1
|
Gharegezloo Z, Rezvani Z, Sanie-Jahromi F, Namjoyan F. The effect of Coix lachrymal L. seed extract on the expression of inflammation and fibrogenesis genes in human retinal pigment epithelial cells. Biomed Pharmacother 2024; 181:117646. [PMID: 39486365 DOI: 10.1016/j.biopha.2024.117646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
Proliferative vitreoretinopathy (PVR) is a vision-threatening condition associated with retinal-detachment (RD), primarily caused by fibrocellular scar membrane formation. This study investigates the therapeutic potential of adlay seed extract fractions in mitigating PVR-associated pathways, focusing on oxidative stress, proliferation, inflammation, and fibrogenesis in retinal pigment epithelial (RPE) cells. Adlay seed extract fractions (methanolic: MeOH and residual: Res) were obtained through solvent extraction and characterized for carbohydrate, protein, flavonoid content, and antioxidant activity. RPE cells were cultured, and their viability in response to adlay fractions was assessed using the MTT assay. Gene expression analysis of IL-1β, IL-6, LIF, TGF-β, Snail and α-SMA genes was conducted via real-time PCR after treatment with adlay fractions. The Res fraction exhibited higher levels of protein, carbohydrate, flavonoids, and phenols compared to the MeOH fraction, along with significantly enhanced antioxidant activity. Both fractions showed inhibitory effects on RPE cell viability, with the Res fraction demonstrating a more pronounced impact. Gene expression analysis revealed a significant decrease in IL-6 and TGF-β expression with the MeOH fraction treatment, while the Res fraction led to decreased expression of IL-6, LIF, TGF-β, Snail and α-SMA, indicating a more comprehensive modulation of PVR-associated pathways. This study highlights the potential therapeutic benefits of adlay seed extract fractions in mitigating PVR-associated pathways in RPE cells. The Res fraction, particularly rich in bioactive compounds and exhibiting potent antioxidant activity, shows promise in attenuating oxidative stress, proliferation, inflammation, and fibrogenesis, critical processes in PVR development. These findings underscore the potential of adlay seed extracts as a novel therapeutic strategy for PVR warranting further investigation and clinical validation.
Collapse
Affiliation(s)
- Zahra Gharegezloo
- Division of biotechnology, Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran.
| | - Zahra Rezvani
- Division of biotechnology, Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran.
| | - Fatemeh Sanie-Jahromi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Foroogh Namjoyan
- Pharmacognosy Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Carpineto P, Licata AM, Ciancaglini M. Proliferative Vitreoretinopathy: A Reappraisal. J Clin Med 2023; 12:5287. [PMID: 37629329 PMCID: PMC10455099 DOI: 10.3390/jcm12165287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Proliferative vitreoretinopathy (PVR) remains the main cause of failure after retinal detachment (RD) surgery. Despite the development of modern technologies and sophisticated techniques for the management of RD, the growth of fibrocellular membranes within the vitreous cavity and on both sides of the retinal surface, as well as intraretinal fibrosis, can compromise surgical outcomes. Since 1983, when the term PVR was coined by the Retina Society, a lot of knowledge has been obtained about the physiopathology and risk factors of PVR, but, despite the proposal of a lot of therapeutic challenges, surgical skills seem to be the only effective way to manage PVR complications.
Collapse
Affiliation(s)
- Paolo Carpineto
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
| | - Arturo Maria Licata
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
| | - Marco Ciancaglini
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| |
Collapse
|
3
|
Carpineto P, Di Filippo ES, Aharrh Gnama A, Bondi D, Iafigliola C, Licata AM, Fulle S. MicroRNA Expression in Subretinal Fluid in Eyes Affected by Rhegmatogenous Retinal Detachment. Int J Mol Sci 2023; 24:ijms24033032. [PMID: 36769354 PMCID: PMC9917592 DOI: 10.3390/ijms24033032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Proliferative vitreoretinopathy (PVR) is an abnormal intraocular scarring process that can complicate cases of rhegmatogenous retinal detachment (RRD). Although previous studies have examined the relevance of microRNAs (miRNAs) in ophthalmic diseases, only a few studies have evaluated the expression profiles of microRNAs in subretinal fluid. We hypothesized that the expression profiles of specific miRNAs may change in response to RRD, in the subretinal fluid that is directly in contact with photoreceptors and the retinal pigment epithelium (RPE). We looked for a potential correlation between the expression of specific miRNAs in eyes with RRD and known clinical risk factors of PVR. A total of 24 patients (59 ± 11 years) who underwent scleral buckling procedure were enrolled in this prospective study. Twenty-four undiluted subretinal fluid samples were collected, RNA was isolated and qRT-PCR was performed to analyze the expression of 12 miRNAs. We found the existence of a positive association between the expression of miR-21 (p = 0.017, r = 0.515) and miR-34 (p = 0.030, r = 0.624) and the duration of symptoms related to retinal detachment. Moreover, the expression of miR-146a tended to decrease in patients who developed PVR. Subretinal fluid constitutes an intriguing biological matrix to evaluate the role of miRNAs leading to the development of PVR.
Collapse
Affiliation(s)
- Paolo Carpineto
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Ophthalmology Clinic, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Correspondence:
| | - Ester Sara Di Filippo
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Agbeanda Aharrh Gnama
- Ophthalmology Clinic, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Carla Iafigliola
- Ophthalmology Clinic, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Arturo Maria Licata
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Ophthalmology Clinic, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Stefania Fulle
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
4
|
Yan T, Yang N, Hu W, Zhang X, Li X, Wang Y, Kong J. Differentiation and Maturation Effect of All-trans Retinoic Acid on Cultured Fetal RPE and Stem Cell-Derived RPE Cells for Cell-Based Therapy. Curr Eye Res 2022; 47:1300-1311. [PMID: 35763026 DOI: 10.1080/02713683.2022.2079144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE Clinical trials using fetal retinal pigment epithelium (fRPE), human embryonic stem cell (hESC)-derived RPE, or human induced pluripotent stem cell (hiPSC)-derived RPE for cell-based therapy for degenerative retinal diseases have been carried out. We investigated the culture-induced changes in passaged fRPE, hESC-RPE and hiPSC-RPE cells and explored the differentiation and maturation effect of all-trans retinoic acid (ATRA) on cells for manufacturing and screening high quality RPE cells for clinical transplantation. METHODS RPE cell lines were set up and the culture-induced changes in subsequent passages caused by manipulating plating density, dissociation method and repeated passaging were studied by microscope, real-time quantitative PCR, western blot and immunofluorescent assays. Gene and protein expression and functional characteristics of RPE cells incubated with ATRA were evaluated. RESULTS Compared with fRPE, hESC-RPE and hiPSC-RPE showed decreased gene and protein expression of RPE markers. RPE cells underwent mesenchymal changes showing increased expression of mesenchymal markers including a-SMA, N-cadherin, fibronectin and decreased expression of RPE markers including RPE65, E-cadherin and ZO-1, as a subsequence of low plating density, inappropriate dissociated method, and repeated passaging. RPE cells treated by ATRA showed increased expression of RPE markers and increased expression of negative complement regulatory proteins (CRPs), and increased transepithelial resistance as well. CONCLUSIONS Differences in protein and gene expression among three RPE types exist. ATRA can increase RPE markers, CRPs gene expression in fRPE and stem cell-derived RPE. These can be used to guide the standard of screening RPE cells for clinical translational cell therapy.
Collapse
Affiliation(s)
- Tingyu Yan
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001 PR China.,Department of Ophthalmology, the Fourth People's Hospital of Shenyang, No. 20 Huanghe Street, Huanggu District, Shenyang, Liaoning Province 110000, P. R. China
| | - Na Yang
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001 PR China.,Department of Medical Genetics, China Medical University, Shenyang, 110122, P. R. China
| | - Wei Hu
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, No.2428 Yuhe Road, Weifang 261031, Shandong, China
| | - Xinxin Zhang
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001 PR China
| | - Xuedong Li
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001 PR China
| | - Youjin Wang
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001 PR China
| | - Jun Kong
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001 PR China
| |
Collapse
|
5
|
Han XD, Jiang XG, Yang M, Chen WJ, Li LG. miRNA‑124 regulates palmitic acid‑induced epithelial‑mesenchymal transition and cell migration in human retinal pigment epithelial cells by targeting LIN7C. Exp Ther Med 2022; 24:481. [PMID: 35761801 PMCID: PMC9214593 DOI: 10.3892/etm.2022.11408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/25/2022] [Indexed: 12/02/2022] Open
Abstract
The present study revealed that palmitic acid (PA) treatment induced epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells, which are involved in the progression of proliferative vitreoretinopathy (PVR). ARPE-19 cells were treated with PA followed by miRNA screening and EMT marker detection using qRT-PCR. Then, miR-124 mimic or inhibitor was transfected into ARPE-19 cells to explore the role of miR-124 on the EMT of ARPE-19 cells using transwell assay. The underlying mechanism of miRNA were predicted by bioinformatics method and confirmed by luciferase activity reporter assay. Furthermore, gain-of-function strategy was also used to explore the role of LIN7C in the EMT of ARPE-19 cells. The expression of miRNA or mRNA expression was determined by qRT-PCR and the protein expression was determined using western blot assay. The result presented that PA reduced the expression of E-cadherin/ZO-1 whilst increasing the expression of fibronectin/α-SMA. In addition, PA treatment enhanced the expression of microRNA (miR)-124 in ARPE-19 cells. Overexpression of miR-124 enhanced PA-induced upregulation of E-cadherin and ZO-1 expression and downregulation of fibronectin and α-SMA. Moreover, miR-124 mimic also enhanced the migration of ARPE-19 cells induced by PA treatment. Inversely, miR-124 inhibitor presented opposite effect on PA-induced EMT and cell migration in ARPE-19 cells. Luciferase activity reporter assay confirmed that Lin-7 homolog C (LIN7C) was a direct target of miR-124 in ARPE-19 cells. Overexpression of LIN7C was found to suppress the migration ability and expression of fibronectin and α-SMA, while increasing expression of E-cadherin and ZO-1; miR-124 mimic abrogated the inhibitive effect of LIN7C on the EMT of ARPE-19 cells and PA further enhanced this abolishment. Collectively, these findings suggest that miR-124/LIN7C can modulate EMT and cell migration in RPE cells, which may have therapeutic implications in the management of PVR diseases.
