1
|
Exploiting Vitamin D Receptor and Its Ligands to Target Squamous Cell Carcinomas of the Head and Neck. Int J Mol Sci 2023; 24:ijms24054675. [PMID: 36902107 PMCID: PMC10002563 DOI: 10.3390/ijms24054675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Vitamin D (VitD) and its receptor (VDR) have been intensively investigated in many cancers. As knowledge for head and neck cancer (HNC) is limited, we investigated the (pre)clinical and therapeutic relevance of the VDR/VitD-axis. We found that VDR was differentially expressed in HNC tumors, correlating to the patients' clinical parameters. Poorly differentiated tumors showed high VDR and Ki67 expression, whereas the VDR and Ki67 levels decreased from moderate to well-differentiated tumors. The VitD serum levels were lowest in patients with poorly differentiated cancers (4.1 ± 0.5 ng/mL), increasing from moderate (7.3 ± 4.3 ng/mL) to well-differentiated (13.2 ± 3.4 ng/mL) tumors. Notably, females showed higher VitD insufficiency compared to males, correlating with poor differentiation of the tumor. To mechanistically uncover VDR/VitD's pathophysiological relevance, we demonstrated that VitD induced VDR nuclear-translocation (VitD < 100 nM) in HNC cells. RNA sequencing and heat map analysis showed that various nuclear receptors were differentially expressed in cisplatin-resistant versus sensitive HNC cells including VDR and the VDR interaction partner retinoic acid receptor (RXR). However, RXR expression was not significantly correlated with the clinical parameters, and cotreatment with its ligand, retinoic acid, did not enhance the killing by cisplatin. Moreover, the Chou-Talalay algorithm uncovered that VitD/cisplatin combinations synergistically killed tumor cells (VitD < 100 nM) and also inhibited the PI3K/Akt/mTOR pathway. Importantly, these findings were confirmed in 3D-tumor-spheroid models mimicking the patients' tumor microarchitecture. Here, VitD already affected the 3D-tumor-spheroid formation, which was not seen in the 2D-cultures. We conclude that novel VDR/VitD-targeted drug combinations and nuclear receptors should also be intensely explored for HNC. Gender-specific VDR/VitD-effects may be correlated to socioeconomic differences and need to be considered during VitD (supplementation)-therapies.
Collapse
|
2
|
Schoenwaelder N, Krause M, Freitag T, Schneider B, Zonnur S, Zimpfer A, Becker AS, Salewski I, Strüder DF, Lemcke H, Grosse-Thie C, Junghanss C, Maletzki C. Preclinical Head and Neck Squamous Cell Carcinoma Models for Combined Targeted Therapy Approaches. Cancers (Basel) 2022; 14:cancers14102484. [PMID: 35626088 PMCID: PMC9139292 DOI: 10.3390/cancers14102484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to refine combined targeted approaches on well-characterized, low-passage tumor models. Upon in vivo xenografting in immunodeficient mice, three cell lines from locally advanced or metastatic HNSCC were established. Following quality control and basic characterization, drug response was examined after therapy with 5-FU, Cisplatin, and cyclin-dependent kinase inhibitors (abemaciclib, THZ1). Our cell lines showed different in vitro growth kinetics, morphology, invasive potential, and radiosensitivity. All cell lines were sensitive to 5-FU, Cisplatin, and THZ1. One cell line (HNSCC48 P0 M1) was sensitive to abemaciclib. Here, Cyto-FISH revealed a partial CDKN2a deletion, which resulted from a R58* mutation. Moreover, this cell line demonstrated chromosome 12 polysomy, accompanied by an increase in CDK4-specific copy numbers. In HNSCC16 P1 M1, we likewise identified polysomy-associated CDK4-gains. Although not sensitive to abemaciclib per se, the cell line showed a G1-arrest, an increased number of acidic organelles, and a swollen structure. Notably, intrinsic resistance was conquered by Cisplatin because of cMYC and IDO-1 downregulation. Additionally, this Cisplatin-CDKI combination induced HLA-ABC and PD-L1 upregulation, which may enhance immunogenicity. Performing functional and molecular analysis on patient-individual HNSCC-models, we identified CDK4-gains as a biomarker for abemaciclib response prediction and describe an approach to conquer intrinsic CDKI resistance.
Collapse
Affiliation(s)
- Nina Schoenwaelder
- Hematology, Oncology, Palliative Medicine, Department of Medicine, Clinic III, Rostock University Medical Center, 18057 Rostock, Germany; (N.S.); (M.K.); (T.F.); (I.S.); (C.G.-T.); (C.J.)
| | - Mareike Krause
- Hematology, Oncology, Palliative Medicine, Department of Medicine, Clinic III, Rostock University Medical Center, 18057 Rostock, Germany; (N.S.); (M.K.); (T.F.); (I.S.); (C.G.-T.); (C.J.)
| | - Thomas Freitag
- Hematology, Oncology, Palliative Medicine, Department of Medicine, Clinic III, Rostock University Medical Center, 18057 Rostock, Germany; (N.S.); (M.K.); (T.F.); (I.S.); (C.G.-T.); (C.J.)
| | - Björn Schneider
- Institute of Pathology, Rostock University Medical Centre, 18057 Rostock, Germany; (B.S.); (S.Z.); (A.Z.); (A.S.B.)
| | - Sarah Zonnur
- Institute of Pathology, Rostock University Medical Centre, 18057 Rostock, Germany; (B.S.); (S.Z.); (A.Z.); (A.S.B.)
| | - Annette Zimpfer
- Institute of Pathology, Rostock University Medical Centre, 18057 Rostock, Germany; (B.S.); (S.Z.); (A.Z.); (A.S.B.)
| | - Anne Sophie Becker
- Institute of Pathology, Rostock University Medical Centre, 18057 Rostock, Germany; (B.S.); (S.Z.); (A.Z.); (A.S.B.)
| | - Inken Salewski
- Hematology, Oncology, Palliative Medicine, Department of Medicine, Clinic III, Rostock University Medical Center, 18057 Rostock, Germany; (N.S.); (M.K.); (T.F.); (I.S.); (C.G.-T.); (C.J.)
