1
|
Pandurangan K, Jayakumar J, Savoia S, Nanda R, Lata S, Kumar EH, S S, Vasudevan S, Srinivasan C, Joseph J, Sivaprakasam M, Verma R. Systematic development of immunohistochemistry protocol for large cryosections-specific to non-perfused fetal brain. J Neurosci Methods 2024; 405:110085. [PMID: 38387804 DOI: 10.1016/j.jneumeth.2024.110085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/01/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Immunohistochemistry (IHC) is an important technique in understanding the expression of neurochemical molecules in the developing human brain. Despite its routine application in the research and clinical setup, the IHC protocol specific for soft fragile fetal brains that are fixed using the non-perfusion method is still limited in studying the whole brain. NEW METHOD This study shows that the IHC protocols, using a chromogenic detection system, used in animals and adult humans are not optimal in the fetal brains. We have optimized key steps from Antigen retrieval (AR) to chromogen visualization for formalin-fixed whole-brain cryosections (20 µm) mounted on glass slides. RESULTS We show the results from six validated, commonly used antibodies to study the fetal brain. We achieved optimal antigen retrieval with 0.1 M Boric Acid, pH 9.0 at 70°C for 20 minutes. We also present the optimal incubation duration and temperature for protein blocking and the primary antibody that results in specific antigen labeling with minimal tissue damage. COMPARISON WITH EXISTING METHODS The IHC protocol commonly used for adult human and animal brains results in significant tissue damage in the fetal brains with little or suboptimal antigen expression. Our new method with important modifications including the temperature, duration, and choice of the alkaline buffer for AR addresses these pitfalls and provides high-quality results. CONCLUSION The optimized IHC protocol for the developing human brain (13-22 GW) provides a high-quality, repeatable, and reliable method for studying chemoarchitecture in neurotypical and pathological conditions across different gestational ages.
Collapse
Affiliation(s)
- Karthika Pandurangan
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
| | - Jaikishan Jayakumar
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India; Center for Computational Brain Research, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
| | | | - Reetuparna Nanda
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
| | - S Lata
- Mediscan Systems, Chennai, Tamil Nadu, India.
| | | | - Suresh S
- Mediscan Systems, Chennai, Tamil Nadu, India.
| | - Sudha Vasudevan
- Department of Obstetrics & Gynaecology, Saveetha Medical College, Thandalam, Chennai, Tamil Nadu, India.
| | - Chitra Srinivasan
- Department of Pathology, Saveetha Medical College, Thandalam, Chennai, Tamil Nadu, India.
| | - Jayaraj Joseph
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India; Healthcare Technology Innovation Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India; Department of Electrical Engineering, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, India.
| | - Mohanasankar Sivaprakasam
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India; Healthcare Technology Innovation Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India; Department of Electrical Engineering, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, India.
| | - Richa Verma
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
| |
Collapse
|
2
|
Verma R, Jayakumar J, Folkerth R, Manger PR, Bota M, Majumder M, Pandurangan K, Savoia S, Karthik S, Kumarasami R, Joseph J, Rohini G, Vasudevan S, Srinivasan C, Lata S, Kumar EH, Rangasami R, Kumutha J, Suresh S, Šimić G, Mitra PP, Sivaprakasam M. Histological characterization and development of mesial surface sulci in the human brain at 13-15 gestational weeks through high-resolution histology. J Comp Neurol 2024; 532:e25612. [PMID: 38591638 DOI: 10.1002/cne.25612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/06/2024] [Accepted: 03/24/2024] [Indexed: 04/10/2024]
Abstract
Cellular-level anatomical data from early fetal brain are sparse yet critical to the understanding of neurodevelopmental disorders. We characterize the organization of the human cerebral cortex between 13 and 15 gestational weeks using high-resolution whole-brain histological data sets complimented with multimodal imaging. We observed the heretofore underrecognized, reproducible presence of infolds on the mesial surface of the cerebral hemispheres. Of note at this stage, when most of the cerebrum is occupied by lateral ventricles and the corpus callosum is incompletely developed, we postulate that these mesial infolds represent the primordial stage of cingulate, callosal, and calcarine sulci, features of mesial cortical development. Our observations are based on the multimodal approach and further include histological three-dimensional reconstruction that highlights the importance of the plane of sectioning. We describe the laminar organization of the developing cortical mantle, including these infolds from the marginal to ventricular zone, with Nissl, hematoxylin and eosin, and glial fibrillary acidic protein (GFAP) immunohistochemistry. Despite the absence of major sulci on the dorsal surface, the boundaries among the orbital, frontal, parietal, and occipital cortex were very well demarcated, primarily by the cytoarchitecture differences in the organization of the subplate (SP) and intermediate zone (IZ) in these locations. The parietal region has the thickest cortical plate (CP), SP, and IZ, whereas the orbital region shows the thinnest CP and reveals an extra cell-sparse layer above the bilaminar SP. The subcortical structures show intensely GFAP-immunolabeled soma, absent in the cerebral mantle. Our findings establish a normative neurodevelopment baseline at the early stage.