Collapse
Affiliation(s)
- Xiao-Dong Han
- Department of Ocular Fundus Diseases, Xi'an Aier Ancient City Eye Hospital, Xi'an, Shaanxi 710082, P.R. China
| | - Xu-Guang Jiang
- Department of Ocular Fundus Diseases, Xi'an Aier Ancient City Eye Hospital, Xi'an, Shaanxi 710082, P.R. China
| | - Min Yang
- Department of Ocular Fundus Diseases, Xi'an Aier Ancient City Eye Hospital, Xi'an, Shaanxi 710082, P.R. China
| | - Wen-Jun Chen
- Department of Ocular Fundus Diseases, Xi'an Aier Ancient City Eye Hospital, Xi'an, Shaanxi 710082, P.R. China
| | - Li-Gang Li
- Department of Cataracts, Xi'an Aier Ancient City Eye Hospital, Xi'an, Shaanxi 710082, P.R. China
| |
Collapse
|
6
|
Grigoryan EN, Markitantova YV. Molecular Strategies for Transdifferentiation of Retinal Pigment Epithelial Cells in Amphibians and Mammals In Vivo. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421040032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
7
|
Wang Y, Chang T, Wu T, Ye W, Wang Y, Dou G, Du H, Hui Y, Guo C. Connective tissue growth factor promotes retinal pigment epithelium mesenchymal transition via the PI3K/AKT signaling pathway. Mol Med Rep 2021; 23:389. [PMID: 33760200 PMCID: PMC8008218 DOI: 10.3892/mmr.2021.12028] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/29/2020] [Indexed: 01/17/2023] Open
Abstract
Proliferative vitreoretinopathy (PVR) is a disease leading to the formation of contractile preretinal membranes (PRMs) and is one of the leading causes of blindness. Connective tissue growth factor (CTGF) has been identified as a possible key determinant of progressive tissue fibrosis and excessive scarring. Therefore, the present study investigated the role and mechanism of action of CTGF in PVR. Immunohistochemical staining was performed to detect the expression of CTGF, fibronectin and collagen type III in PRMs from patients with PVR. The effects and mechanisms of recombinant human CTGF and its upstream regulator, TGF‑β1, on epithelial‑mesenchymal transition (EMT) and the synthesis of extracellular matrix (ECM) by retinal pigment epithelium (RPE) cells were investigated using reverse transcription‑quantitative PCR, western blotting and a [3H]proline incorporation assay. The data indicated that CTGF, fibronectin and collagen type III were highly expressed in PRMs. In vitro, CTGF significantly decreased the expression of the epithelial markers ZO‑1 and E‑cadherin and increased that of the mesenchymal markers fibronectin, N‑cadherin and α‑smooth muscle actin in a concentration‑dependent manner. Furthermore, the expression of the ECM protein collagen type III was upregulated by CTGF. However, the trends in expression for the above‑mentioned markers were reversed after knocking down CTGF. The incorporation of [3H]proline into RPE cells was also increased by CTGF. In addition, 8‑Bromoadenosine cAMP inhibited CTGF‑stimulated collagen synthesis and transient transfection of RPE cells with a CTGF antisense oligonucleotide inhibited TGF‑β1‑induced collagen synthesis. The phosphorylation of PI3K and AKT in RPE cells was promoted by CTGF and TGF‑β1 and the latter promoted the expression of CTGF. The results of the present study indicated that CTGF may promote EMT and ECM synthesis in PVR via the PI3K/AKT signaling pathway and suggested that targeting CTGF signaling may have a therapeutic or preventative effect on PVR.
Collapse
Affiliation(s)
- Yafen Wang
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Tianfang Chang
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Tong Wu
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wei Ye
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yusheng Wang
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Guorui Dou
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Hongjun Du
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yannian Hui
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Changmei Guo
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
8
|
Chen Y, Wu B, He JF, Chen J, Kang ZW, Liu D, Luo J, Fang K, Leng X, Tian H, Xu J, Jin C, Zhang J, Wang J, Zhang J, Ou Q, Lu L, Gao F, Xu GT. Effectively Intervening Epithelial-Mesenchymal Transition of Retinal Pigment Epithelial Cells With a Combination of ROCK and TGF-β Signaling Inhibitors. Invest Ophthalmol Vis Sci 2021; 62:21. [PMID: 33861322 PMCID: PMC8083104 DOI: 10.1167/iovs.62.4.21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Purpose Epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells is a key pathological event in proliferative retinal diseases such as proliferative vitreoretinopathy (PVR). This study aimed to explore a new method to reverse EMT in RPE cells to develop an improved therapy for proliferative retinal diseases. Methods In vitro, human embryonic stem cell-derived RPE cells were passaged and cultured at low density for an extended period of time to establish an EMT model. At different stages of EMT after treatment with known molecules or combinations of molecules, the morphology was examined, transepithelial electrical resistance (TER) was measured, and expression of RPE- and EMT-related genes were examined with RT-PCR, Western blotting, and immunofluorescence. In vivo, a rat model of EMT in RPE cells was established via subretinal injection of dispase. Retinal function was examined by electroretinography (ERG), and retinal morphology was examined. Results EMT of RPE cells was effectively induced by prolonged low-density culture. After EMT occurred, only the combination of the Rho-associated coiled-coil containing protein kinase (ROCK) inhibitor Y27632 and the TGF-β receptor inhibitor RepSox (RY treatment) effectively suppressed and reversed the EMT process, even in cells in an intermediate state of EMT. In dispase-treated Sprague-Dawley rats, RY treatment maintained the morphology of RPE cells and the retina and preserved retinal function. Conclusions RY treatment might promote mesenchymal-epithelial transition (MET), the inverse process of EMT, to maintain the epithelial-like morphology and function of RPE cells. This combined RY therapy could be a new strategy for treating proliferative retinal diseases, especially those involving EMT of RPE cells.
Collapse
Affiliation(s)
- Yi Chen
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China.,Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Binxin Wu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China.,Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jian Feng He
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyao Chen
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Zi Wei Kang
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Dandan Liu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Junjie Luo
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Kexin Fang
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Xiaoxu Leng
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Haibin Tian
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China.,Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jingying Xu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China.,Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Caixia Jin
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China.,Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jieping Zhang
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China.,Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Juan Wang
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China.,Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jingfa Zhang
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China.,Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Qingjian Ou
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China.,Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Lixia Lu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China.,Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Furong Gao
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China.,Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Guo-Tong Xu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China.,Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Gerhart J, Morrison N, Gugerty L, Telander D, Bravo-Nuevo A, George-Weinstein M. Myo/Nog cells expressing muscle proteins are present in preretinal membranes from patients with proliferative vitreoretinopathy. Exp Eye Res 2020; 197:108080. [PMID: 32474138 DOI: 10.1016/j.exer.2020.108080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/27/2020] [Accepted: 05/23/2020] [Indexed: 11/18/2022]
Abstract
Proliferative vitreoretinopathy (PVR) is a complication of rhegmatogenous retinal detachment and ocular trauma. The disease is characterized by development of membranes that may apply traction to the retina and cause redetachment. Membrane contractions are attributed to myofibroblasts arising from retinal pigment epithelial cells, glia and fibroblasts. The progenitors of myofibrobasts in the lens are Myo/Nog cells that express the skeletal muscle transcription factor MyoD and bone morphogenetic protein inhibitor Noggin. The retina and choroid also contain Myo/Nog cells that respond to stress. We examined preretinal PVR membranes from three ocular trauma patients with retinal detachment for Myo/Nog cells and their expression of muscle proteins. Myo/Nog cells were identified by co-localization of antibodies to the G8 antigen and Noggin. Greater than 80% of all cells in sections from two of three patients expressed both G8 and Noggin. Myo/Nog cells lacked pigment. Alpha smooth muscle actin (α-SMA) and striated myosin II heavy chain were present in the majority of Myo/Nog cells in these two patients. Differentiation of Myo/Nog cells was paralleled by low levels of MyoD. Membrane sections from the third patient consisted mostly of connective tissue with very few cells. A small subpopulation in these sections expressed both G8 and Noggin, and muscle proteins were detected in only a minority of G8-positive (+) cells. In all three patients, greater than 99% of cells with MyoD, α-SMA and striated muscle myosin co-expressed G8. These findings suggest that contractile myofibroblasts in PVR membranes may be derived from differentiating Myo/Nog cells.
Collapse
Affiliation(s)
| | - Nathan Morrison
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Lindsay Gugerty
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - David Telander
- University of California, Davis, CA, USA; Retinal Consultants, Sacramento, CA, USA
| | | | | |
Collapse
|
10
|
Utility of Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium for an In Vitro Model of Proliferative Vitreoretinopathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1186:33-53. [PMID: 31654385 DOI: 10.1007/978-3-030-28471-8_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The advent of stem cell technology, including the technology to induce pluripotency in somatic cells, and direct differentiation of stem cells into specific somatic cell types, has created an exciting new field of scientific research. Much of the work with pluripotent stem (PS) cells has been focused on the exploration and exploitation of their potential as cells/tissue replacement therapies for personalized medicine. However, PS and stem cell-derived somatic cells are also proving to be valuable tools to study disease pathology and tissue-specific responses to injury. High-throughput drug screening assays using tissue-specific injury models have the potential to identify specific and effective treatments that will promote wound healing. Retinal pigment epithelium (RPE) derived from induced pluripotent stem cells (iPS-RPE) are well characterized cells that exhibit the phenotype and functions of in vivo RPE. In addition to their role as a source of cells to replace damaged or diseased RPE, iPS-RPE provide a robust platform for in vitro drug screening to identify novel therapeutics to promote healing and repair of ocular tissues after injury. Proliferative vitreoretinopathy (PVR) is an abnormal wound healing process that occurs after retinal tears or detachments. In this chapter, the role of iPS-RPE in the development of an in vitro model of PVR is described. Comprehensive analyses of the iPS-RPE response to injury suggests that these cells provide a physiologically relevant tool to investigate the cellular mechanisms of the three phases of PVR pathology: migration, proliferation, and contraction. This in vitro model will provide valuable information regarding cellular wound healing responses specific to RPE and enable the identification of effective therapeutics.
Collapse
|
11
|
Cui Z, Zeng Q, Guo Y, Liu S, Chen J. Integrated bioinformatic changes and analysis of retina with time in diabetic rats. PeerJ 2018; 6:e4762. [PMID: 29785346 PMCID: PMC5960260 DOI: 10.7717/peerj.4762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/23/2018] [Indexed: 01/22/2023] Open
Abstract
Diabetic retinopathy (DR) is the most common chronic complication of diabetes. It can cause impaired vision and even blindness. However, the pathological mechanism of DR is still unknown. In the present study, we use bioinformatic analysis to reveal the pathological changes of early DR in a streptozotocin (STZ) induced diabetes rat model. The dataset GSE28831 was downloaded from the Gene Expression Omnibus (GEO) database. To clarify the pathological mechanism of early DR, genes which were up-regulated (UP group) or down-regulated (DOWN group) over time were identified. One hundred eighty six genes in the UP group and 85 genes in the DOWN group were defined. There were in total 28 Gene ontology (GO) terms with a P value lower than 0.05 in UP group, including astrocyte development, neutrophil chemotaxis, neutrophil aggregation, mesenchymal cell proliferation and so on. In the DOWN group, there were totally 14 GO terms with a P value lower than 0.05, including visual perception, lens development in camera-type eye, camera-type eye development, bicellular tight junction and so on. Signaling pathways were analyzed with all genes in the UP and DOWN groups, and leukocyte transendothelial migration and tight junction were selected. Protein–protein interaction (PPI) network was constructed and six hub genes Diras3, Actn1, Tssk6, Cnot6l, Tek and Fgf4 were selected with connection degree ≥5. S100a8, S100a9 and Tek may be potential targets for DR diagnosis and treatment. This study provides the basis for the diagnosis and treatment of DR in the future.
Collapse
Affiliation(s)
- Zekai Cui
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Qiaolang Zeng
- The Department of Ophthalmology, The First Clinical Medical College, Jinan University, Guangzhou, China
| | - Yonglong Guo
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Shiwei Liu
- The Department of Ophthalmology, The First Clinical Medical College, Jinan University, Guangzhou, China
| | - Jiansu Chen
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,The Department of Ophthalmology, The First Clinical Medical College, Jinan University, Guangzhou, China.,Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China.,Aier Eye Institute, Changsha, China
| |
Collapse
|
12
|
Chen CL, Chen YH, Tai MC, Liang CM, Lu DW, Chen JT. Resveratrol inhibits transforming growth factor-β2-induced epithelial-to-mesenchymal transition in human retinal pigment epithelial cells by suppressing the Smad pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:163-173. [PMID: 28138219 PMCID: PMC5241127 DOI: 10.2147/dddt.s126743] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Proliferative vitreoretinopathy (PVR) is the main cause of failure following retinal detachment surgery. Transforming growth factor (TGF)-β2-induced epithelial-to-mesenchymal transition (EMT) plays an important role in the development of PVR, and EMT inhibition decreases collagen gel contraction and fibrotic membrane formation, resulting in prevention of PVR. Resveratrol is naturally found in red wine and has inhibitory effects on EMT. Resveratrol is widely used in cardioprotection, neuroprotection, chemotherapy, and antiaging therapy. The purpose of this study was to investigate the effects of resveratrol on TGF-β2-induced EMT in ARPE-19 cells in vitro. We found that resveratrol suppressed the decrease of zona occludens-1 (ZO-1) and caused an increase of alpha-smooth muscle actin expression in TGF-β2-treated ARPE-19 cells, assessed using Western blots; moreover, it also suppressed the decrease in ZO-1 and the increase of vimentin expression, observed using immunocytochemistry. Resveratrol attenuated TGF-β2-induced wound closure and cell migration in ARPE-19 cells in a scratch wound test and modified Boyden chamber assay, respectively. We also found that resveratrol reduced collagen gel contraction - assessed by collagen matrix contraction assay - and suppressed the phosphorylation of Smad2 and Smad3 in TGF-β2-treated ARPE-19 cells. These results suggest that resveratrol mediates anti-EMT effects, which could be used in the prevention of PVR.