| | - Daniel Fabian Strüder
- Head and Neck Surgery “Otto Koerner”, Department of Otorhinolaryngology, Rostock University Medical Centre, 18057 Rostock, Germany;
| | - Heiko Lemcke
- Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Rostock University Medical Center, University of Rostock, 18057 Rostock, Germany;
- Faculty of Interdisciplinary Research, Department Life, Light & Matter, University Rostock, 18057 Rostock, Germany
| | - Christina Grosse-Thie
- Hematology, Oncology, Palliative Medicine, Department of Medicine, Clinic III, Rostock University Medical Center, 18057 Rostock, Germany; (N.S.); (M.K.); (T.F.); (I.S.); (C.G.-T.); (C.J.)
| | - Christian Junghanss
- Hematology, Oncology, Palliative Medicine, Department of Medicine, Clinic III, Rostock University Medical Center, 18057 Rostock, Germany; (N.S.); (M.K.); (T.F.); (I.S.); (C.G.-T.); (C.J.)
| | - Claudia Maletzki
- Hematology, Oncology, Palliative Medicine, Department of Medicine, Clinic III, Rostock University Medical Center, 18057 Rostock, Germany; (N.S.); (M.K.); (T.F.); (I.S.); (C.G.-T.); (C.J.)
- Correspondence:
| |
Collapse
|
3
|
Gül D, Schweitzer A, Khamis A, Knauer SK, Ding GB, Freudelsperger L, Karampinis I, Strieth S, Hagemann J, Stauber RH. Impact of Secretion-Active Osteoblast-Specific Factor 2 in Promoting Progression and Metastasis of Head and Neck Cancer. Cancers (Basel) 2022; 14:2337. [PMID: 35565465 PMCID: PMC9106029 DOI: 10.3390/cancers14092337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Treatment success of head and neck cancer (HNC) is still hampered by tumor relapse due to metastases. Our study aimed to identify biomarkers by exploiting transcriptomics profiles of patient-matched metastases, primary tumors, and normal tissue mucosa as well as the TCGA HNC cohort data sets. Analyses identified osteoblast-specific factor 2 (OSF-2) as significantly overexpressed in lymph node metastases and primary tumors compared to normal tissue. High OSF-2 levels correlate with metastatic disease and reduced overall survival of predominantly HPV-negative HNC patients. No significant correlation was observed with tumor localization or therapy response. These findings were supported by the fact that OSF-2 expression was not elevated in cisplatin-resistant HNC cell lines. OSF-2 was strongly expressed in tumor-associated fibroblasts, suggesting a tumor microenvironment-promoting function. Molecular cloning and expression studies of OSF-2 variants from patients identified an evolutionary conserved bona fide protein secretion signal (1MIPFLPMFSLLLLLIVNPINA21). OSF-2 enhanced cell migration and cellular survival under stress conditions, which could be mimicked by the extracellular administration of recombinant protein. Here, OSF-2 executes its functions via ß1 integrin, resulting in the phosphorylation of PI3K and activation of the Akt/PKB signaling pathway. Collectively, we suggest OSF-2 as a potential prognostic biomarker and drug target, promoting metastases by supporting the tumor microenvironment and lymph node metastases survival rather than by enhancing primary tumor proliferation or therapy resistance.
Collapse
Affiliation(s)
- Désirée Gül
- Department of Otorhinolaryngology, Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (A.S.); (A.K.); (L.F.); (J.H.)
| | - Andrea Schweitzer
- Department of Otorhinolaryngology, Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (A.S.); (A.K.); (L.F.); (J.H.)
| | - Aya Khamis
- Department of Otorhinolaryngology, Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (A.S.); (A.K.); (L.F.); (J.H.)
- Oral Pathology Department, Faculty of Dentistry, Alexandria University, El Azareta, Alexandria, Egypt
| | - Shirley K. Knauer
- Institute for Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, Universitätsstraße, 45117 Essen, Germany;
| | - Guo-Bin Ding
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China;
| | - Laura Freudelsperger
- Department of Otorhinolaryngology, Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (A.S.); (A.K.); (L.F.); (J.H.)
| | - Ioannis Karampinis
- Academic Thoracic Center, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany;
| | - Sebastian Strieth
- Department of Otorhinolaryngology, University Medical Center Bonn, 53127 Bonn, Germany;
| | - Jan Hagemann
- Department of Otorhinolaryngology, Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (A.S.); (A.K.); (L.F.); (J.H.)
| | - Roland H. Stauber
- Department of Otorhinolaryngology, Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (A.S.); (A.K.); (L.F.); (J.H.)
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China;
| |
Collapse
|
4
|
Gribko A, Stiefel J, Liebetanz L, Nagel SM, Künzel J, Wandrey M, Hagemann J, Stauber RH, Freese C, Gül D. IsoMAG-An Automated System for the Immunomagnetic Isolation of Squamous Cell Carcinoma-Derived Circulating Tumor Cells. Diagnostics (Basel) 2021; 11:2040. [PMID: 34829387 PMCID: PMC8623084 DOI: 10.3390/diagnostics11112040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND detailed information about circulating tumor cells (CTCs) as an indicator of therapy response and cancer metastasis is crucial not only for basic research but also for diagnostics and therapeutic approaches. Here, we showcase a newly developed IsoMAG IMS system with an optimized protocol for fully automated immunomagnetic enrichment of CTCs, also revealing rare CTC subpopulations. METHODS using different squamous cell carcinoma cell lines, we developed an isolation protocol exploiting highly efficient EpCAM-targeting magnetic beads for automated CTC enrichment by the IsoMAG IMS system. By FACS analysis, we analyzed white blood contamination usually preventing further downstream analysis of enriched cells. RESULTS 1 µm magnetic beads with tosyl-activated hydrophobic surface properties were found to be optimal for automated CTC enrichment. More than 86.5% and 95% of spiked cancer cells were recovered from both cell culture media or human blood employing our developed protocol. In addition, contamination with white blood cells was minimized to about 1200 cells starting from 7.5 mL blood. Finally, we showed that the system is applicable for HNSCC patient samples and characterized isolated CTCs by immunostaining using a panel of tumor markers. CONCLUSION Herein, we demonstrate that the IsoMAG system allows the detection and isolation of CTCs from HNSCC patient blood for disease monitoring in a fully-automated process with a significant leukocyte count reduction. Future developments seek to integrate the IsoMAG IMS system into an automated microfluidic-based isolation workflow to further facilitate single CTC detection also in clinical routine.