Collapse
Affiliation(s)
- Richa Verma
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Jaikishan Jayakumar
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
- Center for Computational Brain Research, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Rebecca Folkerth
- Department of Forensic Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mihail Bota
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Moitrayee Majumder
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Karthika Pandurangan
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | | | - Srinivasa Karthik
- Healthcare Technology Innovation Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Ramdayalan Kumarasami
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
- Healthcare Technology Innovation Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Jayaraj Joseph
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
- Healthcare Technology Innovation Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
- Department of Electrical Engineering, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, India
| | - G Rohini
- Department of Obstetrics & Gynaecology, Saveetha Medical College, Thandalam, Chennai, Tamil Nadu, India
| | - Sudha Vasudevan
- Department of Pathology, Saveetha Medical College, Thandalam, Chennai, Tamil Nadu, India
| | - Chitra Srinivasan
- Department of Pathology, Saveetha Medical College, Thandalam, Chennai, Tamil Nadu, India
| | - S Lata
- Mediscan Systems, Chennai, Tamil Nadu, India
| | | | - Rajeswaran Rangasami
- Department of Radiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Jayaraman Kumutha
- Department of Neonatology, Saveetha Medical College, Thandalam, Chennai, Tamil Nadu, India
| | - S Suresh
- Mediscan Systems, Chennai, Tamil Nadu, India
| | - Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Hrvatska, Croatia
| | - Partha P Mitra
- Center for Computational Brain Research, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
- Cold Spring Harbor Laboratory, New York, New York, USA
| | - Mohanasankar Sivaprakasam
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
- Healthcare Technology Innovation Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
- Department of Electrical Engineering, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, India
| |
Collapse
|
3
|
Harry GJ. Microglia Colonization Associated with Angiogenesis and Neural Cell Development. ADVANCES IN NEUROBIOLOGY 2024; 37:163-178. [PMID: 39207692 DOI: 10.1007/978-3-031-55529-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The temporal and spatial pattern of microglia colonization of the nervous system implies a role in early stages of organ development including cell proliferation, differentiation, and neurovascularization. As microglia colonize and establish within the developing nervous system, they assume a neural-specific identity and contribute to key developmental events. Their association around blood vessels implicates them in development of the vascular system or vice versa. A similar association has been reported for neural cell proliferation and associated phenotypic shifts and for cell fate differentiation to neuronal or glial phenotypes. These processes are accomplished by phagocytic activities, cell-cell contact relationships, and secretion of various factors. This chapter will present data currently available from studies evaluating the dynamic and interactive nature of these processes throughout the progression of nervous system development.
Collapse
Affiliation(s)
- G Jean Harry
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
4
|
Izzo G, Toto V, Doneda C, Parazzini C, Lanna M, Bulfamante G, Righini A. Fetal thick corpus callosum: new insights from neuroimaging and neuropathology in two cases and literature review. Neuroradiology 2021; 63:2139-2148. [PMID: 34021362 DOI: 10.1007/s00234-021-02699-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/23/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE To describe the correlation between fetal imaging (in vivo and ex vivo) and neuropathology in two fetuses at early gestational age (GA) with isolated thick corpus callosum (CC), a rare finding whose pathological significance and neuropathology data are scarce. METHODS Two fetuses at 21-week GA underwent fetal MRI (fMRI) for suspected callosal anomalies at ultrasound (US). After fMRI results, termination of pregnancy (TOP) was carried out and post-mortem MRI (pmMRI) was performed. Neuropathology correlation consisted in macro and microscopic evaluation with sections prepared for hematoxylin-eosin and immunohistochemistry staining. RESULTS Fetal imaging confirmed in both cases the presence of a shorter and thicker CC with respect to the reference standard at the same GA, without a clear distinction between its different parts. Moreover, on pmMRI, an abnormal slightly T2-weighted hyperintense layer along the superior and inferior surface of CC was noted in both cases. At histopathology, these findings corresponded to an increased amount of white matter tracts but also to an abnormal representation of embryological structures that contribute to CC development, naming induseum griseum (IG) and the glioepithelial layer (GL) of the "callosal sling." After reviewing the literature data, we confirmed the recent embryological theory regarding the CC development and provide new insights into the pathophysiology of the abnormal cases. CONCLUSIONS An abnormally thick CC at the early fetal period could be associated to an abnormal representation of the midline glia structures, so to result in potential disturbance of the axon guidance mechanism of callosal formation and eventually in CC dysgenesis.