Collapse
Affiliation(s)
- Ching-Long Chen
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan; Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Hao Chen
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan; Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Cheng Tai
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chang-Min Liang
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Da-Wen Lu
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan; Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jiann-Torng Chen
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan; Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
13
|
Gum SI, Kim YH, Jung JC, Kim IG, Lee JS, Lee KW, Park YJ. Cyclosporine A inhibits TGF-β2-induced myofibroblasts of primary cultured human pterygium fibroblasts. Biochem Biophys Res Commun 2016; 482:1148-1153. [PMID: 27919682 DOI: 10.1016/j.bbrc.2016.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 12/01/2016] [Indexed: 11/27/2022]
Abstract
Cyclosporine A (CsA), an immunomodulatory drug, and is increasingly used to treat moderate dry eye syndrome and ocular surface inflammation. However, any inhibitory effect on differentiation of fibroblasts to myofibroblasts remains unclear. Here, we show that the inhibitory effect of CsA on transforming growth factor-beta2 (TGF-β2)-induced myofibroblasts in primary cultured human pterygium fibroblasts. CsA significantly decreased mRNA and protein expression of myofibroblast-related markers including α-SMA, laminin, and fibronectin. These findings were supported by the results from immunofluorescence staining. Taken together, these results indicate the therapeutic potential of CsA against pterygium progression. Further studies are necessary to elucidate the precise intracellular signal mechanism responsible for CsA-induced downregulation of myofibroblast markers in pterygium fibroblasts.
Collapse
Affiliation(s)
- Sang Il Gum
- Cheil Eye Research Institute, Cheil Eye Hospital, 1 Ayang-ro, Dong-gu, Daegu, 701-820, Republic of Korea
| | - Yeoun-Hee Kim
- Cheil Eye Research Institute, Cheil Eye Hospital, 1 Ayang-ro, Dong-gu, Daegu, 701-820, Republic of Korea; Korean Medicine (KM)-Application Centre, Korea Institute of Oriental Medicine (KIOM), 70, Chemdan-ro, Dong-gu, Daegu, 701-300, Republic of Korea
| | - Jae-Chang Jung
- Developmental Biology Laboratory, Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - Im Gyu Kim
- Cheil Eye Research Institute, Cheil Eye Hospital, 1 Ayang-ro, Dong-gu, Daegu, 701-820, Republic of Korea
| | - Jun Seok Lee
- Cheil Eye Research Institute, Cheil Eye Hospital, 1 Ayang-ro, Dong-gu, Daegu, 701-820, Republic of Korea
| | - Kyoo Won Lee
- Cheil Eye Research Institute, Cheil Eye Hospital, 1 Ayang-ro, Dong-gu, Daegu, 701-820, Republic of Korea
| | - Young Jeung Park
- Cheil Eye Research Institute, Cheil Eye Hospital, 1 Ayang-ro, Dong-gu, Daegu, 701-820, Republic of Korea.
| |
Collapse
|
14
|
Epithelial-mesenchymal transition of the retinal pigment epithelium causes choriocapillaris atrophy. Histochem Cell Biol 2016; 146:769-780. [PMID: 27372654 DOI: 10.1007/s00418-016-1461-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2016] [Indexed: 12/11/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) of the retinal pigment epithelium (RPE) is commonly observed at sites of choroidal neovascularization in patients suffering from age-related macular degeneration. To learn in an experimental model how RPE EMT affects the biology of the choroidal vasculature, we studied transgenic mice (βB1-TGF-β1) with ocular overexpression of transforming growth factor-β1 (TGF-β1). RPE EMT was detectable at postnatal day (P)1 and included marked structural and functional alterations such as loss of the outer blood-retina barrier and reduced mRNA expression of the RPE-characteristic molecules Rlbp1, Rpe65, Rbp1 and Vegfa. Moreover, vascular endothelial growth factor (VEGF) was not detectable by immunohistochemistry at the RPE/choroid interface, while RPE cells stained intensely for α-smooth muscle actin. The choriocapillaris, the characteristic choroidal capillary network adjacent to the RPE, developed normally and was not obviously changed in embryonic transgenic eyes but was absent at P1 indicating its atrophy. At around the same time, photoreceptors stopped to differentiate and photoreceptor apoptosis was abundant in the second week of life. Structural changes were also seen in the retinal vasculature of transgenic animals, which did not form intraretinal vessels, and the hyaloid vasculature, which did not regress. In addition, the amounts of retinal HIF-1α and its mRNA were markedly reduced. We conclude that high amounts of active TGF-β1 in the mouse eye cause transdifferentiation of the RPE to a mesenchymal phenotype. The loss of epithelial differentiation leads to the diminished synthesis of RPE-characteristic molecules including that of VEGF. Lack of RPE-derived VEGF causes atrophy of the choriocapillaris, a scenario that disrupts photoreceptor differentiation and finally results in photoreceptor apoptosis. Lack of retinal vessel formation and of hyaloid vessel regression might be caused by the decrease in the metabolic requirements of the neuroretina leading to low amounts of retinal HIF-1α. In summary, our data indicate that failure of RPE differentiation may well precede and cause atrophy of the choriocapillaris. In contrast, RPE EMT is not sufficient to cause choroidal neovascularization.
Collapse
|
15
|
Tamiya S, Kaplan HJ. Role of epithelial–mesenchymal transition in proliferative vitreoretinopathy. Exp Eye Res 2016; 142:26-31. [DOI: 10.1016/j.exer.2015.02.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 01/10/2023]
|
16
|
Radeke MJ, Radeke CM, Shih YH, Hu J, Bok D, Johnson LV, Coffey PJ. Restoration of mesenchymal retinal pigmented epithelial cells by TGFβ pathway inhibitors: implications for age-related macular degeneration. Genome Med 2015; 7:58. [PMID: 26150894 PMCID: PMC4491894 DOI: 10.1186/s13073-015-0183-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 06/11/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a leading cause of blindness. Most vision loss occurs following the transition from a disease of deposit formation and inflammation to a disease of neovascular fibrosis and/or cell death. Here, we investigate how repeated wound stimulus leads to seminal changes in gene expression and the onset of a perpetual state of stimulus-independent wound response in retinal pigmented epithelial (RPE) cells, a cell-type central to the etiology of AMD. METHODS Transcriptome wide expression profiles of human fetal RPE cell cultures as a function of passage and time post-plating were determined using Agilent 44 K whole genome microarrays and RNA-Seq. Using a systems level analysis, differentially expressed genes and pathways of interest were identified and their role in the establishment of a persistent mesenchymal state was assessed using pharmacological-based experiments. RESULTS Using a human fetal RPE cell culture model that considers monolayer disruption and subconfluent culture as a proxy for wound stimulus, we show that prolonged wound stimulus leads to terminal acquisition of a mesenchymal phenotype post-confluence and altered expression of more than 40 % of the transcriptome. In contrast, at subconfluence fewer than 5 % of expressed transcripts have two-fold or greater expression differences after repeated passage. Protein-protein and pathway interaction analysis of the genes with passage-dependent expression levels in subconfluent cultures reveals a 158-node interactome comprised of two interconnected modules with functions pertaining to wound response and cell division. Among the wound response genes are the TGFβ pathway activators: TGFB1, TGFB2, INHBA, INHBB, GDF6, CTGF, and THBS1. Significantly, inhibition of TGFBR1/ACVR1B mediated signaling using receptor kinase inhibitors both forestalls and largely reverses the passage-dependent loss of epithelial potential; thus extending the effective lifespan by at least four passages. Moreover, a disproportionate number of RPE wound response genes have altered expression in neovascular and geographic AMD, including key members of the TGFβ pathway. CONCLUSIONS In RPE cells the switch to a persistent mesenchymal state following prolonged wound stimulus is driven by lasting activation of the TGFβ pathway. Targeted inhibition of TGFβ signaling may be an effective approach towards retarding AMD progression and producing RPE cells in quantity for research and cell-based therapies.
Collapse
Affiliation(s)
- Monte J. Radeke
- />Neuroscience Research Institute, University of California, Santa Barbara, CA USA
| | - Carolyn M. Radeke
- />Neuroscience Research Institute, University of California, Santa Barbara, CA USA
| | - Ying-Hsuan Shih
- />Neuroscience Research Institute, University of California, Santa Barbara, CA USA
| | - Jane Hu
- />Departments of Ophthalmology and Neurobiology, Jules Stein Eye & Brain Research Institutes, David Geffen School of Medicine, University of California, Los Angeles, CA USA
| | - Dean Bok
- />Departments of Ophthalmology and Neurobiology, Jules Stein Eye & Brain Research Institutes, David Geffen School of Medicine, University of California, Los Angeles, CA USA
| | - Lincoln V. Johnson
- />Neuroscience Research Institute, University of California, Santa Barbara, CA USA
| | - Pete J. Coffey
- />Neuroscience Research Institute, University of California, Santa Barbara, CA USA
| |
Collapse
|
17
|
Croze RH, Buchholz DE, Radeke MJ, Thi WJ, Hu Q, Coffey PJ, Clegg DO. ROCK Inhibition Extends Passage of Pluripotent Stem Cell-Derived Retinal Pigmented Epithelium. Stem Cells Transl Med 2014; 3:1066-78. [PMID: 25069775 PMCID: PMC4149306 DOI: 10.5966/sctm.2014-0079] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/04/2014] [Indexed: 01/08/2023] Open
Abstract
Human embryonic stem cells (hESCs) offer a potentially unlimited supply of cells for emerging cell-based therapies. Unfortunately, the process of deriving distinct cell types can be time consuming and expensive. In the developed world, age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, with more than 7.2 million people afflicted in the U.S. alone. Both hESC-derived retinal pigmented epithelium (hESC-RPE) and induced pluripotent stem cell-derived RPE (iPSC-RPE) are being developed for AMD therapies by multiple groups, but their potential for expansion in culture is limited. To attempt to overcome this passage limitation, we examined the involvement of Rho-associated, coiled-coil protein kinase (ROCK) in hESC-RPE and iPSC-RPE culture. We report that inhibiting ROCK1/2 with Y-27632 allows extended passage of hESC-RPE and iPSC-RPE. Microarray analysis suggests that ROCK inhibition could be suppressing an epithelial-to-mesenchymal transition through various pathways. These include inhibition of key ligands of the transforming growth factor-β pathway (TGFB1 and GDF6) and Wnt signaling. Two important processes are affected, allowing for an increase in hESC-RPE expansion. First, ROCK inhibition promotes proliferation by inducing multiple components that are involved in cell cycle progression. Second, ROCK inhibition affects many pathways that could be converging to suppress RPE-to-mesenchymal transition. This allows hESC-RPE to remain functional for an extended but finite period in culture.