Collapse
Affiliation(s)
- Alena Gribko
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (A.G.); (S.M.N.); (M.W.); (J.H.); (R.H.S.)
| | - Janis Stiefel
- Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Str. 18-20, 55129 Mainz, Germany; (J.S.); (L.L.)
| | - Lana Liebetanz
- Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Str. 18-20, 55129 Mainz, Germany; (J.S.); (L.L.)
| | - Sophie Madeleine Nagel
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (A.G.); (S.M.N.); (M.W.); (J.H.); (R.H.S.)
| | - Julian Künzel
- Department of Otorhinolaryngology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany;
| | - Madita Wandrey
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (A.G.); (S.M.N.); (M.W.); (J.H.); (R.H.S.)
| | - Jan Hagemann
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (A.G.); (S.M.N.); (M.W.); (J.H.); (R.H.S.)
| | - Roland H. Stauber
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (A.G.); (S.M.N.); (M.W.); (J.H.); (R.H.S.)
| | - Christian Freese
- Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Str. 18-20, 55129 Mainz, Germany; (J.S.); (L.L.)
| | - Désirée Gül
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (A.G.); (S.M.N.); (M.W.); (J.H.); (R.H.S.)
| |
Collapse
|
5
|
Ernst BP, Wiesmann N, Gieringer R, Eckrich J, Brieger J. HSP27 regulates viability and migration of cancer cell lines following irradiation. J Proteomics 2020; 226:103886. [DOI: 10.1016/j.jprot.2020.103886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/28/2020] [Accepted: 06/21/2020] [Indexed: 12/25/2022]
|
6
|
Zhu Q, Fang L, Heuberger J, Kranz A, Schipper J, Scheckenbach K, Vidal RO, Sunaga-Franze DY, Müller M, Wulf-Goldenberg A, Sauer S, Birchmeier W. The Wnt-Driven Mll1 Epigenome Regulates Salivary Gland and Head and Neck Cancer. Cell Rep 2020; 26:415-428.e5. [PMID: 30625324 DOI: 10.1016/j.celrep.2018.12.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/13/2018] [Accepted: 12/12/2018] [Indexed: 12/29/2022] Open
Abstract
We identified a regulatory system that acts downstream of Wnt/β-catenin signaling in salivary gland and head and neck carcinomas. We show in a mouse tumor model of K14-Cre-induced Wnt/β-catenin gain-of-function and Bmpr1a loss-of-function mutations that tumor-propagating cells exhibit increased Mll1 activity and genome-wide increased H3K4 tri-methylation at promoters. Null mutations of Mll1 in tumor mice and in xenotransplanted human head and neck tumors resulted in loss of self-renewal of tumor-propagating cells and in block of tumor formation but did not alter normal tissue homeostasis. CRISPR/Cas9 mutagenesis and pharmacological interference of Mll1 at sequences that inhibit essential protein-protein interactions or the SET enzyme active site also blocked the self-renewal of mouse and human tumor-propagating cells. Our work provides strong genetic evidence for a crucial role of Mll1 in solid tumors. Moreover, inhibitors targeting specific Mll1 interactions might offer additional directions for therapies to treat these aggressive tumors.
Collapse
Affiliation(s)
- Qionghua Zhu
- Cancer Research Program, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, 13125 Berlin, Germany
| | - Liang Fang
- Cancer Research Program, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, 13125 Berlin, Germany; Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China; Medi-X Institute, SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Julian Heuberger
- Cancer Research Program, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, 13125 Berlin, Germany
| | - Andrea Kranz
- Biotechnology Center, Technical University, 01307 Dresden, Germany
| | - Jörg Schipper
- Department of Head and Neck Surgery, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Kathrin Scheckenbach
- Department of Head and Neck Surgery, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Ramon Oliveira Vidal
- Systems Biology Program, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, 13125 Berlin, Germany
| | - Daniele Yumi Sunaga-Franze
- Systems Biology Program, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, 13125 Berlin, Germany
| | - Marion Müller
- Cancer Research Program, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, 13125 Berlin, Germany
| | | | - Sascha Sauer
- Systems Biology Program, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, 13125 Berlin, Germany
| | - Walter Birchmeier
- Cancer Research Program, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, 13125 Berlin, Germany.
| |
Collapse
|
7
|
Fluorescein- and EGFR-Antibody Conjugated Silica Nanoparticles for Enhancement of Real-time Tumor Border Definition Using Confocal Laser Endomicroscopy in Squamous Cell Carcinoma of the Head and Neck. NANOMATERIALS 2019; 9:nano9101378. [PMID: 31561451 PMCID: PMC6835239 DOI: 10.3390/nano9101378] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 09/24/2019] [Indexed: 11/17/2022]
Abstract
Intraoperative definition of tumor free resection margins in head and neck cancer is challenging. In the current proof-of-principle study we evaluated a novel silica nanoparticle-based agent for its potential use as contrast enhancer. We synthesized silica nanoparticles with an average size of 45 nm and modified these particles with the fluorescence stain fluorescein isocyanate (FITC) for particle detection and with epidermal growth factor receptor (EGFR)-targeting antibodies for enhanced tumor specificity. The nanoparticles exhibited good biocompatibility and could be detected in vitro and in vivo by confocal laser scanning microscopy. Additionally, we show in an ex vivo setting that these modified nanoparticles specifically bind to tumor samples and could be detected using a handheld confocal fluorescence endomicroscope. From a clinical point of view, we believe that this method could be used for tumor border contrast enhancement and for better intraoperative definition of R-0 tumor resection.