Collapse
Affiliation(s)
- Giana Izzo
- Department of Radiology and Neuroradiology, Children's Hospital V. Buzzi , Via Castelvetro, 32 20154, Milan, Italy.
| | - Valentina Toto
- Department of Health Sciences, Pathology Division, San Paolo Hospital, University of Milan, Milan, Italy
| | - Chiara Doneda
- Department of Radiology and Neuroradiology, Children's Hospital V. Buzzi , Via Castelvetro, 32 20154, Milan, Italy
| | - Cecilia Parazzini
- Department of Radiology and Neuroradiology, Children's Hospital V. Buzzi , Via Castelvetro, 32 20154, Milan, Italy
| | - Mariano Lanna
- Obstetrics and Gynecology Department, Children's Hospital V. Buzzi - ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Gaetano Bulfamante
- Department of Health Sciences, Pathology Division, San Paolo Hospital, University of Milan, Milan, Italy
| | - Andrea Righini
- Department of Radiology and Neuroradiology, Children's Hospital V. Buzzi , Via Castelvetro, 32 20154, Milan, Italy
| |
Collapse
|
5
|
Bobić Rasonja M, Orešković D, Knezović V, Pogledić I, Pupačić D, Vukšić M, Brugger PC, Prayer D, Petanjek Z, Jovanov Milošević N. Histological and MRI Study of the Development of the Human Indusium Griseum. Cereb Cortex 2020; 29:4709-4724. [PMID: 30722016 DOI: 10.1093/cercor/bhz004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/10/2018] [Accepted: 01/14/2019] [Indexed: 12/23/2022] Open
Abstract
To uncover the ontogenesis of the human indusium griseum (IG), 28 post-mortem fetal human brains, 12-40 postconceptional weeks (PCW) of age, and 4 adult brains were analyzed immunohistochemically and compared with post-mortem magnetic resonance imaging (MRI) of 28 fetal brains (14-41 PCW). The morphogenesis of the IG occurred between 12 and 15 PCW, transforming the bilateral IG primordia into a ribbon-like cortical lamina. The histogenetic transition of sub-laminated zones into the three-layered cortical organization occurred between 15 and 35 PCW, concomitantly with rapid cell differentiation that occurred from 18 to 28 PCW and the elaboration of neuronal connectivity during the entire second half of gestation. The increasing number of total cells and neurons in the IG at 25 and 35 PCW confirmed its continued differentiation throughout this period. High-field 3.0 T post-mortem MRI enabled visualization of the IG at the mid-fetal stage using T2-weighted sequences. In conclusion, the IG had a distinct histogenetic differentiation pattern than that of the neighboring intralimbic areas of the same ontogenetic origin, and did not show any signs of regression during the fetal period or postnatally, implying a functional role of the IG in the adult brain, which is yet to be disclosed.