Collapse
Affiliation(s)
- Roxanne H Croze
- Center for Stem Cell Biology and Engineering, Center for the Study of Macular Degeneration, Neuroscience Research Institute, and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - David E Buchholz
- Center for Stem Cell Biology and Engineering, Center for the Study of Macular Degeneration, Neuroscience Research Institute, and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Monte J Radeke
- Center for Stem Cell Biology and Engineering, Center for the Study of Macular Degeneration, Neuroscience Research Institute, and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - William J Thi
- Center for Stem Cell Biology and Engineering, Center for the Study of Macular Degeneration, Neuroscience Research Institute, and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Qirui Hu
- Center for Stem Cell Biology and Engineering, Center for the Study of Macular Degeneration, Neuroscience Research Institute, and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Peter J Coffey
- Center for Stem Cell Biology and Engineering, Center for the Study of Macular Degeneration, Neuroscience Research Institute, and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Dennis O Clegg
- Center for Stem Cell Biology and Engineering, Center for the Study of Macular Degeneration, Neuroscience Research Institute, and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| |
Collapse
|
18
|
Sharma M, Tiwari A, Sharma S, Bansal R, Gupta V, Gupta A, Luthra-Guptasarma M. Pathological vitreous causes cell line-derived (but not donor-derived) retinal pigment epithelial cells to display proliferative vitreoretinopathy-like features in culture. Clin Exp Ophthalmol 2014; 42:745-60. [PMID: 24612444 DOI: 10.1111/ceo.12307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 01/18/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND It is well understood that epithelial mesenchymal transformation occurs when retinal pigment epithelial cells, sourced from either a cell line or cadaver eye, are cultured in the presence of cadaver-derived vitreous. We sought to study the changes in retinal pigment epithelial cells when cell line-derived retinal pigment epithelial cells are cultured in the presence of pathological vitreous. DESIGN Prospective study. SAMPLES 42 patients with rhegmatogenous retinal detachments. METHODS D407 retinal pigment epithelial cells were cultured in the presence of cadaver-derived vitreous or vitreous/subretinal fluid derived from patients undergoing retinal reattachment surgeries. Besides the changes in phenotypic characteristics, the viability, proliferation, migration, mesenchymal marker expression and changes in the extracellular matrix components were also evaluated. MAIN OUTCOME MEASURES Fibrotic phenotype in cell culture. RESULTS Our study clearly demonstrates that cell line-derived retinal pigment epithelial cells (unlike donor-derived retinal pigment epithelial cells) cultured in the presence of patient-derived vitreous/subretinal fluid, exhibit characteristic features of proliferative vitreoretinopathy. CONCLUSIONS We propose that it is the synergistic effect of the combined use of (i) pathological vitreous, rather than cadaver-derived vitreous (since rhegmatogenous retinal detachment-derived pathological vitreous and subretinal fluid contain exaggerated amounts of growth factors, which could predispose to proliferative vitreoretinopathy development) and (ii) cells from an immortal cell culture (cell line), rather than from primary cell cultures (since cells subjected to continuous serial passaging acquire some mesenchymal characteristics), which together result in not only a unique phenotype, but also prime these cells towards display of features associated with proliferative vitreoretinopathy.
Collapse
Affiliation(s)
- Maryada Sharma
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | | | | | | | |
Collapse
|
19
|
Feist RM, King JL, Morris R, Witherspoon CD, Guidry C. Myofibroblast and extracellular matrix origins in proliferative vitreoretinopathy. Graefes Arch Clin Exp Ophthalmol 2013; 252:347-57. [PMID: 24276562 DOI: 10.1007/s00417-013-2531-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/29/2013] [Accepted: 11/12/2013] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND To evaluate origins of the fibrocontractive cell populations and their relation to collagens I and II in proliferative vitreoretinopathy (PVR). METHODS Human PVR membranes were evaluated by indirect immunofluorescence for GFAP, cytokeratin-18 (CK-18), α-smooth muscle actin (αSMA), collagens I and II. Collagen expression by porcine Müller and retinal pigment epithelial cells (RPE) was evaluated using RT-PCR of RNA harvested from freshly isolated primary and proliferating cultures. RESULTS Collagen I was detected in all PVR samples and was widely distributed in the extracellular matrix. In contrast, collagen II was present in only two of the ten samples and was localized to thin, acellular bands near the border of the tissues. Using cell type-specific markers CK-18 and GFAP, RPE and glia were localized to the collagen I-rich matrices. Cells positive for GFAP and CK-18 can also co-express αSMA. Normal and proliferating RPE express collagen I, but Müller cells show no evidence of collagen I expression until they proliferate in culture. In contrast, normal RPE and Müller cells contain message for collagen II which is lost shortly after introduction into culture. CONCLUSIONS Collagen I appears to be the predominate fibrillar collagen in human PVR membranes and collagen II a comparatively minor component. Müller cells and RPE are physically associated with the collagen I matrix and are capable of expressing this protein suggesting that they are the origin. It also appears that the majority of myofibroblasts in PVR membranes are derived from either RPE or Müller cells suggesting that they play a major role in membrane development.
Collapse
Affiliation(s)
- Richard M Feist
- University of Alabama School of Medicine, Birmingham, AL, 35294, USA
| | | | | | | | | |
Collapse
|
20
|
Singh R, Phillips MJ, Kuai D, Meyer J, Martin JM, Smith MA, Perez ET, Shen W, Wallace KA, Capowski EE, Wright LS, Gamm DM. Functional analysis of serially expanded human iPS cell-derived RPE cultures. Invest Ophthalmol Vis Sci 2013; 54:6767-78. [PMID: 24030465 DOI: 10.1167/iovs.13-11943] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PURPOSE To determine the effects of serial expansion on the cellular, molecular, and functional properties of human iPS cell (hiPSC)-derived RPE cultures. METHODS Fibroblasts obtained from four individuals were reprogrammed into hiPSCs and differentiated to RPE cells using previously described methods. Patches of deeply pigmented hiPSC-RPE were dissected, dissociated, and grown in culture until they re-formed pigmented monolayers. Subsequent passages were obtained by repeated dissociation, expansion, and maturation of RPE into pigmented monolayers. Gene and protein expression profiles and morphological and functional characteristics of hiPSC-RPE at different passages were compared with each other and to human fetal RPE (hfRPE). RESULTS RPE from all four hiPSC lines could be expanded more than 1000-fold when serially passaged as pigmented monolayer cultures. Importantly, expansion of hiPSC-RPE monolayers over the first three passages (P1-P3) resulted in decreased expression of pluripotency and neuroretinal markers and maintenance of characteristic morphological features and gene and protein expression profiles. Furthermore, P1 to P3 hiPSC-RPE monolayers reliably demonstrated functional tight junctions, G-protein-coupled receptor-mediated calcium transients, phagocytosis and degradation of photoreceptor outer segments, and polarized secretion of biomolecules. In contrast, P4 hiPSC-RPE cells failed to form monolayers and possessed altered morphological and functional characteristics and gene expression levels. CONCLUSIONS Highly differentiated, pigmented hiPSC-RPE monolayers can undergo limited serial expansion while retaining key cytological and functional attributes. However, passaging hiPSC-RPE cultures beyond senescence leads to loss of such features. Our findings support limited, controlled passaging of patient-specific hiPSC-RPE to procure cells needed for in vitro disease modeling, drug screening, and cellular transplantation.
Collapse
Affiliation(s)
- Ruchira Singh
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sugioka K, Kodama A, Okada K, Iwata M, Yoshida K, Kusaka S, Matsumoto C, Kaji H, Shimomura Y. TGF-β2 promotes RPE cell invasion into a collagen gel by mediating urokinase-type plasminogen activator (uPA) expression. Exp Eye Res 2013; 115:13-21. [PMID: 23810810 DOI: 10.1016/j.exer.2013.06.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 05/23/2013] [Accepted: 06/10/2013] [Indexed: 11/29/2022]
Abstract
Transforming growth factor-beta (TGF-β) is one of the main epithelial-mesenchymal transition (EMT)-inducing factors. In general, TGF-β-induced EMT promotes cell migration and invasion. TGF-β also acts as a potent regulator of pericellular proteolysis by regulating the expression and secretion of plasminogen activators. Urokinase-type plasminogen activator (uPA) is a serine protease that binds to its cell surface receptor (uPAR) with high affinity. uPA binding to uPAR stimulates uPAR's interaction with transmembrane proteins, such as integrins, to regulate cytoskeletal reorganization and cell migration, differentiation and proliferation. However, the influence of TGF-β and the uPA/uPAR system on EMT in retinal pigment epithelial (RPE) cells is still unclear. The purpose of this study was to determine the effect of TGF-β2, which is the predominant isoform in the retina, and the uPA/uPAR system on RPE cells. In this study, we first examined the effect of TGF-β2 and/or the inhibitor of uPA (u-PA-STOP(®)) on the proliferation of a human retinal pigment epithelial cell line (ARPE-19 cells). Treatment with TGF-β2 or u-PA-STOP(®) suppressed cell proliferation. Combination treatment of TGF-β2 and u-PA-STOP(®) enhanced cell growth suppression. Furthermore, western blot analysis, fibrin zymography and real-time reverse transcription PCR showed that that TGF-β2 induced EMT in ARPE-19 cells and that the expression of uPA and uPAR expression was up-regulated during EMT. The TGF-β inhibitor SB431542 suppressed TGF-β2-stimulated uPA expression and secretion but did not suppress uPAR expression. Furthermore, we seeded ARPE-19 cells onto Transwell chambers and allowed them to invade the collagen matrix in the presence of TGF-β2 alone or with TGF-β2 and u-PA-STOP(®). TGF-β2 treatment induced ARPE-19 cell invasion into the collagen gel. Treatment with a combination of TGF-β2 and the uPA inhibitor strongly inhibited ARPE-19 cell invasion compared with treatment with TGF-β2 alone. Furthermore, the interaction between uPA and ARPE-19 cells was analyzed using a surface plasmon biosensor system. The binding of uPA to ARPE-19 cells was observed. In addition, TGF-β2 significantly promoted the binding activity of uPA to ARPE-19 cells in a time-dependent or cell-number-dependent fashion. These results indicate that TGF-β-induced EMT-associated phenotype changes in ARPE-19 cells and the invasiveness of ARPE-19 cells into a collagen gel matrix are mediated, at least in part, by uPA.
Collapse
Affiliation(s)
- Koji Sugioka
- Department of Ophthalmology, Kinki University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Huang XG, Chen YZ, Zhang ZT, Wei YT, Ma HZ, Zhang T, Zhang SC. Rac1 modulates the vitreous-induced plasticity of mesenchymal movement in retinal pigment epithelial cells. Clin Exp Ophthalmol 2013; 41:779-87. [PMID: 23331298 DOI: 10.1111/ceo.12070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 12/25/2012] [Indexed: 12/29/2022]
Abstract
BACKGROUND The vitreous has been shown to induce epithelial-mesenchymal transdifferentiation because it induces fibroblast-like morphology, enhanced migration and invasion in retinal pigment epithelial cells in proliferative vitreoretinopathy. Rac1 is the principal mediator of cell migration. In the current study, the relationship between Rac1 and cell migration, and invasion in vitreous-transformed retinal pigment epithelial cells was investigated using NSC23766, a specific inhibitor of Rac guanosine-5'-triphosphatase activity, and the involvement of a Rac1 guanosine-5'-triphosphatase-dependent pathway was detected. DESIGN One-way design with multiple levels and repeated measurement design. PARTICIPANTS AND SAMPLES The vitreous humor was collected from 20 healthy donor eyes and the retinal pigment epithelial cells were obtained from 9 healthy donor eyes. METHODS Human low-passage retinal pigment epithelial cells were treated with normal medium or 25% vitreous medium. Rac1 activity was measured using a pull-down assay. The cytotoxicity of NSC23766 was measured using the trypan blue dye exclusion test. Cell migration was measured using a wound healing assay. Cell invasion was determined using a transwell invasion assay. Protein expression of Rac1 and phosphorylation of LIM kinase 1 and cofilin were detected by Western blot analysis. MAIN OUTCOME MEASURES Cell migration, invasion, Rac1 activity and phosphorylation of LIM kinase 1 and cofilin. RESULTS Rac1guanosine-5'-triphosphatase was activated in vitreous-transformed retinal pigment epithelial cells. A Rac inhibitor suppressed vitreous-induced migration and invasion in retinal pigment epithelial cells. Cofilin phosphorylation was activated by vitreous treatment but blocked by NSC23766. CONCLUSIONS Rac1 mediates vitreous-transformed retinal pigment epithelial cells' plasticity of mesenchymal movement via Rac1 guanosine-5'-triphosphatase-dependent pathways that modulate LIM kinase 1 and cofilin activity. Rac inhibition may be considered a novel treatment for proliferative vitreoretinopathy.