Collapse
|
8
|
Wiesmann N, Kluenker M, Demuth P, Brenner W, Tremel W, Brieger J. Zinc overload mediated by zinc oxide nanoparticles as innovative anti-tumor agent. J Trace Elem Med Biol 2019; 51:226-234. [PMID: 30115501 DOI: 10.1016/j.jtemb.2018.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 11/21/2022]
Abstract
The predicted global cancer burden is expected to surpass 20 million new cancer cases by 2025. Despite recent advancement in tumor therapy, a successful cancer treatment remains challenging. The emerging field of nanotechnology offers great opportunities for diagnosis, imaging, as well as treatment of cancer. Zinc oxide nanoparticles (ZnO NP) were shown to exert selective cytotoxicity against tumor cells via a yet unknown mechanism, most likely involving the generation of reactive oxygen species (ROS). These nanoparticles are a promising therapeutic opportunity as zinc is a nontoxic trace element and its application in medically-related products is considered to be safe. We could show that ZnO NP can exert cytotoxic effects on several human tumor cell lines. There can be found ZnO NP concentrations which selectively damage tumor cells while human fibroblasts do not sustain lasting damage. Cytotoxicity is attributable to the release of zinc ions from the nanoparticles outside the cells as well as to a direct cell-nanoparticle interaction. This involves uptake of the particles into the tumor cells. With a silica shell the cytotoxicity can be delayed which can help in the future for a safe transport in the blood stream. Cellular damage finally cumulates in apoptotic cell death via zinc overload within 48 h after treatment with ZnO NP. A therapeutical perspective could be the targeted accumulation of ZnO NP at the tumor side to induce local zinc overload that substantially damages the tumor cells with no or low side effects. We suggest further studies to explore the potential of ZnO NP as an innovative anti-tumor agent.
Collapse
Affiliation(s)
- Nadine Wiesmann
- Molecular Tumor Biology, Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Centre of the Johannes Gutenberg University, 55131, Mainz, Germany
| | - Martin Kluenker
- Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg University, 55128, Mainz, Germany
| | - Philipp Demuth
- Molecular Tumor Biology, Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Centre of the Johannes Gutenberg University, 55131, Mainz, Germany
| | - Walburgis Brenner
- Department of Gynecology, University Medical Centre of the Johannes Gutenberg University, 55131, Mainz, Germany
| | - Wolfgang Tremel
- Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg University, 55128, Mainz, Germany
| | - Juergen Brieger
- Molecular Tumor Biology, Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Centre of the Johannes Gutenberg University, 55131, Mainz, Germany.
| |
Collapse
|
9
|
Wiesmann N, Gieringer R, Grus F, Brieger J. Phosphoproteome Profiling Reveals Multifunctional Protein NPM1 as part of the Irradiation Response of Tumor Cells. Transl Oncol 2018; 12:308-319. [PMID: 30453269 PMCID: PMC6240713 DOI: 10.1016/j.tranon.2018.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 12/27/2022] Open
Abstract
To fight resistances to radiotherapy, the understanding of escape mechanisms of tumor cells is crucial. The aim of this study was to identify phosphoproteins that are regulated upon irradiation. The comparative analysis of the phosphoproteome before and after irradiation brought nucleophosmin (NPM1) into focus as a versatile phosphoprotein that has already been associated with tumorigenesis. We could show that knockdown of NPM1 significantly reduces tumor cell survival after irradiation. NPM1 is dephosphorylated stepwise within 1 hour after irradiation at two of its major phosphorylation sites: threonine-199 and threonine-234/237. This dephosphorylation is not the result of a fast cell cycle arrest, and we found a heterogenous intracellular distribution of NPM1 between the nucleoli, the nucleoplasm, and the cytoplasm after irradiation. We hypothesize that the dephosphorylation of NPM1 at threonine-199 and threonine-234/237 is part of the immediate response to irradiation and of importance for tumor cell survival. These findings could make NPM1 an attractive pharmaceutical target to radiosensitize tumor cells and improve the outcome of radiotherapy by inhibiting the pathways that help tumor cells to escape cell death after gamma irradiation.
Collapse
Affiliation(s)
- Nadine Wiesmann
- Molecular Tumor Biology, Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Centre of the Johannes Gutenberg University, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Rita Gieringer
- Molecular Tumor Biology, Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Centre of the Johannes Gutenberg University, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Franz Grus
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Juergen Brieger
- Molecular Tumor Biology, Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Centre of the Johannes Gutenberg University, Langenbeckstraße 1, 55131 Mainz, Germany.
| |
Collapse
|
10
|
Söderhielm PC, Klein AB, Bomholtz SH, Jensen AA. Profiling of GABA A and GABA B receptor expression in the myometrium of the human uterus. Life Sci 2018; 214:145-152. [PMID: 30343129 DOI: 10.1016/j.lfs.2018.10.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/09/2018] [Accepted: 10/18/2018] [Indexed: 10/28/2022]
Abstract
AIMS γ-aminobutyric acid (GABA) mediates its physiological effects through the GABAA and GABAB receptors. In this study the putative expression of GABAAR and GABABR subunits in human myometrium tissue was investigated. MAIN METHODS The expression levels of the 19 GABAAR subunits (α1-α6, β1-β3, γ1-γ3, δ, ε, π, θ, ρ1-ρ3) and the three GABABR subunits (GABAB1a, GABAB1b, GABAB2) were characterized by RT-qPCR analysis on two commercial samples and six samples derived from surgically removed myometrial tissues from different women. We probed for functional GABAAR expression in primary human myometrial smooth muscle cells (HMSMCs) by whole-cell patch-clamp electrophysiology. KEY FINDINGS The absolute mRNA levels of the 22 GABAAR and GABABR genes varied considerably across the eight samples, but a pronounced overlap existed between the specific subunits detected in the samples, with α2, β2, β3, ε, π, θ, GABAB1a and GABAB1b mRNAs being detected in most samples. The expression profile of GABAAR and GABABR subunit mRNAs in HMSMCs correlated with that observed in the eight tissue samples, albeit the subunit transcripts were detected at lower relative levels. Neither muscimol nor GABA evoked significant currents in these cells in the patch-clamp recordings. SIGNIFICANCE While the expression of the GABAB1 subunits on their own is unlikely to give rise to functional GABABR expression, the GABAAR subunits identified at mRNA level would be able to form functional receptors in the human myometrial tissue. Although GABAAR-mediated currents could not be recorded from HMSMCs in this study, this suggests a role for GABAergic transmission in the human myometrium.
