a subcutaneous injection of sodium selenite. Group III also received an intraperitoneal injection of G. biloba extract once daily on postpartum days 9-14. Both eyes of each pup were examined from postpartum day 16 up to day 30. After sacrifice, encapsulated pup lens were analyzed for mean activities of catalase, superoxide dismutase, glutathione peroxidase (GPx), glutathione S-transferase and glutathione reductase. In addition, the mean concentrations of reduced glutathione (GSH) and malondialdehyde were analyzed in samples of lens and serum. RESULTS Dense lenticular opacification occurs 100% in Group II, but only minimal opacification occurs in three pups of Group III (25%), no opacification in 75% of Group III, none in Group I. Compared with Groups I and III, Group II rat showed lower lenticular antioxidant enzyme activity, lower level of GSH, and higher level of malondidehyde (mean ± standard deviation SD, p < 0.05 respectively). CONCLUSIONS The treatment with G. biloba extract is effective against oxidative stress - a crucial factor of cataractogenesis in rat pups, possibly by preventing depletion of antioxidant enzymes and by inhibiting lipid peroxidation.
Collapse
Affiliation(s)
- Shuqin Cao
- a Beijing Tong Ren Hospital, Capital Medical University , Beijing , People's Republic of China .,b Capital Medical University School of Rehabilitation Medicine, China Rehabilitation Research Center , Beijing , People's Republic of China and
| | - Mei Gao
- c Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing , People's Republic of China
| | - Ningli Wang
- a Beijing Tong Ren Hospital, Capital Medical University , Beijing , People's Republic of China
| | - Na Liu
- b Capital Medical University School of Rehabilitation Medicine, China Rehabilitation Research Center , Beijing , People's Republic of China and
| | - Guanhua Du
- c Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing , People's Republic of China
| | - Jianmin Lu
- b Capital Medical University School of Rehabilitation Medicine, China Rehabilitation Research Center , Beijing , People's Republic of China and
| |
Collapse
|
11
|
Kwan P. Sarcopenia: the gliogenic perspective. Mech Ageing Dev 2013; 134:349-55. [PMID: 23831860 DOI: 10.1016/j.mad.2013.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 06/20/2013] [Accepted: 06/22/2013] [Indexed: 12/15/2022]
Abstract
It has been approximately 25 years since Dr. Rosenberg first brought attention to sarcopenia. To date, this aging-associated condition is recognized as a chronic loss of muscle mass and is usually accompanied by dynapenia. Despite its poly-etiological factors, sarcopenia has a strong neurogenic component underlying this chrono-degeneration of muscle mass, as shown in recent studies. As it seems plausible to explain the origin of sarcopenia through a motor neuron degeneration model, the focus of sarcopenia research should combine neuroscience with the study of the original myocyte and satellite cells. Although a complete mechanism underlying the development of sarcopenia has yet to be elucidated, we propose that the primary trigger of sarcopenia could be gliogenic in origin based on the close relationship between the glia, neurons and non-neural cells, for example, the motor unit and its associated glia in both the central nervous system (CNS) and the peripheral nervous system (PNS). In addition to muscle cells, both of the neural cells are affected by aging.
Collapse
Affiliation(s)
- Ping Kwan
- ST013a, Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hong Kong.
| |
Collapse
|
12
|
Reichenbach A, Bringmann A. New functions of Müller cells. Glia 2013; 61:651-78. [PMID: 23440929 DOI: 10.1002/glia.22477] [Citation(s) in RCA: 478] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/10/2012] [Indexed: 12/12/2022]
Abstract
Müller cells, the major type of glial cells in the retina, are responsible for the homeostatic and metabolic support of retinal neurons. By mediating transcellular ion, water, and bicarbonate transport, Müller cells control the composition of the extracellular space fluid. Müller cells provide trophic and anti-oxidative support of photoreceptors and neurons and regulate the tightness of the blood-retinal barrier. By the uptake of glutamate, Müller cells are more directly involved in the regulation of the synaptic activity in the inner retina. This review gives a survey of recently discoved new functions of Müller cells. Müller cells are living optical fibers that guide light through the inner retinal tissue. Thereby they enhance the signal/noise ratio by minimizing intraretinal light scattering and conserve the spatial distribution of light patterns in the propagating image. Müller cells act as soft, compliant embedding for neurons, protecting them in case of mechanical trauma, and also as soft substrate required for neurite growth and neuronal plasticity. Müller cells release neuroactive signaling molecules which modulate neuronal activity, are implicated in the mediation of neurovascular coupling, and mediate the homeostasis of the extracellular space volume under hypoosmotic conditions which are a characteristic of intense neuronal activity. Under pathological conditions, a subset of Müller cells may differentiate to neural progenitor/stem cells which regenerate lost photoreceptors and neurons. Increasing knowledge of Müller cell function and responses in the normal and diseased retina will have great impact for the development of new therapeutic approaches for retinal diseases.