Collapse
Affiliation(s)
- Xiong-gao Huang
- State Key Ophthalmic Laboratory, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China; Hainan Eye Hospital, Zhongshan Ophthalmic Center, Sun Yat-sen University, Haikou, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Zhu J, Nguyen D, Ouyang H, Zhang XH, Chen XM, Zhang K. Inhibition of RhoA/Rho-kinase pathway suppresses the expression of extracellular matrix induced by CTGF or TGF-β in ARPE-19. Int J Ophthalmol 2013; 6:8-14. [PMID: 23550216 DOI: 10.3980/j.issn.2222-3959.2013.01.02] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 01/28/2013] [Indexed: 02/05/2023] Open
Abstract
AIM To investigate the role of Rho-associated protein kinase (ROCK) inhibitor, Y27632, in mediating the production of extracellular matrix (ECM) components including fibronectin, matrix metallo-proteinase-2 (MMP-2) and type I collagen as induced by connective tissue growth factor (CTGF) or transforming growth factor-β (TGF-β) in a human retinal pigment epithelial cell line, ARPE-19. METHODS The effect of Y27632 on the CTGF or TGF-β induced phenotype in ARPE-19 cells was measured with immunocytochemistry as the change in F-actin. ARPE-19 cells were treated with CTGF (1, 10, 100ng/mL) and TGF-β (10ng/mL) in serum free media, and analyzed for fibronectin, laminin, and MMP-2 and type I collagen by RT-qPCR and immunocytochemistry. Cells were also pretreated with an ROCK inhibitor, Y27632, to analyze the signaling contributing to ECM production. RESULTS Treatment of ARPE-19 cells in culture with TGF-β or CTGF induced an ECM change from a cobblestone morphology to a more elongated swirl pattern indicating a mesenchymal phenotype. RT-qPCR analysis and different gene expression analysis demonstrated an upregulation in expression of genes associated with cytoskeletal structure and motility. CTGF or TGF-β significantly increased expression of fibronectin mRNA (P=0.006, P=0.003 respectively), laminin mRNA (P=0.006, P=0.005), MMP-2 mRNA (P= 0.006, P= 0.001), COL1A1 mRNA (P=0.001, P=0.001), COL1A2 mRNA (P=0.001, P=0.001). Preincubation of ARPE-19 with Y27632 (10mmol/L) significantly prevented CTGF or TGF- β induced fibronectin (P=0.005, P=0.003 respectively), MMP-2 (P= 0.003, P=0.002), COL1A1 (P=0.006, P=0.003), and COL1A2 (P=0.006, P=0.004) gene expression, but not laminin (P=0.375, P=0.516). CONCLUSION Our study demonstrated that both TGF-β and CTGF upregulate the expression of ECM components including fibronectin, laminin, MMP-2 and type I collagen by activating the RhoA/ROCK signaling pathway. During this process, ARPE-19 cells were shown to change from an epithelial to a mesenchymal phenotype in vitro. Y27632, a ROCK inhibitor, inhibited the transcription of fibronectin, MMP-2 and type I collagen, but not laminin. The data from our work suggest a role for CTGF as a profibrotic mediator. Inhibiting the RhoA/ROCK pathway represents a potential target to prevent the fibrosis of RPE cells. This might lead to a novel therapeutic approach to preventing the onset of early PVR.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China ; Department of Ophthalmology and Shiley Eye Center, and Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
24
|
Si Y, Wang J, Guan J, Han Q, Hui Y. Platelet-derived growth factor induced alpha-smooth muscle actin expression by human retinal pigment epithelium cell. J Ocul Pharmacol Ther 2012; 29:310-8. [PMID: 23116162 DOI: 10.1089/jop.2012.0137] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSES (1) To evaluate the association between expression of α-smooth muscle actin (α-SMA) in proliferative vitreoretinopathy (PVR) and the pathological grading of PVR, and the effect of platelet-derived growth factor (PDGF) on the expression of α-SMA by human retinal pigment epithelial (RPE) cells. (2) To investigate the potential induction of PDGF on the proliferation and migration of human RPE cells as well as the signaling pathways responsible. METHODS We immunohistochemically investigated the expression of α-SMA in PVR. To further investigate the effect of PDGF and the downstream signaling, exogenous PDGF-BB and signaling inhibitors were added to cultured human RPE cells. The MTT method was performed to detected cell proliferation, while cell migration was also measured. RESULTS α-SMA expression was positively correlated with the pathological grading of PVR. PDGF-BB could stimulate the proliferation and migration of cultured RPE cells through the participation of mitogen-activated protein kinase. In addition, PDGF induced α-SMA expression. The promotion of proliferate/migration and α-SMA expression by PDGF-BB was enhanced by the presence of serum. CONCLUSIONS PDGF and α-SMA are 2 potential therapeutic targets for the treatment of PVR.
Collapse
Affiliation(s)
- Yanfang Si
- Department of Ophthalmology, Hospital 309 of PLA, Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
25
|
Selective activation of p120ctn-Kaiso signaling to unlock contact inhibition of ARPE-19 cells without epithelial-mesenchymal transition. PLoS One 2012; 7:e36864. [PMID: 22590627 PMCID: PMC3348893 DOI: 10.1371/journal.pone.0036864] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 04/15/2012] [Indexed: 11/19/2022] Open
Abstract
Contact-inhibition ubiquitously exists in non-transformed cells and explains the poor regenerative capacity of in vivo human retinal pigment epithelial cells (RPE) during aging, injury and diseases. RPE injury or degeneration may unlock mitotic block mediated by contact inhibition but may also promote epithelial-mesenchymal transition (EMT) contributing to retinal blindness. Herein, we confirmed that EMT ensued in post-confluent ARPE-19 cells when contact inhibition was disrupted with EGTA followed by addition of EGF and FGF-2 because of activation of canonical Wnt and Smad/ZEB signaling. In contrast, knockdown of p120-catenin (p120) unlocked such mitotic block by activating p120/Kaiso, but not activating canonical Wnt and Smad/ZEB signaling, thus avoiding EMT. Nuclear BrdU labeling was correlated with nuclear release of Kaiso through p120 nuclear translocation, which was associated with activation of RhoA-ROCK signaling, destabilization of microtubules. Prolonged p120 siRNA knockdown followed by withdrawal further expanded RPE into more compact monolayers with a normal phenotype and a higher density. This new strategy based on selective activation of p120/Kaiso but not Wnt/β-catenin signaling obviates the need of using single cells and the risk of EMT, and may be deployed to engineer surgical grafts containing RPE and other tissues.
Collapse
|
26
|
Chen HC, Zhu YT, Chen SY, Tseng SCG. Wnt signaling induces epithelial-mesenchymal transition with proliferation in ARPE-19 cells upon loss of contact inhibition. J Transl Med 2012; 92:676-87. [PMID: 22391957 PMCID: PMC3961713 DOI: 10.1038/labinvest.2011.201] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Proliferation and epithelial-mesenchymal transition (EMT) of the retinal pigment epithelium (RPE) are hallmarks of proliferative vitreoretinopathy. This study aims at clarifying the role of growth factors, such as epidermal growth factor (EGF), fibroblast growth factor-2 (FGF-2), and transforming growth factor-β1 (TGF-β1), in controlling how RPE proliferates while undergoing EMT. When contact inhibition of post-confluent ARPE-19 cells was disrupted by EGTA, an increase of BrdU labeling was noted only in the presence of EGF and/or FGF-2, and was accompanied by EMT as evidenced by the loss of a normal RPE phenotype (altered cytolocalization of RPE65, N-cadherin, ZO-1, and Na,K-ATPase) and the gain of a mesenchymal phenotype (increased expression of vimentin, S100A4, and α-smooth muscle actin). EMT with proliferation by EGTA+EGF+FGF-2 was accompanied by activation of canonical Wnt signaling (judged by the TCF/LEF promoter activity, increased nuclear levels of and interaction between β-catenin and LEF1 proteins, and the replication by overexpression of β-catenin), abolished by concomitant addition of XAV939, a Wnt inhibitor, but not associated with suppression of Hippo signaling (negative expression of nuclear TAZ or YAP and cytoplasmic p-TAZ or p-YAP). The causative role of Wnt signaling on EMT with proliferation was confirmed by overexpression of stable S33Y β-catenin with EGTA treatment. In addition, contact inhibition disrupted by EGTA in the presence of TGF-β1 also led to EMT, but suppressed proliferation and Wnt signaling. The Wnt signaling triggered by EGF+FGF-2 was sufficient and synergized with TGF-β1 in activating the Smad/ZEB1/2 signaling responsible for EMT. These findings establish a framework for further dissecting how RPE might partake in a number of proliferative vitreoretinopathies characterized by EMT.
Collapse
Affiliation(s)
- Hung-Chi Chen
- Tissue Tech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL, USA,Department of Ophthalmology, Chang Gung Memorial Hospital and Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Ying-Ting Zhu
- Tissue Tech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL, USA
| | - Szu-Yu Chen
- Tissue Tech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL, USA
| | - Scheffer C. G. Tseng
- Tissue Tech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL, USA
| |
Collapse
|
27
|
Huang X, Wei Y, Ma H, Zhang S. Vitreous-induced cytoskeletal rearrangements via the Rac1 GTPase-dependent signaling pathway in human retinal pigment epithelial cells. Biochem Biophys Res Commun 2012; 419:395-400. [PMID: 22349509 DOI: 10.1016/j.bbrc.2012.02.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 02/04/2012] [Indexed: 11/28/2022]
Abstract
Proliferative vitreoretinopathy (PVR) is mainly caused by retinal pigment epithelial (RPE) cell migration, invasion, proliferation and transformation into fibroblast-like cells that produce the extracellular matrix (ECM). The vitreous humor is known to play an important role in PVR. An epithelial-to-mesenchymal transdifferentiation (EMT) of human RPE cells induced by 25% vitreous treatment has been linked to stimulation of the mesenchymal phenotype, migration and invasion. Here, we characterized the effects of the vitreous on the cell morphology and cytoskeleton in human RPE cells. The signaling pathway that mediates these effects was investigated. Serum-starved RPE cells were incubated with 25% vitreous, and the morphological changes were examined by phase-contrast microscopy. Filamentous actin (F-actin) was examined by immunofluorescence and confocal microscopy. Protein phosphorylation of AKT, ERK1/2, Smad2/3, LIM kinase (LIMK) 1 and cofilin was analyzed by Western blot analysis. Vitreous treatment induced cytoskeletal rearrangements, activated Rac1 and enhanced the phosphorylation of AKT, ERK1/2 and Smad2/3. When the cells were treated with a Rac activation-specific inhibitor, the cytoskeletal rearrangements were prevented, and the phosphorylation of Smad2/3 was blocked. Vitreous treatment also enhanced the phosphorylation of LIMK1 and cofilin and the Rac inhibitor blocked this effect. We propose that vitreous-transformed human RPE cells undergo cytoskeletal rearrangements via Rac1 GTPase-dependent pathways that modulate LIMK1 and cofilin activity. The TGFβ-like activity of the vitreous may participate in this effect. Actin polymerization causes the cytoskeletal rearrangements that lead to the plasticity of vitreous-transformed RPE cells in PVR.