Collapse
Affiliation(s)
- Mihaela Bobić Rasonja
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata12, Zagreb, Croatia
| | - Darko Orešković
- Department of Neurosurgery, Clinical Hospital Dubrava, Av. G. Šuška 6, Zagreb, Croatia
| | - Vinka Knezović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata12, Zagreb, Croatia
| | - Ivana Pogledić
- Department of Biomedical Imaging and Image-guided Therapy, Division of Neuroradiology and Musculoskeletal Radiology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, Austria
| | - Daniela Pupačić
- Department of Anesthesiology, Resuscitation and Intensive Care, University Hospital Center Split, Split, Croatia
| | - Mario Vukšić
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata12, Zagreb, Croatia
| | - Peter C Brugger
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Waehringerstrasse 13, Vienna, Austria
| | - Daniela Prayer
- Department of Biomedical Imaging and Image-guided Therapy, Division of Neuroradiology and Musculoskeletal Radiology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, Austria
| | - Zdravko Petanjek
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata12, Zagreb, Croatia.,Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nataša Jovanov Milošević
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata12, Zagreb, Croatia
| |
Collapse
|
6
|
Kostović I, Išasegi IŽ, Krsnik Ž. Sublaminar organization of the human subplate: developmental changes in the distribution of neurons, glia, growing axons and extracellular matrix. J Anat 2018; 235:481-506. [PMID: 30549027 DOI: 10.1111/joa.12920] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2018] [Indexed: 12/21/2022] Open
Abstract
The objective of this paper was to collect normative data essential for analyzing the subplate (SP) role in pathogenesis of developmental disorders, characterized by abnormal circuitry, such as hypoxic-ischemic lesions, autism and schizophrenia. The main cytological features of the SP, such as low cell density, early differentiation of neurons and glia, plexiform arrangement of axons and dendrites, presence of synapses and a large amount of extracellular matrix (ECM) distinguish this compartment from the cell-dense cortical plate (CP; towards pia) and large fiber bundles of external axonal strata of fetal white matter (towards ventricle). For SP delineation from these adjacent layers based on combined cytological criteria, we analyzed the sublaminar distribution of different microstructural elements and the associated maturational gradients throughout development, using immunocytochemical and histological techniques on postmortem brain material (Zagreb Neuroembryological Collection). The analysis revealed that the SP compartment of the lateral neocortex shows changes in laminar organization throughout fetal development: the monolayer in the early fetal period (presubplate) undergoes dramatic bilaminar transformation between 13 and 15 postconceptional weeks (PCW), followed by subtle sublamination in three 'floors' (deep, intermediate, superficial) of midgestation (15-21 PCW). During the stationary phase (22-28 PCW), SP persists as a trilaminar compartment, gradually losing its sublaminar organization towards the end of gestation and remains as a single layer of SP remnant in the newborn brain. Based on these sublaminar transformations, we have documented developmental changes in the distribution, maturational gradients and expression of molecular markers in SP synapses, transitional forms of astroglia, neurons and ECM, which occur concomitantly with the ingrowth of thalamo-cortical, basal forebrain and cortico-cortical axons in a deep to superficial fashion. The deep SP is the zone of ingrowing axons - 'entrance (ingrowth) zone'. The process of axonal ingrowth begins with thalamo-cortical fibers and basal forebrain afferents, indicating an oblique geometry. During the later fetal period, deep SP receives long cortico-cortical axons exhibiting a tangential geometry. Intermediate SP ('proper') is the navigation and 'nexus' sublamina consisting of a plexiform arrangement of cellular elements providing guidance and substrate for axonal growth, and also containing transient connectivity of dendrites and axons in a tangential plane without radial boundaries immersed in an ECM-rich continuum. Superficial SP is the axonal accumulation ('waiting compartment') and target selection zone, indicating a dense distribution of synaptic markers, accumulation of thalamo-cortical axons (around 20 PCW), overlapping with dendrites from layer VI neurons. In the late preterm brain period, superficial SP contains a chondroitin sulfate non-immunoreactive band. The developmental dynamics for the distribution of neuronal, glial and ECM markers comply with sequential ingrowth of afferents in three levels of SP: ECM and synaptic markers shift from deep to superficial SP, with transient forms of glia following this arrangement, and calretinin neurons are concentrated in the SP during the formation phase. These results indicate developmental and morphogenetic roles in the SP cellular (transient glia, neurons and synapses) and ECM framework, enabling the spatial accommodation, navigation and establishment of numerous connections of cortical pathways in the expanded human brain. The original findings of early developmental dynamics of transitional subtypes of astroglia, calretinin neurons, ECM and synaptic markers presented in the SP are interesting in the light of recent concepts concerning its functional and morphogenetic role and an increasing interest in SP as a prospective substrate of abnormalities in cortical circuitry, leading to a cognitive deficit in different neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| | - Iris Žunić Išasegi
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| | - Željka Krsnik
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| |
Collapse
|
7
|
Ortega JA, Memi F, Radonjic N, Filipovic R, Bagasrawala I, Zecevic N, Jakovcevski I. The Subventricular Zone: A Key Player in Human Neocortical Development. Neuroscientist 2017; 24:156-170. [PMID: 29254416 DOI: 10.1177/1073858417691009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
One of the main characteristics of the developing brain is that all neurons and the majority of macroglia originate first in the ventricular zone (VZ), next to the lumen of the cerebral ventricles, and later on in a secondary germinal area above the VZ, the subventricular zone (SVZ). The SVZ is a transient compartment mitotically active in humans for several gestational months. It serves as a major source of cortical projection neurons as well as an additional source of glial cells and potentially some interneuron subpopulations. The SVZ is subdivided into the smaller inner (iSVZ) and the expanded outer SVZ (oSVZ). The enlargement of the SVZ and, in particular, the emergence of the oSVZ are evolutionary adaptations that were critical to the expansion and unique cellular composition of the primate cerebral cortex. In this review, we discuss the cell types and organization of the human SVZ during the first half of the 40 weeks of gestation that comprise intrauterine development. We focus on this period as it is when the bulk of neurogenesis in the human cerebral cortex takes place. We consider how the survival and fate of SVZ cells depend on environmental influences, by analyzing the results from in vitro experiments with human cortical progenitor cells. This in vitro model is a powerful tool to better understand human neocortex formation and the etiology of neurodevelopmental disorders, which in turn will facilitate the design of targeted preventive and/or therapeutic strategies.
