1
|
Boriushkin E, Fancher IS, Levitan I. Shear-Stress Sensitive Inwardly-Rectifying K + Channels Regulate Developmental Retinal Angiogenesis by Vessel Regression. Cell Physiol Biochem 2019; 52:1569-1583. [PMID: 31145841 PMCID: PMC7063968 DOI: 10.33594/000000109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND/AIMS Shear stress plays major roles in developmental angiogenesis, particularly in blood vessel remodeling and maturation but little is known about the shear stress sensors involved in this process. Our recent study identified endothelial Kir2.1 channels as major contributors to flow-induced vasodilation, a hallmark of the endothelial flow response. The goal of this study is to establish the role of Kir2.1 in the regulation of retinal angiogenesis. METHODS The retina of newly born Kir2.1+/- mice were used to investigate the sprouting angiogenesis and remodeling of newly formed branched vessels. The structure, blood density and mural cell coverage have been evaluated by immunohistochemistry of the whole-mount retina. Endothelial cell alignment was assessed using CD31 staining. The experiments with flow-induced vasodilation were used to study the cerebrovascular response to flow. RESULTS Using Kir2.1-deficient mice, we show that the retinas of Kir2.1+/- mice have higher vessel density, increased lengths and increased number of the branching points, as compared to WT littermates. In contrast, the coverage by αSMA is decreased in Kir2.1+/- mice while pericyte coverage does not change. Furthermore, to determine whether deficiency of Kir2.1 affects vessel pruning, we discriminated between intact and degraded vessels or "empty matrix sleeves" and found a significant reduction in the number of empty sleeves on the peripheral part of the retina or "angiogenic front" in Kir2.1+/- mice. We also show that Kir2.1 deficiency results in decreased endothelial alignment in retinal endothelium and impaired flow-induced vasodilation of cerebral arteries, verifying the involvement of Kir2.1 in shear-stress sensing in retina and cerebral circulation. CONCLUSION This study shows that shear-stress sensitive Kir2.1 channels play an important role in pruning of excess vessels and vascular remodeling during retinal angiogenesis. We propose that Kir2.1 mediates the effect of shear stress on vessel maturation.
Collapse
Affiliation(s)
| | - Ibra S Fancher
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Irena Levitan
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
2
|
Ahn SJ, Fancher IS, Bian JT, Zhang CX, Schwab S, Gaffin R, Phillips SA, Levitan I. Inwardly rectifying K + channels are major contributors to flow-induced vasodilatation in resistance arteries. J Physiol 2016; 595:2339-2364. [PMID: 27859264 PMCID: PMC5374117 DOI: 10.1113/jp273255] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/07/2016] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Endothelial inwardly rectifying K+ (Kir2.1) channels regulate flow-induced vasodilatation via nitric oxide (NO) in mouse mesenteric resistance arteries. Deficiency of Kir2.1 channels results in elevated blood pressure and increased vascular resistance. Flow-induced vasodilatation in human resistance arteries is also regulated by inwardly rectifying K+ channels. This study presents the first direct evidence that Kir channels play a critical role in physiological endothelial responses to flow. ABSTRACT Inwardly rectifying K+ (Kir) channels are known to be sensitive to flow, but their role in flow-induced endothelial responses is not known. The goal of this study is to establish the role of Kir channels in flow-induced vasodilatation and to provide first insights into the mechanisms responsible for Kir signalling in this process. First, we establish that primary endothelial cells isolated from murine mesenteric arteries express functional Kir2.1 channels sensitive to shear stress. Then, using the Kir2.1+/- heterozygous mouse model, we establish that downregulation of Kir2.1 results in significant decrease in shear-activated Kir currents and inhibition of endothelium-dependent flow-induced vasodilatation (FIV) assayed in pressurized mesenteric arteries pre-constricted with endothelin-1. Deficiency in Kir2.1 also results in the loss of flow-induced phosphorylation of eNOS and Akt, as well as inhibition of NO generation. All the effects are fully rescued by endothelial cell (EC)-specific overexpression of Kir2.1. A component of FIV that is Kir independent is abrogated by blocking Ca2+ -sensitive K+ channels. Kir2.1 has no effect on endothelium-independent and K+ -induced vasodilatation in denuded arteries. Kir2.1+/- mice also show increased mean blood pressure measured by carotid artery cannulation and increased microvascular resistance measured using a tail-cuff. Importantly, blocking Kir channels also inhibits flow-induced vasodilatation in human subcutaneous adipose microvessels. Endothelial Kir channels contribute to FIV of mouse mesenteric arteries via an NO-dependent mechanism, whereas Ca2+ -sensitive K+ channels mediate FIV via an NO-independent pathway. Kir2 channels also regulate vascular resistance and blood pressure. Finally, Kir channels also contribute to FIV in human subcutaneous microvessels.