Collapse
Affiliation(s)
- Xionggao Huang
- State Key Ophthalmic Laboratory, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | | | | | | |
Collapse
|
28
|
Khankan R, Oliver N, He S, Ryan SJ, Hinton DR. Regulation of fibronectin-EDA through CTGF domain-specific interactions with TGFβ2 and its receptor TGFβRII. Invest Ophthalmol Vis Sci 2011; 52:5068-78. [PMID: 21571675 DOI: 10.1167/iovs.11-7191] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To investigate the role of fibronectin containing extra domain A (FN-EDA) in the pathogenesis of proliferative vitreoretinopathy (PVR) and the regulation of FN-EDA by transforming growth factor (TGF)-β and connective tissue growth factor (CTGF) in retinal pigment epithelial (RPE) cells. METHODS Expression of FN-EDA in normal human retinas and PVR membranes was evaluated by immunohistochemistry. The effects of TGFβ and CTGF on FN-EDA mRNA and protein expression in primary cultures of human RPE cells were analyzed at different time points by real-time PCR and Western blot, respectively. The interaction of CTGF with TGFβ2 or with its type II receptor TGFβRII was examined by ELISA, immunoprecipitation, and solid-phase binding assays. RESULTS FN-EDA was abundantly expressed in PVR membranes but absent from the RPE monolayer in normal human retinas. Treatment of RPE cells with TGFβ2 induced FN-EDA expression in a time- and dose-dependent manner, but CTGF alone had no effect. However, CTGF, through its N-terminal half fragment, augmented TGFβ2-induced expression of FN-EDA at the protein level. This effect was blocked by antibodies against TGFβ2 or TGFβRII. Interaction of TGFβ2 or TGFβRII with CTGF was dose dependent and specific. CTGF directly bound TGFβ2 and TGFβRII at its N- and C-terminal domains, respectively. CONCLUSIONS These findings suggest that CTGF promotes the profibrotic activities of TGFβ acting as a cofactor through direct protein interactions and complex regulatory mechanisms.
Collapse
Affiliation(s)
- Rima Khankan
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
29
|
Bhattacharya S, Ray RM, Chaum E, Johnson DA, Johnson LR. Inhibition of Mdm2 sensitizes human retinal pigment epithelial cells to apoptosis. Invest Ophthalmol Vis Sci 2011; 52:3368-80. [PMID: 21345989 DOI: 10.1167/iovs.10-6991] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Because recent studies indicate that blocking the interaction between p53 and Mdm2 results in the nongenotoxic activation of p53, the authors sought to investigate whether the inhibition of p53-Mdm2 binding activates p53 and sensitizes human retinal epithelial cells to apoptosis. METHODS Apoptosis was evaluated by the activation of caspases and DNA fragmentation assays. The Mdm2 antagonist Nutlin-3 was used to dissociate p53 from Mdm2 and, thus, to increase p53 activity. Knockdown of p53 expression was accomplished by using p53 siRNA. RESULTS ARPE-19 and primary RPE cells expressed high levels of the antiapoptotic proteins Bcl-2 and Bcl-xL. Exposure of these cells to camptothecin (CPT) or TNF-α/ cycloheximide (CHX) failed to induce apoptosis. In contrast, treatment with the Mdm2 antagonist Nutlin-3 in the absence of CPT or TNF-α/CHX increased apoptosis. Activation of p53 in response to Nutlin-3 also increased levels of Noxa, p53-upregulated modulator of apoptosis (PUMA), and Siva-1, decreased expression of Bcl-2 and Bcl-xL, and simultaneously increased caspases-9 and -3 activities and DNA fragmentation. Knockdown of p53 decreased the basal expression of p21Cip1 and Bcl-2, inhibited the Nutlin-3-induced upregulation of Siva-1 and PUMA expression, and consequently inhibited caspase-3 activation. CONCLUSIONS These results indicate that the normally available pool of intracellular p53 is predominantly engaged in the regulation of cell cycle checkpoints by p21Cip1 and does not trigger apoptosis in response to DNA-damaging agents. However, the blockage of p53 binding to Mdm2 frees a pool of p53 that is sufficient, even in the absence of DNA-damaging agents, to increase the expression of proapoptotic targets and to override the resistance of RPE cells to apoptosis.
Collapse
Affiliation(s)
- Sujoy Bhattacharya
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | | | | | |
Collapse
|
30
|
Srivastava GK, Martín L, Singh AK, Fernandez-Bueno I, Gayoso MJ, Garcia-Gutierrez MT, Girotti A, Alonso M, Rodríguez-Cabello JC, Pastor JC. Elastin-like recombinamers as substrates for retinal pigment epithelial cell growth. J Biomed Mater Res A 2011; 97:243-50. [DOI: 10.1002/jbm.a.33050] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 12/17/2010] [Accepted: 01/10/2011] [Indexed: 12/19/2022]
|
31
|
Karali M, Peluso I, Gennarino VA, Bilio M, Verde R, Lago G, Dollé P, Banfi S. miRNeye: a microRNA expression atlas of the mouse eye. BMC Genomics 2010; 11:715. [PMID: 21171988 PMCID: PMC3018480 DOI: 10.1186/1471-2164-11-715] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 12/20/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are key regulators of biological processes. To define miRNA function in the eye, it is essential to determine a high-resolution profile of their spatial and temporal distribution. RESULTS In this report, we present the first comprehensive survey of miRNA expression in ocular tissues, using both microarray and RNA in situ hybridization (ISH) procedures. We initially determined the expression profiles of miRNAs in the retina, lens, cornea and retinal pigment epithelium of the adult mouse eye by microarray. Each tissue exhibited notably distinct miRNA enrichment patterns and cluster analysis identified groups of miRNAs that showed predominant expression in specific ocular tissues or combinations of them. Next, we performed RNA ISH for over 220 miRNAs, including those showing the highest expression levels by microarray, and generated a high-resolution expression atlas of miRNAs in the developing and adult wild-type mouse eye, which is accessible in the form of a publicly available web database. We found that 122 miRNAs displayed restricted expression domains in the eye at different developmental stages, with the majority of them expressed in one or more cell layers of the neural retina. CONCLUSIONS This analysis revealed miRNAs with differential expression in ocular tissues and provided a detailed atlas of their tissue-specific distribution during development of the murine eye. The combination of the two approaches offers a valuable resource to decipher the contributions of specific miRNAs and miRNA clusters to the development of distinct ocular structures.
Collapse
Affiliation(s)
- Marianthi Karali
- Telethon Institute for Genetics and Medicine, Via P. Castellino 111, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Lee J, Moon HJ, Lee JM, Joo CK. Smad3 regulates Rho signaling via NET1 in the transforming growth factor-beta-induced epithelial-mesenchymal transition of human retinal pigment epithelial cells. J Biol Chem 2010; 285:26618-27. [PMID: 20547485 DOI: 10.1074/jbc.m109.073155] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously demonstrated that RhoA-dependent signaling regulates transforming growth factor-beta1 (TGF-beta1)-induced cytoskeletal reorganization in the human retinal pigment epithelial cell line ARPE-19. Smad pathways have also been shown to mediate TGF-beta1 activity. Here, we examined what regulates Rho GTPase activity and tested whether Smad signaling cross-talks with Rho pathways during TGF-beta1-induced actin rearrangement. Using small interfering RNAs, we found that NET1, the guanine nucleotide exchange factor of RhoA, is critical for TGF-beta1-induced cytoskeletal reorganization, N-cadherin expression, and RhoA activation. In ARPE-19 cells lacking NET1, TGF-beta1-induced stress fibers and N-cadherin expression were not observed. Interestingly, in dominant-negative Smad3-expressing or constitutively active Smad7 cells, TGF-beta1 failed to induce NET1 mRNA and protein expression. Consistent with these results, both dominant-negative Smad3 and constitutively active Smad7 blocked the cytoplasmic localization of NET1 and inhibited interactions between NET1 and RhoA. Finally, we found that NET1 is a direct gene target of TGF-beta1 via Smad3. Taken together, our results demonstrate that Smad3 regulates RhoA activation and cytoskeletal reorganization by controlling NET1 in TGF-beta1-induced ARPE-19 cells. These data define a new role for Smad3 as a modulator of RhoA activation in the regulation of TGF-beta1-induced epithelial-mesenchymal transitions.
Collapse
Affiliation(s)
- Jungeun Lee
- Laboratory of Ophthalmology and Visual Science, Catholic Research Institutes of Medical Sciences, Korean Eye Tissue and Gene Bank Related to Blindness, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | | | | | | |
Collapse
|
33
|
Guo CM, Wang YS, Hu D, Han QH, Wang JB, Hou X, Hui YN. Modulation of migration and Ca2+ signaling in retinal pigment epithelium cells by recombinant human CTGF. Curr Eye Res 2010; 34:852-62. [PMID: 19895313 DOI: 10.3109/02713680903128935] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The migration of retinal pigment epithelium (RPE) cells is an initial step in the development of proliferative vitreoretinopathy (PVR). We investigated the expression of connective tissue growth factor (CTGF) in an in vitro model of wound healing and effects of recombinant human CTGF (rhCTGF) on modulating migration and Ca(2+) signaling in RPE cells. METHODS Cultured human RPE monolayers were used to establish a wound-healing model. Western blot and in situ hybridization were used to detect the CTGF expression in RPE cells. Migration of RPE cells was measured under the stimulation of rhCTGF alone or in combination with dexamethasone (DEX) or 8-Br-cAMP. To determine the concentration of cytoplasmic-free Ca(2+) ([Ca(2+)]i) responding to CTGF, the fluo-3/AM-loaded RPE cells were observed with a laser scanning confocal microscope. RESULTS The CTGF expression first increased after being wounded in RPE cells, then reached a peak and maintained at a high level. The positive expression was mainly at the edge of scrape and in motile RPE cells. rhCTGF-stimulated RPE cells migrated in a dose-dependent manner, and both DEX and 8-Br-cAMP could significantly inhibit the CTGF-induced migrations. CTGF induced a (Ca(2+))i elevation in RPE cells in a concentration-dependent manner. Moreover, stimulation of RPE cells with CTGF and DEX or 8-Br-cAMP counteracted the elevation of (Ca(2+))i induced by CTGF. CONCLUSIONS The CTGF expression could be induced by an in vitro model of scrape wounding. rhCTGF stimulated the migration and Ca(2+) signal pathway in RPE cells in a dose-dependent manner, and DEX and 8-Br-cAMP suppressed this effect. Our results indicate that CTGF is involved in the wound-healing process and plays an important role in the pathogenesis of intraocular proliferative diseases.
Collapse
Affiliation(s)
- Chang-Mei Guo
- Department of Ophthalmology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Liu Y, Ye F, Li Q, Tamiya S, Darling DS, Kaplan HJ, Dean DC. Zeb1 represses Mitf and regulates pigment synthesis, cell proliferation, and epithelial morphology. Invest Ophthalmol Vis Sci 2009; 50:5080-8. [PMID: 19515996 DOI: 10.1167/iovs.08-2911] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Epithelial-mesenchymal transition (EMT) is important in fibrotic responses, formation of cancer stem cells, and acquisition of a metastatic phenotype. Zeb1 represses epithelial specification genes to enforce epithelial-mesenchymal phenotypic boundaries during development, and it is one of several E-box-binding repressors whose overexpression triggers EMT. The purpose of this study was to investigate the potential role for Zeb1 in EMT leading to the dedifferentiation of retinal pigment epithelial (RPE) cells. METHODS Real-time PCR was used to examine mRNA expression during RPE dedifferentiation in primary cultures of RPE cells from Zeb1(+/-) mice and after knockdown of Zeb1 by lentivirus shRNA. Chromatin immunoprecipitation was used to detect Zeb1 at gene promoters in vivo. RESULTS Zeb1 is overexpressed during RPE dedifferentiation. Heterozygous mutation or shRNA knockdown to prevent this overexpression eliminates the onset of proliferation, loss of epithelial morphology, and pigment, which characterizes RPE dedifferentiation. Zeb1 binds to the Mitf A promoter in vivo, and Zeb1 mutation or shRNA knockdown derepresses the gene. The authors link Zeb1 expression to cell-cell contact and demonstrate that forcing dedifferentiated RPE cells to adopt cell-cell only contacts via sphere formation reverses the overexpression of Zeb1 and reprograms RPE cells back to a pigmented phenotype. CONCLUSIONS Overexpression of the EMT transcription factor Zeb1 has an important role in RPE dedifferentiation via its regulation of Mitf. Expression of Zeb1 and, in turn, RPE dedifferentiation, is linked to cell-cell contact, and these contacts can be used to diminish Zeb1 expression and reprogram dedifferentiated RPE cells.