Collapse
Affiliation(s)
- Andreas Reichenbach
- Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany.
| | | |
Collapse
|
13
|
Bringmann A, Grosche A, Pannicke T, Reichenbach A. GABA and Glutamate Uptake and Metabolism in Retinal Glial (Müller) Cells. Front Endocrinol (Lausanne) 2013; 4:48. [PMID: 23616782 PMCID: PMC3627989 DOI: 10.3389/fendo.2013.00048] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/04/2013] [Indexed: 12/11/2022] Open
Abstract
Müller cells, the principal glial cells of the retina, support the synaptic activity by the uptake and metabolization of extracellular neurotransmitters. Müller cells express uptake and exchange systems for various neurotransmitters including glutamate and γ-aminobutyric acid (GABA). Müller cells remove the bulk of extracellular glutamate in the inner retina and contribute to the glutamate clearance around photoreceptor terminals. By the uptake of glutamate, Müller cells are involved in the shaping and termination of the synaptic activity, particularly in the inner retina. Reactive Müller cells are neuroprotective, e.g., by the clearance of excess extracellular glutamate, but may also contribute to neuronal degeneration by a malfunctioning or even reversal of glial glutamate transporters, or by a downregulation of the key enzyme, glutamine synthetase. This review summarizes the present knowledge about the role of Müller cells in the clearance and metabolization of extracellular glutamate and GABA. Some major pathways of GABA and glutamate metabolism in Müller cells are described; these pathways are involved in the glutamate-glutamine cycle of the retina, in the defense against oxidative stress via the production of glutathione, and in the production of substrates for the neuronal energy metabolism.
Collapse
Affiliation(s)
- Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, Faculty of Medicine, University of LeipzigLeipzig, Germany
| | - Antje Grosche
- Paul Flechsig Institute of Brain Research, Faculty of Medicine, University of LeipzigLeipzig, Germany
| | - Thomas Pannicke
- Paul Flechsig Institute of Brain Research, Faculty of Medicine, University of LeipzigLeipzig, Germany
| | - Andreas Reichenbach
- Paul Flechsig Institute of Brain Research, Faculty of Medicine, University of LeipzigLeipzig, Germany
- *Correspondence: Andreas Reichenbach, Paul Flechsig Institute of Brain Research, University of Leipzig, Jahnallee 59, D-04109 Leipzig, Germany. e-mail:
| |
Collapse
|
14
|
Reichenbach A, Bringmann A. Cell Biology of the Müller Cell. Retina 2013. [DOI: 10.1016/b978-1-4557-0737-9.00017-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Bringmann A, Wiedemann P. Müller glial cells in retinal disease. ACTA ACUST UNITED AC 2011; 227:1-19. [PMID: 21921569 DOI: 10.1159/000328979] [Citation(s) in RCA: 291] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 04/27/2011] [Indexed: 11/19/2022]
Abstract
Virtually all pathogenic stimuli activate Müller cells. Reactive Müller cells exert protective and toxic effects on photoreceptors and neurons. They contribute to oxidative stress and glutamate toxicity due to malfunctions of glutamate uptake and glutathione synthesis. Downregulation of potassium conductance disrupts transcellular potassium and water transport, resulting in neuronal hyperexcitability and edema. Protective effects of reactive Müller cells include upregulation of adenosine 5'-triphosphate (ATP)-degrading ectoenzymes, which enhances the extracellular availability of the neuroprotectant adenosine, abrogation of the osmotic release of ATP, which might protect retinal ganglion cells from apoptosis, and the release of antioxidants and neurotrophic factors. The dedifferentiation of reactive Müller cells to progenitor-like cells might have an impact on future therapeutic approaches. A better understanding of the gliotic mechanisms will be helpful in developing efficient therapeutic strategies aiming at increased protective and regenerative properties and decreased toxicity of reactive Müller cells.
Collapse
Affiliation(s)
- Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
| | | |
Collapse
|
16
|
Ma K, Xu L, Zhang H, Zhang S, Pu M, Jonas JB. The effect of ginkgo biloba on the rat retinal ganglion cell survival in the optic nerve crush model. Acta Ophthalmol 2010; 88:553-7. [PMID: 19681765 DOI: 10.1111/j.1755-3768.2008.01486.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE To investigate the effect of ginkgo biloba on the retinal ganglion cell survival in a rat optic nerve crush model. METHODS Twenty-four Sprague-Dawley rats were divided randomly into a study group of 12 animals receiving intraperitoneal injections of ginkgo biloba and a control group of 12 animals receiving intraperitoneal saline injections. All injections were performed 1 hr before the optic nerve crush and daily afterwards. For each animal, the right optic nerve was crushed closely behind the globe for 60 seconds using a microclip with 40 g power. The left optic nerve was kept intact. At 23 days after the optic nerve crush, the retinal ganglion cells were labelled retrogradely by injecting 3% fluorogold into both sides of the superior colliculus of the brain. At 4 weeks after the optic nerve crush, the animals were killed. Photographs taken from retinal flat mounts were assessed for the number and density of the retinal ganglion cells. RESULTS The survival rate, defined as the ratio of the retinal ganglion cell density in the right eye with the optic nerve crush divided by the retinal ganglion cell density in left eye without an optic nerve trauma, was significantly (p=0.035) higher in the study group with ginkgo biloba than in the control group (60.0+/-6.0% versus 53.5+/-8.0%). CONCLUSION The results suggest that intraperitoneal injections of a ginkgo biloba extract given prior to and daily after an experimental and standardized optic nerve crush in rats were associated with a higher survival rate of retinal ganglion cells.