Collapse
Affiliation(s)
- J Alberto Ortega
- 1 Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Fani Memi
- 1 Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Nevena Radonjic
- 1 Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA.,2 Psychiatry Department, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Radmila Filipovic
- 1 Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Inseyah Bagasrawala
- 1 Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Nada Zecevic
- 1 Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Igor Jakovcevski
- 3 Institute for Molecular and Behavioral Neuroscience, University Hospital Cologne, Center for Molecular Medicine Cologne, Cologne, Germany.,4 Experimental Neurophysiology, German Center for Neurodegenerative Diseases, Bonn, Germany
| |
Collapse
|
8
|
Weaver-Mikaere L, Gibbons HM, De Silva D, Fraser M. Primary mixed glial cultures from fetal ovine forebrain are a valid model of inflammation-mediated white matter injury. Dev Neurosci 2012; 34:30-42. [PMID: 22627272 DOI: 10.1159/000338039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Astrocytes, microglial cells and oligodendrocytes (OLs) have been employed separately in vitro to assess cellular pathways following a variety of stimuli. Mixed glial cell cultures, however, have not been utilized to the same extent, despite the observed discrepancy in outcomes resulting from cell-to-cell contact of different glia in culture. Our objective was to standardize and morphologically characterize a primary culture of preterm ovine glial cells in order to attain a relevant in vitro model to assess the intracellular effects of infection and inflammation. This would provide a high-throughput model necessary for in-depth studies on the various pathophysiological mechanisms of white matter injury (WMI), which may occur in the preterm infant as a consequence of maternal infection or the fetal inflammatory response. Glial cells from the forebrains of 0.65-gestation ovine fetuses (comparable to 24- to 26-week human fetal brain development) were mechanically and enzymatically isolated and plated at a final density of 250,000 cells per well. When reaching confluence at 5 days after plating, the cultures contained astrocytes, microglial cells, as well as progenitor, precursor and immature OLs. Glial cell morphology and phenotypic immunoreactivity were characteristic of and consistent with previous observations of separately cultured cell types. To determine the effects of infection or inflammation in our in vitro model, we then treated mixed glial cultures with tumour necrosis factor-α (TNF-α; 50 or 100 ng/ml) or lipopolysaccharide (LPS; 1 µg/ml) for a period of 48 h. Cytokine levels were measured by ELISA and cell numbers for specific glial cell types were determined along with OL proliferation and apoptosis by Ki67 and caspase-3 immunocytochemistry, respectively. Our results showed that exposure to TNF-α or LPS resulted in a characteristic inflammatory response entailed by up-regulation of pro-inflammatory cytokines, a lack of astrogliosis and a marked reduction in OLs attributable to increased apoptosis. In LPS-treated cultures, there was a marked increase in the pro-inflammatory cytokine TNF-α at both 24 and 48 h. In conclusion, this is the first report of the immunocytochemical description and characterization of fetal ovine-derived mixed glial cell primary cultures. This in vitro model provides a novel and efficient system to explore the mechanisms of infection/inflammation-mediated WMI at the cellular level and for screening candidate therapeutic strategies.