Collapse
Affiliation(s)
- Pella Cecilia Söderhielm
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Anders Bue Klein
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Sofia Hammami Bomholtz
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, N, Denmark
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|
11
|
Affolter A, Samosny G, Heimes AS, Schneider J, Weichert W, Stenzinger A, Sommer K, Jensen A, Mayer A, Brenner W, Mann WJ, Brieger J. Multikinase inhibitors sorafenib and sunitinib as radiosensitizers in head and neck cancer cell lines. Head Neck 2017; 39:623-632. [DOI: 10.1002/hed.24557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/27/2016] [Accepted: 06/24/2016] [Indexed: 12/16/2022] Open
Affiliation(s)
- Annette Affolter
- Department of Otorhinolaryngology, Head and Neck Surgery; University Medical Center of the Johannes Gutenberg University; Mainz Germany
- Institute of Pathology; University Medical Center of the Johannes Gutenberg University; Mainz Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Experimental Head and Neck Oncology; Heidelberg University Hospital; Heidelberg Germany
| | - Gerson Samosny
- Department of Otorhinolaryngology, Head and Neck Surgery; University Medical Center of the Johannes Gutenberg University; Mainz Germany
| | - Anne-Sophie Heimes
- Department of Otorhinolaryngology, Head and Neck Surgery; University Medical Center of the Johannes Gutenberg University; Mainz Germany
| | - Johanna Schneider
- Department of Otorhinolaryngology, Head and Neck Surgery; University Medical Center of the Johannes Gutenberg University; Mainz Germany
| | - Wilko Weichert
- Institute of Pathology; University Medical Center of the Johannes Gutenberg University; Mainz Germany
- Institute of Pathology; Technical University Munich (TUM); Munich Germany
| | - Albrecht Stenzinger
- Institute of Pathology; University Medical Center of the Johannes Gutenberg University; Mainz Germany
| | - Katharina Sommer
- Institute of Pathology; University Medical Center of the Johannes Gutenberg University; Mainz Germany
| | - Alexandra Jensen
- Department of Radiation Oncology; Heidelberg University Hospital; Heidelberg Germany
| | - Arnulf Mayer
- Department of Radiooncology and Radiotherapy; University Medical Center of the Johannes Gutenberg University; Mainz Germany
| | - Walburgis Brenner
- Department of Urology; University Medical Center of the Johannes Gutenberg University; Mainz Germany
| | - Wolf J. Mann
- Department of Otorhinolaryngology, Head and Neck Surgery; University Medical Center of the Johannes Gutenberg University; Mainz Germany
| | - Jürgen Brieger
- Department of Otorhinolaryngology, Head and Neck Surgery; University Medical Center of the Johannes Gutenberg University; Mainz Germany
| |
Collapse
|
12
|
Wiesmann N, Strozynski J, Beck C, Zimmermann N, Mendler S, Gieringer R, Schmidtmann I, Brieger J. Knockdown of hnRNPK leads to increased DNA damage after irradiation and reduces survival of tumor cells. Carcinogenesis 2017; 38:321-328. [DOI: 10.1093/carcin/bgx006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/15/2017] [Indexed: 11/12/2022] Open
|
13
|
Strozynski J, Heim J, Bunbanjerdsuk S, Wiesmann N, Zografidou L, Becker SK, Meierl AM, Gouveris H, Lüddens H, Grus F, Brieger J. Proteomic identification of the heterogeneous nuclear ribonucleoprotein K as irradiation responsive protein related to migration. J Proteomics 2014; 113:154-61. [PMID: 25281771 DOI: 10.1016/j.jprot.2014.09.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/26/2014] [Accepted: 09/20/2014] [Indexed: 01/20/2023]
Abstract
UNLABELLED Irradiation resistance is a major obstacle of head and neck squamous cell carcinoma (HNSCC) therapy, limiting treatment success and patient survival. The aim of our experiments was to identify irradiation-regulated proteins as potential drug targets. Two established HNSCC cell lines (HNSCCUM-01T and HNSCCUM-02T) were treated with a single 8Gy (Gray) fraction of irradiation. Changes in cellular protein expression were studied after 24h by means of 2D-electrophoresis and MALDI-TOF-mass spectrometry. Ninety-four differentially expressed proteins were identified. The expression levels of four proteins were regulated similarly in both cell lines after irradiation treatment, i.e., GRP78, PRDX, ACTC, and the heterogeneous nuclear ribonucleoprotein K (hnRNPK), suggesting a relevant role during irradiation response. hnRNPK as a p53 interacting protein was verified by Western blotting and immunocytochemical staining as well as functionally analyzed. Knock-down by the use of siRNA resulted in only slightly reduced viability, however, migratory activity was strongly reduced. Combined application of siRNA against hnRNPK and irradiation reduced migration almost completely. We conclude that hnRNPK is potentially implicated in the radiogenic response of HNSCC. The inhibition of hnRNPK might reduce the metastasizing potential of HNSCC especially in combination with irradiation and suggest that this molecule should be further evaluated in this context. BIOLOGICAL SIGNIFICANCE We showed completely impaired migration of irradiated hnRNPK-knock-out HNSCC cells, suggesting this molecule as a potential drug target in combined treatment schedules.