Collapse
Affiliation(s)
- Sang Joon Ahn
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, USA
| | - Ibra S Fancher
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, USA.,Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, USA
| | - Jing-Tan Bian
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, USA
| | - Chong Xu Zhang
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, USA
| | - Sarah Schwab
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, USA
| | - Robert Gaffin
- Department of Physiology, Physiology Core Lab, University of Illinois at Chicago, Chicago, IL, USA
| | - Shane A Phillips
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, USA
| | - Irena Levitan
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
3
|
Su J, Zhou H, Liu X, Nilsson J, Fredrikson GN, Zhao M. oxLDL antibody inhibits MCP-1 release in monocytes/macrophages by regulating Ca 2+ /K + channel flow. J Cell Mol Med 2016; 21:929-940. [PMID: 27995732 PMCID: PMC5387129 DOI: 10.1111/jcmm.13033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/12/2016] [Indexed: 02/02/2023] Open
Abstract
oxLDL peptide vaccine and its antibody adoptive transferring have shown a significantly preventive or therapeutic effect in atherosclerotic animal model. The molecular mechanism behind this is obscure. Here, we report that oxLDL induces MCP‐1 release in monocytes/macrophages through their TLR‐4 (Toll‐like receptor 4) and ERK MAPK pathway and is calcium/potassium channel‐dependent. Using blocking antibodies against CD36, TLR‐4, SR‐AI and LOX‐1, only TLR‐4 antibody was found to have an inhibitory effect and ERK MAPK‐specific inhibitor (PD98059) was found to have a dramatic inhibitory effect compared to inhibitors of other MAPK group members (p38 and JNK MAPKs) on oxLDL‐induced MCP‐1 release. The release of cytokines and chemokines needs influx of extracellular calcium and imbalance of efflux of potassium. Nifedipine, a voltage‐dependent calcium channel (VDCC) inhibitor, and glyburide, an ATP‐regulated potassium channel (K+ATP) inhibitor, inhibit oxLDL‐induced MCP‐1 release. Potassium efflux and influx counterbalance maintains the negative potential of macrophages to open calcium channels, and our results suggest that oxLDL actually induces the closing of potassium influx channel – inward rectifier channel (Kir) and ensuing the opening of calcium channel. ERK MAPK inhibitor PD98059 inhibits oxLDL‐induced Ca2+/Kir channel alterations. The interfering of oxLDL‐induced MCP‐1 release by its monoclonal antibody is through its FcγRIIB (CD32). Using blocking antibodies against FcγRI (CD64), FcγRIIB (CD32) and FcγRIII (CD16), only CD32 blocking antibody was found to reverse the inhibitory effect of oxLDL antibody on oxLDL‐induced MCP‐1 release. Interestingly, oxLDL antibody specifically inhibits oxLDL‐induced ERK MAPK activation and ensuing Ca2+/Kir channel alterations, and MCP‐1 release. Thus, we found a molecular mechanism of oxLDL antibody on inhibition of oxLDL‐induced ERK MAPK pathway and consequent MCP‐1 release.