Collapse
Affiliation(s)
- Yongqing Liu
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Burke JM. Epithelial phenotype and the RPE: is the answer blowing in the Wnt? Prog Retin Eye Res 2008; 27:579-95. [PMID: 18775790 DOI: 10.1016/j.preteyeres.2008.08.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Cells of the human retinal pigment epithelium (RPE) have a regular epithelial cell shape within the tissue in situ, but for reasons that remain elusive the RPE shows an incomplete and variable ability to re-develop an epithelial phenotype after propagation in vitro. In other epithelial cell cultures, formation of an adherens junction (AJ) composed of E-cadherin plays an important early inductive role in epithelial morphogenesis, but E-cadherin is largely absent from the RPE. In this review, the contribution of cadherins, both minor (E-cadherin) and major (N-cadherin), to RPE phenotype development is discussed. Emphasis is placed on the importance for future studies of actin cytoskeletal remodeling during assembly of the AJ, which in epithelial cells results in an actin organization that is characteristically zonular. Other markers of RPE phenotype that are used to gauge the maturation state of RPE cultures including tissue-specific protein expression, protein polarity, and pigmentation are described. An argument is made that RPE epithelial phenotype, cadherin-based cell-cell adhesion and melanization are linked by a common signaling pathway: the Wnt/beta-catenin pathway. Analyzing this pathway and its intersecting signaling networks is suggested as a useful framework for dissecting the steps in RPE morphogenesis. Also discussed is the effect of aging on RPE phenotype. Preliminary evidence is provided to suggest that light-induced sub-lethal oxidative stress to cultured ARPE-19 cells impairs organelle motility. Organelle translocation, which is mediated by stress-susceptible cytoskeletal scaffolds, is an essential process in cell phenotype development and retention. The observation of impaired organelle motility therefore raises the possibility that low levels of stress, which are believed to accompany RPE aging, may produce subtle disruptions of cell phenotype. Over time these would be expected to diminish the support functions performed by the RPE on behalf of photoreceptors, theoretically contributing to aging retinal disease such as age-related macular degeneration (AMD). Analyzing sub-lethal stress that produces declines in RPE functional efficiency rather than overt cell death is suggested as a useful future direction for understanding the effects of age on RPE organization and physiology. As for phenotype and pigmentation, a role for the Wnt/beta-catenin pathway is also suggested in regulating the RPE response to oxidative stress. Exploration of this pathway in the RPE therefore may provide a unifying strategy for advancing our understanding of both RPE phenotype and the consequences of mild oxidative stress on RPE structure and function.
Collapse
Affiliation(s)
- Janice M Burke
- Department of Ophthalmology, Medical College of Wisconsin, The Eye Institute, 925 North 87th Street, Milwaukee, WI 53226-4812, USA.
| |
Collapse
|
36
|
Abstract
Purpose Hepatocyte growth factor (HGF) and its receptor (HGFR/c-Met) regulate motility, mitogenesis, and morphogenesis in a cell type-dependent fashion. We report the role of HGF and c-Met on stress-induced ARPE-19 human retinal pigment epithelial (RPE) cells in this study. Methods The cells were cultured either with or without serum. Southern and Western blot analyses were done to determine the expression patterns of HGF/c-Met in serum-starved ARPE-19 cells. The cell proliferation pattern in serum-starved condition was analyzed using MTS assay. Inhibition level of cell proliferation was analyzed using a neutralizing monoclonal antibody against c-Met (2 µg/ml). Results Abnormal cell proliferation and scattering of ARPE-19 cells was observed under serum starvation. HGF/c-Met were expressed in serum-starved ARPE-19 cells. ARPE-19 cell proliferation was also enhanced with recombinant HGF treatment. Neutralization against c-Met inhibited the proliferation of serum-deprived ARPE-19 by 64.5% (n=9, S.D. 5.5%). Serum starvation appears to induce epithelial-mesenchymal transition of ARPE-19 cells, resulting in scatter, and the expression of α-smooth muscle actin (α-SMA), a marker for fibrosis. Conclusions In conclusion, c-Met induced under non-physiologic conditions has significant effects on the activation of RPE cells.
Collapse
Affiliation(s)
- Eun Jung Jun
- Department of Ophthalmology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | |
Collapse
|
37
|
Pacheco-Domínguez RL, Palma-Nicolas JP, López E, López-Colomé AM. The activation of MEK-ERK1/2 by glutamate receptor-stimulation is involved in the regulation of RPE proliferation and morphologic transformation. Exp Eye Res 2007; 86:207-19. [PMID: 18061165 DOI: 10.1016/j.exer.2007.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Revised: 10/15/2007] [Accepted: 10/18/2007] [Indexed: 10/22/2022]
Abstract
Retinal pigment epithelial (RPE) cells are the main cell type involved in the pathogenesis of proliferative vitreoretinopathy (PVR). As a result from retinal detachment or surgical procedures, RPE comes in contact with glutamate from serum, glial release and the injured retina. The purpose of this study was to explore a possible role for glutamate in the development of PVR, mediated by the receptor-stimulated activation of the ERK1/2 MAPK pathway, the alteration of cell proliferation and the transdifferentiation of RPE cells, using rat RPE cells in culture as a model system. We demonstrated the expression in these cells of Group I metabotropic-and ionotropic AMPA/KA and NMDA glutamate receptors (GluRs), predominantly of the NMDA subtype, which are targeted to the membrane, and exhibit pharmacological and biochemical characteristics equivalent to those previously established in brain tissue. Proliferation was measured by MTS-reduction colorimetric assay, and actin cytoskeleton dynamics was visualized by immunoflurescence using alpha-sma specific antibodies. Activation of metabotropic, AMPA and NMDA receptors by glutamate induced the time-and dose-dependent phosphorylation of ERK1/2, assessed by Western blot analysis, in parallel to a significant increase in cell proliferation and a decrease in alpha-sma expression and its recruitment into stress fibers. These effects were all prevented by the inhibition of MEK. Hence, results suggest that glutamate could be involved in the generation of PVR, through a GluR-mediated increase in proliferation and phenotypic transformation, cause-effect related to the activation of ERK1/2.
Collapse
Affiliation(s)
- Reyna Lizette Pacheco-Domínguez
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), México, DF, Mexico
| | | | | | | |
Collapse
|
38
|
Itoh Y, Kimoto K, Imaizumi M, Nakatsuka K. Inhibition of RhoA/Rho-kinase pathway suppresses the expression of type I collagen induced by TGF-beta2 in human retinal pigment epithelial cells. Exp Eye Res 2007; 84:464-72. [PMID: 17217948 DOI: 10.1016/j.exer.2006.10.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 08/12/2006] [Accepted: 10/23/2006] [Indexed: 02/02/2023]
Abstract
Proliferative vitreoretinopathy (PVR) is a major cause of the failure of rhegmatogenous retinal detachment surgery. The pathogenesis of PVR includes a fibrotic reaction of retinal pigment epithelial (RPE) cells caused by transforming growth factor (TGF)-beta. The cellular mechanisms by which TGF-beta induces extracellular matrix protein synthesis are not fully understood. In this study, we examined whether the RhoA/Rho-kinase pathway was involved in TGF-beta2-induced collagen expression in a human RPE cell line, ARPE-19. The roles of RhoA and Rho-kinase were evaluated using biochemical inhibitors, RhoA inhibitor, simvastatin and Rho-kinase inhibitor, Y27632. The effects of simvastatin or Y27632 on the type I collagen mRNA (COL1A1 and COL1A2) expression induced by TGF-beta2 were evaluated by real-time RT-PCR. The effects of simvastatin or Y27632 on type I collagen synthesis induced by TGF-beta2 were assessed by immunocytochemical analysis with anti-type I collagen antibody. To examine the effects of simvastatin or Y27632 on COL1A2 promoter activity induced by TGF-beta2, luciferase reporter assays were also performed. Moreover, the role of RhoA itself on COL1A2 promoter activity was assessed using the constructs of constitutively active RhoA and dominant-negative RhoA. RhoA was activated within 5 min after stimulation with TGF-beta2, and its activation persisted for as long as 1 h in a dose-dependent fashion. Preincubation of ARPE-19 with simvastatin (5 microM) or Y27632 (10 microM) significantly prevented TGF-beta2-induced COL1A1 and COL1A2 gene expression. Inhibition of RhoA/Rho-kinase markedly suppressed TGF-beta2-induced type I collagen synthesis in ARPE-19. Moreover, the blockage of RhoA/Rho-kinase inhibited the increase in COL1A2 promoter activity when induced by TGF-beta2. Constitutively active RhoA increased COL1A2 promoter activity in the presence or absence of TGF-beta2. Simvastatin and Y27632 reduced active RhoA-induced COL1A2 promoter activity. The dominant-negative RhoA inhibited COL1A2 promoter activity augmentation induced by TGF-beta2. In the luciferase assay using a mutation construct of the Smad binding site in COL1A2 promoter (Smad-mut/Luc), the treatment with simvastatin and Y27632 significantly reduced TGF-beta2 induction of Smad-mut/Luc promoter activity. On the other hand, both simvastatin and Y27632 significantly reduced CAGA12-Luc activity induced by TGF-beta2. These results indicate that the RhoA/Rho-kinase pathway plays a role in relaying TGF-beta2 signal transduction to type I collagen synthesis in RPE cells in a Smad-dependent and Smad-independent fashion. The RhoA/Rho-kinase pathway may be a therapeutic target for treating PVR.
Collapse
Affiliation(s)
- Yuji Itoh
- Department of Ophthalmology, Oita University, Hasama-machi, Yufu-shi Oita 879-5593, Japan.
| | | | | | | |
Collapse
|
39
|
Gamulescu MA, Chen Y, He S, Spee C, Jin M, Ryan SJ, Hinton DR. Transforming growth factor beta2-induced myofibroblastic differentiation of human retinal pigment epithelial cells: regulation by extracellular matrix proteins and hepatocyte growth factor. Exp Eye Res 2006; 83:212-22. [PMID: 16563380 DOI: 10.1016/j.exer.2005.12.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 12/13/2005] [Accepted: 12/15/2005] [Indexed: 11/30/2022]
Abstract
Retinal pigment epithelial (RPE) cells possess the potential to transdifferentiate into myofibroblasts after stimulation with transforming growth factor beta (TGFbeta) and are implicated in the pathogenesis of proliferative vitreoretinopathy. In this study we evaluated how TGFbeta2 and various extracellular matrix (ECM) proteins modulate the transdifferentiation of human fetal retinal pigment epithelial cells (RPE) cells into myofibroblast-like cells. Furthermore, we investigated whether hepatocyte growth factor (HGF) can suppress this transdifferentiation. RPE cells were cultured on ECM coated or uncoated surfaces in the presence or absence of TGFbeta2. HGF was added to certain cultures only once or on a daily basis during the treatment. Transdifferentiation of RPE cells into myofibroblasts was assessed by the quantitation of alpha-smooth muscle actin (alpha-SMA) using immunocytochemistry, flow cytometry, real-time PCR and Western blotting. TGFbeta2 induced a significant increase of alpha-SMA expression in a dose-dependent manner. Compared with growth on uncoated surfaces, RPE cultured on fibronectin (FN)-coated surfaces and stimulated with TGFbeta2 showed a significantly higher alpha-SMA expression than untreated cells. This upregulation of alpha-SMA could be markedly reduced by daily treatment with HGF; however, a single HGF administration did not significantly reduce alpha-SMA. These findings are important for further understanding the interaction of cytokines, RPE cells and their environment in mesenchymal transformation as well as its possible modulation. Continuous or long-term treatment with HGF should be further investigated for its potential to prevent mesenchymal transdifferentiation of RPE cells, and ultimately, PVR in vivo.