Collapse
Affiliation(s)
- Judith Strozynski
- Molecular Tumor Biology, Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Julia Heim
- Molecular Tumor Biology, Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sacarin Bunbanjerdsuk
- Molecular Tumor Biology, Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nadine Wiesmann
- Molecular Tumor Biology, Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Lea Zografidou
- Molecular Tumor Biology, Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Simone Katharina Becker
- Molecular Tumor Biology, Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Anna-Maria Meierl
- Molecular Tumor Biology, Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Haralampos Gouveris
- Molecular Tumor Biology, Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Hartmut Lüddens
- Molecular Psychopharmacology, Department of Psychiatry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Franz Grus
- Experimental Ophthalmology, Dept. of Ophthalmology, University of Mainz, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jürgen Brieger
- Molecular Tumor Biology, Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
14
|
Wend P, Fang L, Zhu Q, Schipper JH, Loddenkemper C, Kosel F, Brinkmann V, Eckert K, Hindersin S, Holland JD, Lehr S, Kahn M, Ziebold U, Birchmeier W. Wnt/β-catenin signalling induces MLL to create epigenetic changes in salivary gland tumours. EMBO J 2013; 32:1977-89. [PMID: 23736260 DOI: 10.1038/emboj.2013.127] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 05/07/2013] [Indexed: 12/21/2022] Open
Abstract
We show that activation of Wnt/β-catenin and attenuation of Bmp signals, by combined gain- and loss-of-function mutations of β-catenin and Bmpr1a, respectively, results in rapidly growing, aggressive squamous cell carcinomas (SCC) in the salivary glands of mice. Tumours contain transplantable and hyperproliferative tumour propagating cells, which can be enriched by fluorescence activated cell sorting (FACS). Single mutations stimulate stem cells, but tumours are not formed. We show that β-catenin, CBP and Mll promote self-renewal and H3K4 tri-methylation in tumour propagating cells. Blocking β-catenin-CBP interaction with the small molecule ICG-001 and small-interfering RNAs against β-catenin, CBP or Mll abrogate hyperproliferation and H3K4 tri-methylation, and induce differentiation of cultured tumour propagating cells into acini-like structures. ICG-001 decreases H3K4me3 at promoters of stem cell-associated genes in vitro and reduces tumour growth in vivo. Remarkably, high Wnt/β-catenin and low Bmp signalling also characterize human salivary gland SCC and head and neck SCC in general. Our work defines mechanisms by which β-catenin signals remodel chromatin and control induction and maintenance of tumour propagating cells. Further, it supports new strategies for the therapy of solid tumours.
Collapse
Affiliation(s)
- Peter Wend
- Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Genetic deregulation of the PIK3CA oncogene in oral cancer. Cancer Lett 2013; 338:193-203. [PMID: 23597702 DOI: 10.1016/j.canlet.2013.04.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 03/11/2013] [Accepted: 04/09/2013] [Indexed: 01/05/2023]
Abstract
The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway is one of the most commonly deregulated pathways in human cancers. PI3K comprises a catalytic (p110α) and regulatory subunit (p85), and p110α is encoded by the PIK3CA gene. Here, we summarize the known genetic alterations, including amplifications and mutations, of the PIK3CA oncogene in oral cancer. We discuss in detail PIK3CA mutations and their mutual exclusivity with pathway genes in addition to the incidence of PIK3CA mutations in relation to ethnicity. We describe the constitutive activation of PI3K signaling, oncogenicity, and the genetic deregulation of the PIK3CA gene and its association with oral cancer disease stage. We emphasize the importance of therapeutically targeting the genetically deregulated PIK3CA oncogene and its signaling. We also discuss the implications of targeting Akt and/or mTOR, which are the downstream effectors of PI3K that may possibly pave the way for molecular therapeutic targets for PIK3CA-driven oral carcinogenesis. Furthermore, this critical review provides a complete picture of the PIK3CA oncogene and its deregulation in oral cancer, which may facilitate early diagnosis and improve prognosis through personalized molecular targeted therapy in oral cancer.
Collapse
|
16
|
Affolter A, Schmidtmann I, Mann WJ, Brieger J. Cancer-associated fibroblasts do not respond to combined irradiation and kinase inhibitor treatment. Oncol Rep 2012; 29:785-90. [PMID: 23232940 DOI: 10.3892/or.2012.2180] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 11/15/2012] [Indexed: 11/06/2022] Open
Abstract
The emergence of radioresistance is a significant issue in the treatment of squamous cell carcinoma. We recently demonstrated that post-radiogenic extracellular signal-regulated kinase (ERK) signaling might decrease radiosensitivity in this cancer type. To further elucidate how tumor-organizing cell types respond to irradiation and ERK pathway inhibition, we analyzed one oral squamous cell carcinoma and one lung cancer cell line (HNSCCUM-02T, A549), fibroblasts (NIH3T3), primary normal and cancer-associated fibroblasts (CAFs) in vitro. Irradiated cells treated with mitogen-activated protein kinase (MAPK) inhibitor U0126 were screened for pERK levels. Post-radiogenic cellular responses were functionally analyzed by proliferation and colony assays. We found analogous pERK expression, proliferation and survival of tumor and normal fibroblast cells. CAFs did not show any response to treatment. We hypothesized that radiation and MAPK inhibition have no dose-limiting effect on tumor-surrounding normal tissue. As CAFs are considered to influence the radioresponse of the entire tumor, but are not affected by treatment themselves, potential CAF-mediated tumor protection should be considered in further studies.
Collapse
Affiliation(s)
- Annette Affolter
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center of the Johannes Gutenberg University, D-55101 Mainz, Germany.