Collapse
Affiliation(s)
- Jinyu Su
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, Southern Medical University, Guangzhou, China
| | - Hui Zhou
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, Southern Medical University, Guangzhou, China
| | - Xianyan Liu
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, Southern Medical University, Guangzhou, China
| | - Jan Nilsson
- Department of Clinical Sciences, Scania University Hospital, Malmö Lund University, Malmö, Sweden
| | | | - Ming Zhao
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Classification of potassium and chlorine ionic currents in retinal ganglion cell line (RGC-5) by whole-cell patch clamp. Vis Neurosci 2012; 29:275-82. [DOI: 10.1017/s0952523812000272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractRetinal ganglion cell line (RGC-5) has been widely used as a valuable model for studying pathophysiology and physiology of retinal ganglion cells in vitro. However, the electrophysiological characteristics, especially a thorough classification of ionic currents in the cell line, remain to be elucidated in details. In the present study, we determined the resting membrane potential (RMP) in RGC-5 cell line and then identified different types of ionic currents by using the whole-cell patch-clamp technique. The RMP recorded in the cell line was between −30 and −6 mV (−17.6 ± 2.6 mV, n = 10). We observed the following voltage-gated ion channel currents: (1) inwardly rectifying Cl− current (ICl,ir), which could be blocked by Zn2+; (2) Ca2+-activated Cl− current (ICl,Ca), which was sensitive to extracellular Ca2+ and could be inhibited by disodium 4,4’-diisothiocyanatostilbene-2,2’-disulfonate; (3) inwardly rectifying K+ currents (IK1), which could be blocked by Ba2+; (4) a small amount of delayed rectifier K+ current (IK). On the other hand, the voltage-gated sodium channels current (INa) and transient outward potassium channels current (IA) were not observed in this cell line. These results further characterize the ionic currents in the RGC-5 cell line and are beneficial for future studies especially on ion channel (patho)physiology and pharmacology in the RGC-5 cell line.
Collapse
|
5
|
Kristensen M, Juel C. Potassium-transporting proteins in skeletal muscle: cellular location and fibre-type differences. Acta Physiol (Oxf) 2010; 198:105-23. [PMID: 19769637 DOI: 10.1111/j.1748-1716.2009.02043.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract Potassium (K(+)) displacement in skeletal muscle may be an important factor in the development of muscle fatigue during intense exercise. It has been shown in vitro that an increase in the extracellular K(+) concentration ([K(+)](e)) to values higher than approx. 10 mm significantly reduce force development in unfatigued skeletal muscle. Several in vivo studies have shown that [K(+)](e) increases progressively with increasing work intensity, reaching values higher than 10 mm. This increase in [K(+)](e) is expected to be even higher in the transverse (T)-tubules than the concentration reached in the interstitium. Besides the voltage-sensitive K(+) (K(v)) channels that generate the action potential (AP) it is suggested that the big-conductance Ca(2+)-dependent K(+) (K(Ca)1.1) channel contributes significantly to the K(+) release into the T-tubules. Also the ATP-dependent K(+) (K(ATP)) channel participates, but is suggested primarily to participate in K(+) release to the interstitium. Because there is restricted diffusion of K(+) to the interstitium, K(+) released to the T-tubules during AP propagation will be removed primarily by reuptake mediated by transport proteins located in the T-tubule membrane. The most important protein that mediates K(+) reuptake in the T-tubules is the Na(+),K(+)-ATPase alpha(2) dimers, but a significant contribution of the strong inward rectifier K(+) (Kir2.1) channel is also suggested. The Na(+), K(+), 2Cl(-) 1 (NKCC1) cotransporter also participates in K(+) reuptake but probably mainly from the interstitium. The relative content of the different K(+)-transporting proteins differs in oxidative and glycolytic muscles, and might explain the different [K(+)](e) tolerance observed.