Collapse
Affiliation(s)
- Ke Ma
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Hospital, Capital Medical University, Beijing, China.
| | | | | | | | | | | |
Collapse
|
17
|
Dosage dependence of the effect of Ginkgo biloba on the rat retinal ganglion cell survival after optic nerve crush. Eye (Lond) 2008; 23:1598-604. [DOI: 10.1038/eye.2008.286] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
18
|
Stone J, van Driel D, Valter K, Rees S, Provis J. The locations of mitochondria in mammalian photoreceptors: relation to retinal vasculature. Brain Res 2007; 1189:58-69. [PMID: 18048005 DOI: 10.1016/j.brainres.2007.10.083] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 10/25/2007] [Accepted: 10/26/2007] [Indexed: 01/07/2023]
Abstract
Adult mammalian photoreceptors are elongated cells, and their mitochondria are sequestered to the ends of the cell, to the inner segments and (in some species) to axon terminals in the outer plexiform layer (OPL). We hypothesised that mitochondria migrate to these locations towards sources of oxygen, from the choroid and (in some species) from the deep capillaries of the retinal circulation. Six mammalian species were surveyed, using electron and light microscopy, including immunohistochemistry for the mitochondrial enzyme cytochrome oxidase (CO). In all 6 species, mitochondria were absent from photoreceptor somas and were numerous in inner segments. Mitochondria were prominent in axon terminals in 3 species (mouse, rat, human) with a retinal circulation and were absent from those terminals in 3 species (wallaby, rat, guinea pig) with avascular retinas. Further, in a human developmental series, it was evident that mitochondria migrate within rods and cones, towards and eventually past the outer limiting membrane (OLM), into the inner segment. In Müller and RPE cells also, mitochondria concentrated at the external surface of the cells. Neurones located in the inner layers of avascular retinas have mitochondria, but their expression of CO is low. Mitochondrial locations in photoreceptors, Müller and RPE cells are economically explained as the result of migration within the cell towards sources of oxygen. In photoreceptors, this migration results in a separation of mitochondria from the nuclear genome; this separation may be a factor in the vulnerability of photoreceptors to mutations, toxins and environmental stresses, which other retinal neurones survive.
Collapse
Affiliation(s)
- Jonathan Stone
- ARC Centre of Excellence in Visual Science and Research School of Biological Sciences, The Australian National University, Canberra ACT 2601, Australia.
| | | | | | | | | |
Collapse
|
19
|
Beretta S, Ferrarese C, Wood JPM, Osborne NN, Carelli V. Pathogenesis of retinal ganglion cell death in Leber hereditary optic neuropathy (LHON): possible involvement of mitochondria, light and glutamate. Mitochondrion 2006; 6:102-3. [PMID: 16581312 DOI: 10.1016/j.mito.2006.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 02/15/2006] [Accepted: 02/16/2006] [Indexed: 11/20/2022]
|
20
|
Lopes GS, Mora OA, Cerri P, Faria FP, Jurkiewicz NH, Jurkiewicz A, Smaili SS. Mitochondrial alterations and apoptosis in smooth muscle from aged rats. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1658:187-94. [PMID: 15450956 DOI: 10.1016/j.bbabio.2004.05.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2003] [Revised: 02/06/2004] [Accepted: 05/18/2004] [Indexed: 10/26/2022]
Abstract
We studied changes in mitochondrial morphology and function in the smooth muscle of rat colon. Under confocal microscopy, tissues loaded with potentiometric dye displayed rapid and spontaneous depolarization. Cyclosporin A (CsA), inhibitor of the permeability transition pore (PTP), caused an increase in mitochondrial membrane potential (DeltaPsim) in tissues from adult young animals. In aged rats these changes were not observed. This suggests that physiological activation of PTP in aged rats is reduced. Electron microscopy showed alterations of the mitochondrial ultrastructure in tissues from aged rats involving a decreased definition of the cristae and fragmentation of the mitochondrial membranes. We also detected an increase in apoptotic cells in the smooth muscle from aged animals. Our results show that the aging process changes PTP activity, the ability to maintain DeltaPsim and mitochondrial morphology. It is suggested that these can be associated with mitochondrial damage and cell death.
Collapse
Affiliation(s)
- Guiomar S Lopes
- Department of Pharmacology, Nat. Inst. of Pharmacology, Federal University of São Paulo (UNIFESP), Rua Tres de Maio-100, Vila Clementino, São Paulo 04044-020, Brazil
| | | | | | | | | | | | | |
Collapse
|
21
|
Müller cells in retinopathies. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1569-2558(03)31051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|