| | | | | | | |
Collapse
|
17
|
Stauber RH, Knauer SK, Habtemichael N, Bier C, Unruhe B, Weisheit S, Spange S, Nonnenmacher F, Fetz V, Ginter T, Reichardt S, Liebmann C, Schneider G, Krämer OH. A combination of a ribonucleotide reductase inhibitor and histone deacetylase inhibitors downregulates EGFR and triggers BIM-dependent apoptosis in head and neck cancer. Oncotarget 2012; 3:31-43. [PMID: 22289787 PMCID: PMC3292890 DOI: 10.18632/oncotarget.430] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are the sixth most common malignant neoplasm and more than 50% of patients succumb to this disease. HNSCCs are characterized by therapy resistance, which relies on the overexpression of anti-apoptotic proteins and on the aberrant regulation of the epidermal growth factor receptor (EGFR). As inherent and acquired resistance to therapy counteracts improvement of long-term survival, novel multi-targeting strategies triggering cancer cell death are urgently required. We investigated how induction of replicational stress by the ribonucleotide reductase inhibitor hydroxyurea (HU) combined with histone deacetylase inhibitors (HDACi) exerts anti-tumor activity. We treated HNSCC cell lines and freshly isolated tumor cells with HDACi, such as the clinically approved anti-epileptic drug valproic acid (VPA), in combination with HU. Our data demonstrate that at clinically achievable levels VPA/HU combinations efficiently block proliferation as well as clonogenic survival, and trigger apoptosis of HNSCC cells. In the presence of VPA/HU, such tumor cells increase expression of the pro-apoptotic BCL-2 family protein BIM, independent of wild-type p53 signaling and in the absence of increased expression of the p53 targets PUMA and BAX. The pro-apoptotic activity of BIM in HNSCCs was found critical for tumor cell death; ectopic overexpression of BIM induced HNSCC apoptosis and RNAi-mediated depletion of BIM protected HNSCC cells from VPA/HU. Also, significantly elevated BIM levels (p<0.01) were detectable in the apoptotic tumor centers versus proliferating tumor margins in HNSCC patients (n=31), underlining BIM's clinical relevance. Importantly, VPA/HU treatment additionally reduces expression and cell surface localization of EGFR. Accordingly, in a xenograft mouse model, VPA/HU efficiently blocked tumor growth (P<0.001) correlating with BIM induction and EGFR downregulation. We provide a molecular rationale for the potent anti-cancer activities of this drug combination. Our data suggest its exploitation as a potential strategy for the treatment of HNSCC and other tumor entities characterized by therapy resistance linked to dysregulated EGFR activation.
Collapse
Affiliation(s)
- Roland H Stauber
- Molecular and Cellular Oncology/Mainz Screening Center, University Hospital of Mainz, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
One-step nucleic acid amplification for detecting lymph node metastasis of head and neck squamous cell carcinoma. Oral Oncol 2012; 48:958-963. [PMID: 22516375 DOI: 10.1016/j.oraloncology.2012.03.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 03/27/2012] [Accepted: 03/28/2012] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Lymph node stage is an important prognostic factor in head and neck squamous cell carcinoma (HNSCC). We previously reported the clinical usefulness of sentinel lymph node biopsy diagnosed by genetic analysis using quantitative RT-PCR. However, this method takes about 3h. In this study, we attempted to develop a more efficient method for the intraoperative genetic detection of lymph node metastasis in HNSCC. MATERIALS AND METHODS A total of 312 lymph nodes (65 patients) were diagnosed by the one-step nucleic acid amplification (OSNA) method using GD-100. OSNA consists of a short homogenization step followed by amplification of cytokeratin 19 (CK19) mRNA directly from the lysate. Each lymph node was divided into two to diagnose metastasis. One half was used for the OSNA assay, and the other was subjected to semi-serial sectioning, sliced at 200-μm intervals and examined by H&E and cytokeratin AE1/AE3 immunohistochemical staining. The accuracy of OSNA assay was evaluated based on histopathological diagnosis. RESULTS Sixty-one of 312 lymph nodes were pathologically metastasis-positive. The overall concordance rate between the OSNA assay using breast cancer criteria and histopathology was 94.2%. The optimal cut-off for the copy number of CK19 mRNA in assessing lymph node metastasis of HNSCC was 300 copies/μl, which had the highest diagnostic accuracy (95.2%). The OSNA assay can be completed within 30 min. CONCLUSION The OSNA assay, which shows high sensitivity and specificity, suggests the possibility to be used as a novel tool for the genetic detection of lymph node metastasis in HNSCC patients.
Collapse
|
19
|
Affolter A, Drigotas M, Fruth K, Schmidtmann I, Brochhausen C, Mann WJ, Brieger J. Increased radioresistance via G12S K-Ras by compensatory upregulation of MAPK and PI3K pathways in epithelial cancer. Head Neck 2012; 35:220-8. [PMID: 22302684 DOI: 10.1002/hed.22954] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2011] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Irradiation-induced signaling via the 2 pathways, Raf-MEK-ERK and PI3K-Akt, is known to be closely associated with a limited response to radiotherapy. In the present study we analyzed the relevance of constitutively active K-Ras for postradiogenic pathway stimulation and the option of coordinated inhibition to overcome these rescue mechanisms. METHODS We used 2 epithelial tumor cell lines as a model system, one of them harboring a G12S K-Ras mutation. Cells were irradiated and the effect of combined treatment with ionizing radiation and inhibitors on the expression of pERK and pAkt was determined by Western blotting. Additionally, clonogenic assays were performed to functionally analyze survival of the cell lines. RESULTS Compared with the nonmutated cells we observed the G12S cell line showing a clearly reduced response to inhibitor treatment under irradiation. In the case of pharmacologic inhibition of 1 of the pathways a compensatory upregulation of the second cascade leading to increased clonogenic survival seems feasible. However, there was a good functional response of this cell line to double inhibition with both compounds represented by minimized colony forming ability. The activation of ERK and Akt after irradiation was confirmed in xenotransplants showing elevated postradiogenic protein levels. CONCLUSION With our data we confirmed our hypothesis of postradiogenic constitutive activation of the 2 pathways both required for Ras-mediated radioresistance in epithelial cells. If this effect should prove itself as a general mechanism in Ras-mutated tumors, application of specific inhibitors to block both cascades in parallel could contribute to enhance radiosensitivity in these types of cancer.