Collapse
Affiliation(s)
- M Kristensen
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2200, Copenhagen N, Denmark.
| | | |
Collapse
|
6
|
Abstract
PURPOSE To study the effect of normocapnic (NA) and hypercapnic acidosis (HA) on the tone, the intracellular calcium level ([Ca(2 +)](i)), and the membrane potential of smooth muscle cells in porcine retinal arterioles. METHODS Twenty-four porcine retinal arterioles were mounted in a wire myograph for isometric recording of the wall tension. The vessels were precontracted with 0.3 microM U46619 and were exposed to NA (pH = 7.0) and HA (pH = 7.0). Intracellular calcium was measured using the fluorophore Fura-2AM (n = 12). In six vessels, 0.1 mM NG-nitroarginine methyl ester (L-NAME) was added to block NO synthesis. The membrane potential of smooth muscles cells was measured in situ with sharp glass electrodes (n = 12). RESULTS NA and HA induced both a decrease in wall tension from 1.04 +/- 0.06 N/m to 0.65 +/- 0.1 N/m (p < 0.01) (NA) and 0.56 +/- 0.1 N/m (p < 0.01) (HA) and a decrease in [Ca(2 +)](i) as evidenced from the change in the Fura-2 fluorescence emission ratio from 0.66 +/- 0.03 to 0.57 +/- 0.05 (p = 0.005) (NA) and 0.56 +/- 0.05 (p = 0.002) (HA). These results were unaffected by inhibition of NO-synthesis. NA and HA also both induced hyperpolarization of the smooth muscle membrane from -18 +/- 0.7 mV during precontraction to -26 +/- 1.9 mV (p = 0.002) (NA) and -24 +/- 2.6 mV (p = 0.02) (HA). CONCLUSIONS Acidosis-induced relaxation of the tone in preconstricted isolated porcine retinal arterioles is associated with a decrease in intracellular calcium and a hyperpolarization of the smooth muscle cells. The acidosis-induced relaxation is independent of CO(2) and is not mediated through NO.
Collapse
Affiliation(s)
- Anders Hessellund
- Department of Ophthalmology, Aarhus University Hospital, 8000 Aarhus C, Denmark.
| | | | | |
Collapse
|
7
|
Fang Y, Schram G, Romanenko VG, Shi C, Conti L, Vandenberg CA, Davies PF, Nattel S, Levitan I. Functional expression of Kir2.x in human aortic endothelial cells: the dominant role of Kir2.2. Am J Physiol Cell Physiol 2005; 289:C1134-44. [PMID: 15958527 DOI: 10.1152/ajpcell.00077.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inward rectifier K+channels (Kir) are a significant determinant of endothelial cell (EC) membrane potential, which plays an important role in endothelium-dependent vasodilatation. In the present study, several complementary strategies were applied to determine the Kir2 subunit composition of human aortic endothelial cells (HAECs). Expression levels of Kir2.1, Kir2.2, and Kir2.4 mRNA were similar, whereas Kir2.3 mRNA expression was significantly weaker. Western blot analysis showed clear Kir2.1 and Kir2.2 protein expression, but Kir2.3 protein was undetectable. Functional analysis of endothelial inward rectifier K+current ( IK) demonstrated that 1) IKcurrent sensitivity to Ba2+and pH were consistent with currents determined using Kir2.1 and Kir2.2 but not Kir2.3 and Kir2.4, and 2) unitary conductance distributions showed two prominent peaks corresponding to known unitary conductances of Kir2.1 and Kir2.2 channels with a ratio of ∼4:6. When HAECs were transfected with dominant-negative (dn)Kir2.x mutants, endogenous current was reduced ∼50% by dnKir2.1 and ∼85% by dnKir2.2, whereas no significant effect was observed with dnKir2.3 or dnKir2.4. These studies suggest that Kir2.2 and Kir2.1 are primary determinants of endogenous K+conductance in HAECs under resting conditions and that Kir2.2 provides the dominant conductance in these cells.