Collapse
Affiliation(s)
- Maria-Andreea Gamulescu
- Doheny Eye Institute, Keck School of Medicine, University of Southern California, 1450 San Pablo Street, Los Angeles, CA 90033, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Transforming growth factor beta (TGFbeta), a multifunctional growth factor, is one of the most important ligands involved in the regulation of cell behavior in ocular tissues in physiological or pathological processes of development or tissue repair, although various other growth factors are also involved. Increased activity of this ligand may induce unfavorable inflammatory responses and tissue fibrosis. In mammals, three isoforms of TGFbeta, that is, beta1, beta2, and beta3, are known. Although all three TGFbeta isoforms and their receptors are present in ocular tissues, lack of TGFbeta2, but not TGFbeta1 or TGFbeta3, perturbs embryonic morphogenesis of the eyes in mice. Smads2/3 are key signaling molecules downstream of cell surface receptors for TGFbeta or activin. Upon TGF binding to the respective TGF receptor, Smads2/3 are phosphorylated by the receptor kinase at the C-terminus, form a complex with Smad4 and translocate to the nucleus for activation of TGFbeta gene targets. Moreover, mitogen-activated protein kinase, c-Jun N-terminal kinase, and p38 modulate Smad signals directly via Smad linker phosphorylation or indirectly via pathway crosstalk. Smad signals may therefore be a critical threrapeutic target in the treatment of ocular disorders related to fibrosis as in other systemic fibrotic diseases. The present paper reviews recent progress concerning the roles of TGFbeta signaling in the pathology of the eye.
Collapse
Affiliation(s)
- Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
41
|
Saika S, Yamanaka O, Ikeda K, Kim-Mitsuyama S, Flanders KC, Yoo J, Roberts AB, Nishikawa-Ishida I, Ohnishi Y, Muragaki Y, Ooshima A. Inhibition of p38MAP kinase suppresses fibrotic reaction of retinal pigment epithelial cells. J Transl Med 2005; 85:838-50. [PMID: 15924151 DOI: 10.1038/labinvest.3700294] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Proliferative vitreoretinopathy (PVR) is one of the major causes of the failure of retinal detachment surgery. Its pathogenesis includes a fibrotic reaction by the retinal pigment epithelium and other retina-derived non-neural cells, leading to fixation of the detached retina. We examined the role of p38 mitogen-activated protein kinase (MAPK) in transforming growth factor (TGF)-beta2-dependent enhancement of the fibrogenic reaction in a human retinal pigment epithelial cell line, ARPE-19, and also evaluated the therapeutic efficacy of inhibiting p38MAPK by adenoviral gene transfer of dominant-negative (DN) p38MAPK in a mouse model of PVR. Exogenous TGF-beta2 activates p38MAPK in ARPE-19 cells. It also suppresses cell proliferation, but this was unaffected by addition of the p38MAPK inhibitor, SB202190. SB202190 interfered with TGF-beta2-dependent cell migration and production of collagen type I and fibronectin, but had no effect on basal levels of these activities. While SB202190 did not affect phosphorylation of the C-terminus of Smads2/3, it did suppress the transcriptional activity of Smads3/4 as indicated by a reporter gene, CAGA12-Luc. Gene transfer of DN-p38MAPK attenuated the post-retinal detachment fibrotic reaction of the retinal pigment epithelium in vivo in mice, supporting its effectiveness in preventing/treating PVR.
Collapse
Affiliation(s)
- Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University, Kimiidera, Wakayama 641-0012, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Klimanskaya I, Hipp J, Rezai KA, West M, Atala A, Lanza R. Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. CLONING AND STEM CELLS 2005; 6:217-45. [PMID: 15671670 DOI: 10.1089/clo.2004.6.217] [Citation(s) in RCA: 274] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Human stem-cell derivatives are likely to play an important role in the future of regenerative medicine. Evaluation and comparison to their in vivo counterparts is critical for assessment of their therapeutic potential. Transcriptomics was used to compare a new differentiation derivative of human embryonic stem (hES) cells--retinal pigment epithelium (RPE)--to human fetal RPE. Several hES cell lines were differentiated into putative RPE, which expressed RPEspecific molecular markers and was capable of phagocytosis, an important RPE function. Isolated hES cell-derived RPE was able to transdifferentiate into cells of neuronal lineage and redifferentiate into RPE-like cells through multiple passages (>30 Population doublings). Gene expression profiling demonstrated their higher similarity to primary RPE tissue than of existing human RPE cell lines D407 and ARPE-19, which has been shown to attenuate loss of visual function in animals. This is the first report of the isolation and characterization of putative RPE cells from hES cells, as well as the first application of transcriptomics to assess embryonic stem-cell derivatives and their in vivo counterparts--a "differentiomics" outlook. We describe for the first time, a differentiation system that does not require coculture with animal cells or factors, thus allowing the production of zoonoses-free RPE cells suitable for subretinal transplantation in patients with retinal degenerative diseases. With the further development of therapeutic cloning, or the creation of the banks of homozygous human leucocyte antigen (HLA) hES cells using parthenogenesis, RPE lines could be generated to overcome the problem of immune rejection and could be one of the nearest term applications of stem-cell technology.
Collapse
Affiliation(s)
- Irina Klimanskaya
- Advanced Cell Technology, One Innovation Drive, Worcester, MA 01605, USA
| | | | | | | | | | | |
Collapse
|
43
|
Saika S, Kono-Saika S, Tanaka T, Yamanaka O, Ohnishi Y, Sato M, Muragaki Y, Ooshima A, Yoo J, Flanders KC, Roberts AB. Smad3 is required for dedifferentiation of retinal pigment epithelium following retinal detachment in mice. J Transl Med 2004; 84:1245-58. [PMID: 15273699 DOI: 10.1038/labinvest.3700156] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Retinal pigment epithelial (RPE) cells dedifferentiate and undergo epithelial-mesenchymal transition (EMT) following retinal detachment, playing a central role in formation of fibrous tissue on the detached retina and vitreous retraction (proliferative vitreoretinopathy (PVR)). We have developed a mouse model of subretinal fibrosis with implications for PVR in which retinal detachment is induced without direct damage to the RPE cells. Transforming growth factor-beta (TGF-beta) has long been implicated both in EMT of RPEs and the development of PVR. Using mice null for Smad3, a key signaling intermediate downstream of TGF-beta and activin receptors, we show that Smad3 is essential for EMT of RPE cells induced by retinal detachment. De novo accumulation of fibrous tissue derived from multilayered RPE cells was seen following experimental retinal detachment in eyes of wild type, but not Smad3-null mice. Expression of alpha-smooth muscle actin, a hallmark of EMT in this cell type, and extracellular matrix components, lumican and collagen VI, were also not observed in eyes of Smad3-null mice. Our data show that induction of PDGF-BB by Smad3-dependent TGF-beta signaling is likely an important secondary proliferative component of the disease process. The results suggest that blocking the Smad3 pathway might be beneficial in prevention/treatment of PVR.
Collapse
Affiliation(s)
- Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University, Kimiidera, Wakayama, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Eurell TE, Brown DR, Gerding PA, Hamor RE. Alginate as a new biomaterial for the growth of porcine retinal pigment epithelium. Vet Ophthalmol 2003; 6:237-43. [PMID: 12950655 DOI: 10.1046/j.1463-5224.2003.00300.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Determine the effect of a 3-dimensional alginate matrix on the growth and differentiation of cells isolated from porcine retinal pigment epithelium (RPE). PROCEDURES Porcine RPE cells were harvested from enucleated eyecups, isolated by differential gravity sedimentation and cultured in either alginate alone (Group 1) or on plastic tissue culture plates followed by alginate (Group 2). Group 1 cells were cultured in alginate to evaluate the efficacy of the matrix as a culture medium. Group 2 cells were initially cultured on plastic to induce dedifferentiation. The cells were then harvested, suspended in alginate beads, and incubated for a second culture period to determine if the induced dedifferentiation was reversible. RESULTS The number of Group 1 cells was significantly greater (P < or = 0.01) at the end of the culture period. The amount of pigment and cell morphology of Group 1 cells at the end of the culture period was similar to that seen at initial cell isolation. The initial culture of Group 2 cells on plastic showed characteristic features of dedifferentiation marked by the loss of pigment and alterations in microscopic appearance. Secondary culture of dedifferentiated Group 2 cells in alginate beads resulted in a return to pigmentation and characteristic morphology for a majority of the cultured cells. CONCLUSIONS Porcine RPE cells can be propagated in alginate culture with a significant increase in cell numbers while maintaining normal morphology. Under the conditions described in the present study, the dedifferentiation of porcine RPE induced by standard in vitro culture methods is reversible.
Collapse
Affiliation(s)
- Thomas E Eurell
- Department of Veterinary Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA.
| | | | | | | |
Collapse
|
45
|
Omori K, Fujiseki Y, Omori K, Suzukawa J, Inagaki C. Regulation of the expression of lysyl oxidase mRNA in cultured rabbit retinal pigment epithelium cells. Matrix Biol 2002; 21:337-48. [PMID: 12128071 DOI: 10.1016/s0945-053x(02)00013-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lysyl oxidase, an extracellular amine oxidase, controls the maturation of collagen and elastin. We examined the regulation of lysyl oxidase mRNA in cultured rabbit retinal pigment epithelium (RPE) cells in relation to the changes in subretinal fluid transport and phenotype of RPE cells. The level of the mRNA in cells grown on microporous membranes was markedly increased by application of hyperosmotic mannitol solution on the apical side (191% of control), implying that RPE cells express more lysyl oxidase in the condition which may cause the accumulation of subretinal fluid. Platelet-derived growth factor increased the mRNA level in subconfluent cells in culture (137% of control) and basic fibroblast growth factor decreased it (79% of control). In addition, exposure of cells to retinoic acid alone or in combination with dibutyryl cAMP for 22 days markedly decreased the level of lysyl oxidase mRNA (52 or 35% of control) while increasing the level of mRNA of N-acetylglucosaminidase (NAG), a marker enzyme for lysosomes (162 or 142% of control). Moreover, the level of lysyl oxidase mRNA in cells grown on microporous membranes was lower than that in cells grown on plastic dishes, while the level of NAG mRNA in the former cells was higher than that in the latter. Taken together, the expression of lysyl oxidase seemed to increase during proliferation of RPE cells and decrease toward differentiation. beta-Aminopropionitrile, an inhibitor of lysyl oxidase, significantly inhibited the contraction of collagen gels by fetal calf serum, suggesting that lysyl oxidase may be involved in pathogenesis caused by RPE cells.
Collapse
Affiliation(s)
- Kyoko Omori
- Department of Pharmacology, Kansai Medical University, 10-15 Fumizono-cho, Moriguchi, 570-8506, Osaka, Japan.
| | | | | | | | | |
Collapse
|
46
|
Pastor JC, de la Rúa ER, Martín F. Proliferative vitreoretinopathy: risk factors and pathobiology. Prog Retin Eye Res 2002; 21:127-44. [PMID: 11906814 DOI: 10.1016/s1350-9462(01)00023-4] [Citation(s) in RCA: 254] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Proliferative vitreoretinopathy (PVR) is still a major cause of failure of retinal detachment surgery. Despite a dramatic increase in our pathobiologic knowledge of PVR during the last 10 years, little of this information has been used to modify the surgical management of the disease, and, thus, the anatomic and functional results are still unsatisfactory. Collaborative research involving clinicians and basic researchers must be encouraged. PVR must be considered a multifactorial disease caused by interaction of several cells and intra- and extraocular factors. Therefore, therapeutic options based on the inhibition of one factor or phenomenon may be regarded with scepticism. To prevent PVR, it is necessary to determine the factors involved in its development, and because of its relatively small prevalence, large, prospective, multicenter studies seem necessary. In addition, clinical research must not be underestimated. PVR affects both sides of the retina and the retina itself, a point to which little attention has been paid and that is critical for surgical results. Therefore, a new classification that provides information about clinical relevance, such as the evolutionary stages of the disease (biologic activity) and the degree of surgical difficulty (location of the fibrotic process), seems necessary.
Collapse
Affiliation(s)
- J Carlos Pastor
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), University of Valladolid, Retina Group, Ramon y Cajal, 7, 47005, Spain.
| | | | | |
Collapse
|