Collapse
Affiliation(s)
- Luke Weaver-Mikaere
- The Liggins Institute, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
9
|
Pont-Lezica L, Béchade C, Belarif-Cantaut Y, Pascual O, Bessis A. Physiological roles of microglia during development. J Neurochem 2011; 119:901-8. [PMID: 21951310 DOI: 10.1111/j.1471-4159.2011.07504.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In all the species examined thus far, the behavior of microglia during development appears to be highly stereotyped. This reproducibility supports the notion that these cells have a physiological role in development. Microglia are macrophages that migrate from the yolk sac and colonize the central nervous system early during development. The first invading yolk-sac macrophages are highly proliferative and their role has not yet been addressed. At later developmental stages, microglia can be found throughout the brain and tend to preferentially reside at specific locations that are often associated with known developmental processes. Thus, it appears that microglia concentrate in areas of cell death, in proximity of developing blood vessels, in the marginal layer, which contains developing axon fascicles, and in close association with radial glial cells. This review describes the main features of brain colonization by microglia and discusses the possible physiological roles of these cells during development.
Collapse
Affiliation(s)
- Lorena Pont-Lezica
- Institut de Biologie de l'Ecole Normale Supérieure, INSERM 1024 - CNRS 8197, Paris, France
| | | | | | | | | |
Collapse
|
10
|
Ren T, Anderson A, Shen WB, Huang H, Plachez C, Zhang J, Mori S, Kinsman SL, Richards LJ. Imaging, anatomical, and molecular analysis of callosal formation in the developing human fetal brain. ACTA ACUST UNITED AC 2006; 288:191-204. [PMID: 16411247 DOI: 10.1002/ar.a.20282] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A complex set of axonal guidance mechanisms are utilized by axons to locate and innervate their targets. In the developing mouse forebrain, we previously described several midline glial populations as well as various guidance molecules that regulate the formation of the corpus callosum. Since agenesis of the corpus callosum is associated with over 50 different human congenital syndromes, we wanted to investigate whether these same mechanisms also operate during human callosal development. Here we analyze midline glial and commissural development in human fetal brains ranging from 13 to 20 weeks of gestation using both diffusion tensor magnetic resonance imaging and immunohistochemistry. Through our combined radiological and histological studies, we demonstrate the morphological development of multiple forebrain commissures/decussations, including the corpus callosum, anterior commissure, hippocampal commissure, and the optic chiasm. Histological analyses demonstrated that all the midline glial populations previously described in mouse, as well as structures analogous to the subcallosal sling and cingulate pioneering axons, that mediate callosal axon guidance in mouse, are also present during human brain development. Finally, by Northern blot analysis, we have identified that molecules involved in mouse callosal development, including Slit, Robo, Netrin1, DCC, Nfia, Emx1, and GAP-43, are all expressed in human fetal brain. These data suggest that similar mechanisms and molecules required for midline commissure formation operate during both mouse and human brain development. Thus, the mouse is an excellent model system for studying normal and pathological commissural formation in human brain development.
Collapse
Affiliation(s)
- Tianbo Ren
- Department of Anatomy and Neurobiology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Rezaie P, Dean A, Male D, Ulfig N. Microglia in the cerebral wall of the human telencephalon at second trimester. ACTA ACUST UNITED AC 2004; 15:938-49. [PMID: 15483047 DOI: 10.1093/cercor/bhh194] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We have recently begun to gain a clearer understanding of the phasing and patterns of colonization of the developing human brain by microglia. In this study we investigated the distribution, morphology and phenotype of microglia specifically within the wall of the human telencephalon from 12 to 24 gestational weeks (gw), a period that corresponds to the development of thalamocortical fibres passing through the transient subplate region of the developing cerebral wall. Sections from a total of 45 human fetal brains were immunoreacted to detect CD68 and MHC class II antigens and histochemically reacted with RCA-1 and tomato lectins. These markers were differentially expressed by anatomically discrete populations of microglia in the cerebral wall: two cell populations were noted during the initial phase of colonization (12-14 gw): (i) CD68++ RCA-1+ MHC II- amoeboid cells aligned within the subplate, and (ii) RCA-1++ CD68- MHC II- progenitors in the marginal layer and lower cortical plate that progressively ramified within the subplate, without seemingly passing through an 'amoeboid' state. At this stage microglia were largely absent from the germinal layers and the intermediate zone. From 14 to 15 gw, however, MHC class II positive cells were also detected within germinal layers and in the corpus callosum, and these cells, which coexpressed CD68 antigen (a marker associated with phagocytosis), further populated the lower half of the telencephalon from 18 to 24 gw. These findings are discussed in relation to developmental events that take place during the second trimester within the wall of the telencephalon.
Collapse
Affiliation(s)
- Payam Rezaie
- Department of Biological Sciences, Faculty of Science, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| | | | | | | |
Collapse
|