Collapse
Affiliation(s)
- Yun Fang
- Institute for Medicine and Engineering, University of Pennsylvania, 1160 Vagelos Research Labs, 3340 Smith Walk, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kristensen M, Hansen T, Juel C. Membrane proteins involved in potassium shifts during muscle activity and fatigue. Am J Physiol Regul Integr Comp Physiol 2005; 290:R766-72. [PMID: 16223848 DOI: 10.1152/ajpregu.00534.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscle activity is associated with potassium displacements, which may cause fatigue. It was reported previously that the density of the large-conductance Ca2+-dependent K+ (BK(Ca)) channel is higher in the T tubule membrane than in the sarcolemmal membrane and that the opposite is the case for the ATP-sensitive K+ (K(ATP)) channel. In the present experiments, we investigated the subcellular localizations of the strong inward rectifier 2.1 K+ (Kir2.1) channel and the Na+-K+-2Cl- (NKCC)1 cotransporter with Western blot analysis of different muscle fractions. Furthermore, muscle function was studied while trying to manipulate the opening probability or transport capacity of these proteins during electrical stimulation of isolated soleus muscles. All experiments were made with excised muscle from male Wistar rats. Kir2.1 channels were almost undetectable in the sarcolemmal membrane but present in the T tubule membrane, whereas NKCC1 cotransporters were present in the sarcolemmal membrane. For muscles incubated in a buffer containing pinacidil, NS1619, Ba2+, or bumetanide, there was a faster reduction in peak force (P < 0.05). Furthermore, bumetanide incubation reduced the peak force at the onset of electrical stimulation (P < 0.05). Thus the effects on muscle force indicate that these drugs can affect K+-transporting proteins and thereby influence K+ accumulation, especially in the T tubules, suggesting that K(ATP) and BK(Ca) channels are responsible for K+ release and decrease in force during repeated muscle contractions, whereas Kir2.1 and NKCC1 may have a role in K+ reuptake.
Collapse
Affiliation(s)
- Michael Kristensen
- Copenhagen Muscle Research Centre, Institute of Molecular Biology and Physiology, August Krogh Bldg., DK-2100 Copenhagen Ø, Denmark
| | | | | |
Collapse
|
9
|
Gerth A, Grosche J, Nieber K, Hauschildt S. Intracellular LPS inhibits the activity of potassium channels and fails to activate NFkappaB in human macrophages. J Cell Physiol 2005; 202:442-52. [PMID: 15389581 DOI: 10.1002/jcp.20146] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although much has been learned about signal transduction mechanisms and binding proteins involved in lipopolysaccharides (LPS)-induced activation of monocytes/macrophages, little is known about the ability of internalized LPS to activate cells. To approach this question we either exposed macrophages to LPS or microinjected the cells with LPS before studying early cellular events associated with LPS-mediated macrophage activation. We measured membrane currents and translocation of NFkappaB to the nucleus. Using the whole-cell patch clamp technique ion channels were analyzed and characterized as K+ sensitive inward and outward currents. Exogenous LPS was shown to increase the voltage-dependent outward current whereas the voltage-dependent inward current was unaffected. However when cells were microinjected with LPS both inward and outward current were completely abolished. The presence of LPS within the cells did not prevent them to perform phagocytosis or to respond to fMLP with an appropriate increase in [Ca2+]i. The immunocytological detection of NFkappaB p65 translocation revealed that exogenous LPS led to the nuclear localization of the p65 subunit of NFkappaB, whereas only the cytoplasmic localization of p65 was observed following microinjection of LPS. These data show that one major process in macrophage activation, the NFkappaB dependent transcription of a number of genes encoding for many inflammatory mediators cannot be induced by intracellular LPS but requires the interaction of LPS with external membrane components. However intracellular LPS causes a drastic decrease in potassium currents which by keeping the cell membrane at a depolarized potential may result in changed biological answers of these cells.
Collapse
Affiliation(s)
- Anja Gerth
- Institute of Zoology, Department of Immunobiology, University of Leipzig, Liebigstrasse, Leipzig, Germany
| | | | | | | |
Collapse
|
10
|
Romanenko VG, Fang Y, Byfield F, Travis AJ, Vandenberg CA, Rothblat GH, Levitan I. Cholesterol sensitivity and lipid raft targeting of Kir2.1 channels. Biophys J 2004; 87:3850-61. [PMID: 15465867 PMCID: PMC1304896 DOI: 10.1529/biophysj.104.043273] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This study investigates how changes in the level of cellular cholesterol affect inwardly rectifying K+ channels belonging to a family of strong rectifiers (Kir2). In an earlier study we showed that an increase in cellular cholesterol suppresses endogenous K+ current in vascular endothelial cells, presumably due to effects on underlying Kir2.1 channels. Here we show that, indeed, cholesterol increase strongly suppressed whole-cell Kir2.1 current when the channels were expressed in a null cell line. However, cholesterol level had no effect on the unitary conductance and only little effect on the open probability of the channels. Moreover, no cholesterol effect was observed either on the total level of Kir2.1 protein or on its surface expression. We suggest, therefore, that cholesterol modulates not the total number of Kir2.1 channels in the plasma membrane but rather the transition of the channels between active and silent states. Comparing the effects of cholesterol on members of the Kir2.x family shows that Kir2.1 and Kir2.2 have similar high sensitivity to cholesterol, Kir2.3 is much less sensitive, and Kir2.4 has an intermediate sensitivity. Finally, we show that Kir2.x channels partition virtually exclusively into Triton-insoluble membrane fractions indicating that the channels are targeted into cholesterol-rich lipid rafts.
Collapse
Affiliation(s)
- Victor G Romanenko
- Institute for Medicine and Engineering, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Seol GH, Ahn SC, Kim JA, Nilius B, Suh SH. Inhibition of endothelium-dependent vasorelaxation by extracellular K(+): a novel controlling signal for vascular contractility. Am J Physiol Heart Circ Physiol 2004; 286:H329-39. [PMID: 12969893 DOI: 10.1152/ajpheart.00503.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of extracellular K+ on endothelium-dependent relaxation (EDR) and on intracellular Ca2+ concentration ([Ca2+]i) were examined in mouse aorta, mouse aorta endothelial cells (MAEC), and human umbilical vein endothelial cells (HUVEC). In mouse aortic rings precontracted with prostaglandin F2alpha or norepinephrine, an increase in extracellular K+ concentration ([K+]o) from 6 to 12 mM inhibited EDR concentration dependently. In endothelial cells, an increase in [K+]o inhibited the agonist-induced [Ca2+]i increase concentration dependently. Similar to K+, Cs+ also inhibited EDR and the increase in [Ca2+]i concentration dependently. In current-clamped HUVEC, increasing [K+]o from 6 to 12 mM depolarized membrane potential from -32.8 +/- 2.7 to -8.6 +/- 4.9 mV (n = 8). In voltage-clamped HUVEC, depolarizing the holding potential from -50 to -25 mV decreased [Ca2+]i significantly from 0.95 +/- 0.03 to 0.88 +/- 0.03 microM (n = 11, P < 0.01) and further decreased [Ca2+]i to 0.47 +/- 0.04 microM by depolarizing the holding potential from -25 to 0 mV (n = 11, P < 0.001). Tetraethylammonium (1 mM) inhibited EDR and the ATP-induced [Ca2+]i increase in voltage-clamped MAEC. The intermediate-conductance Ca2+-activated K+ channel openers 1-ethyl-2-benzimidazolinone, chlorozoxazone, and zoxazolamine reversed the K+-induced inhibition of EDR and increase in [Ca2+]i. The K+-induced inhibition of EDR and increase in [Ca2+]i was abolished by the Na+-K+ pump inhibitor ouabain (10 microM). These results indicate that an increase of [K+]o in the physiological range (6-12 mM) inhibits [Ca2+]i increase in endothelial cells and diminishes EDR by depolarizing the membrane potential, decreasing K+ efflux, and activating the Na+-K+ pump, thereby modulating the release of endothelium-derived vasoactive factors from endothelial cells and vasomotor tone.
Collapse
Affiliation(s)
- Geun Hee Seol
- Department of Physiology, College of Medicine, Ewha Women's University, 911-1 Mok-6-dong, Yang Chun-gu, Seoul 158-710, Republic of Korea
| | | | | | | | | |
Collapse
|