Collapse
Affiliation(s)
- Annette Affolter
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | | | | | | | | | | | | |
Collapse
|
20
|
Koutsimpelas D, Pongsapich W, Heinrich U, Mann S, Mann WJ, Brieger J. Promoter methylation of MGMT, MLH1 and RASSF1A tumor suppressor genes in head and neck squamous cell carcinoma: pharmacological genome demethylation reduces proliferation of head and neck squamous carcinoma cells. Oncol Rep 2012; 27:1135-41. [PMID: 22246327 PMCID: PMC3583513 DOI: 10.3892/or.2012.1624] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 12/02/2011] [Indexed: 01/19/2023] Open
Abstract
Promoter hypermethylation of tumor suppressor genes (TSGs) is a common feature of primary cancer cells. However, to date the somatic epigenetic events that occur in head and neck squamous cell carcinoma (HNSCC) tumorigenesis have not been well-defined. In the present study, we analyzed the promoter methylation status of the genes mutL homolog 1 (MLH1), Ras-association domain family member 1 (RASSF1A) and O-6-methylguanine-DNA methyltransferase (MGMT) in 23 HNSCC samples, three control tissues and one HNSCC cell line (UM-SCC 33) using methylation-specific PCR (MSP). The expression of the three proteins was quantified by semi-quantitative immunohistochemical analysis. The cell line was treated with the demethylating agent 5-azacytidine (5-Aza) and the methylation status after 5-Aza treatment was analyzed by MSP and DNA sequencing. Proliferation was determined by Alamar blue staining. We found that the MGMT promoter in 57% of the analyzed primary tumor samples and in the cell line was hypermethylated. The MLH promoter was found to be methylated in one out of 23 (4%) tumor samples while in the examined cell line the MLH promoter was unmethylated. The RASSF1A promoter showed methylation in 13% of the tumor samples and in the cell line. MGMT expression in the group of tumor samples with a hypermethylated promoter was statistically significantly lower compared to the group of tumors with no measured hypermethylation of the MGMT promoter. After treatment of the cell line with the demethylating agent 5-Aza no demethylation of the methylated MGMT and RASSF1A genes were determined by MSP. DNA sequencing verified the MSP results, however, increased numbers of unmethylated CpG islands in the promoter region of MGMT and RASSF1A were observed. Proliferation was significantly (p<0.05) reduced after treatment with 5-Aza. In summary, we have shown promoter hypermethylation of the tumor suppressor genes MGMT and RASSF1A in HNSCC, suggesting that this epigenetic inactivation of TSGs may play a role in the development of HNSCC. 5-Aza application resulted in partial demethylation of the MGMT and RASSF1A TSGs and reduced proliferation of the tumor cells suggesting further evaluation of 5-Aza for HNSCC treatment.
Collapse
Affiliation(s)
- Dimitrios Koutsimpelas
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55101 Mainz, Germany.
| | | | | | | | | | | |
Collapse
|
21
|
Shukoor MI, Natalio F, Tahir MN, Barz M, Weber S, Brochhausen C, Zentel R, Schreiber LM, Brieger J, Tremel W. CpG-DNA loaded multifunctional MnO nanoshuttles for TLR9-specific cellular cargo delivery, selective immune-activation and MRI. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm16903g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
22
|
Thiel UJE, Feltens R, Adryan B, Gieringer R, Brochhausen C, Schuon R, Fillies T, Grus F, Mann WJ, Brieger J. Analysis of differentially expressed proteins in oral squamous cell carcinoma by MALDI-TOF MS. J Oral Pathol Med 2010; 40:369-79. [PMID: 21166718 DOI: 10.1111/j.1600-0714.2010.00982.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE To explore the presence of differentially expressed proteins in OSCC for discrimination of tumour and normal mucosa to establish potential biomarkers and therapeutic targets. EXPERIMENTAL DESIGN Paired protein samples of 12 individuals (tongue cancer and non-cancerous mucosa) were separated by two-dimensional polyacrylamid gel electrophoresis. The protein patterns were compared pairwise and protein spots were quantified. We identified about 70 regulated proteins which we subsequently identified by MALDI-TOF mass spectrometry. RESULTS Cancerous and non-cancerous tissues could be most precisely distinguished by a panel of proteins. They include the heat shock proteins (hsp)70 and 90, keratins (ck) 5, 6, 13, 14, 16, 17 and 19, beta globin, alpha-2-actin, stratifin, tropomyosin, calreticulin precursor, beta-2-tubulin, galectin7, thioredoxin, involucrin, adenylyl-cyclase-associated protein, disulfide isomerase-associated protein, thyrosine 3-monooxygenase, MYL2 and the s100 calcium binding protein. MYL3, cardiac muscle alpha actin 1 proprotein and transferrin were under-represented in OSCC. Six biomarkers, ck6 und ck13, beta globin, alpha-2-actin, hsp70 and hsp90 discriminated best between cancerous and non-cancerous oral tissues. All over-expressed proteins were analysed by STRING-analysis to highlight experimentally determined and computationally predicted interactions between the proteins. Especially involucrin, hsp70, calreticulin precursor, stratifin, (ck) 5, 6, 14, 19, tyrosine 3-monooxygenase, beta-2-tubulin and disulfide isomerase associated protein showed multiple relations. CONCLUSION We identified six proteins which are differentially expressed in most OSCC compared to healthy tissues. Of those, by string analysis, multiple interaction partners are assumed for hsp70. This protein is supposed to be the most promising candidate as marker molecule and target for OSCC therapy.
Collapse
Affiliation(s)
- Uta J E Thiel
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Centre of the Johannes Gutenberg University Mainz, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Affolter A, Fruth K, Brochhausen C, Schmidtmann I, Mann WJ, Brieger J. Activation of mitogen-activated protein kinase extracellular signal-related kinase in head and neck squamous cell carcinomas after irradiation as part of a rescue mechanism. Head Neck 2010; 33:1448-57. [PMID: 21928417 DOI: 10.1002/hed.21623] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/29/2010] [Accepted: 08/12/2010] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Irradiation plays a pivotal role in head and neck squamous cell carcinoma (HNSCC) treatment. However, especially recurrent tumors frequently show increased radioresistance. We analyzed irradiation-stimulated mitogen-activated protein kinase (MAPK) signaling pathways to define cellular rescue mechanisms. METHODS Irradiated HNSCC cells were screened for MAPK activation and results were confirmed and refined by functional analyses. Extracellular signal-regulated kinase (ERK) inhibitor U0126 application enabled us to specify postradiogenic cellular responses. Vascular endothelial growth factor (VEGF) levels were analyzed additionally. RESULTS We observed a pronounced and time-dependent ERK stimulation. Pathway inhibition resulted in decreased radioresistance. Likewise, we found a decrease of VEGF release after inhibitor treatment. ERK activation was confirmed in xenotransplants showing elevated postradiogenic phospho-ERK (pERK) and VEGF levels. CONCLUSIONS Our data give evidence for induction of ERK and successive VEGF release in HNSCC during radiotherapy, which might be partially explained by autoregulated cytoprotection maintained by pERK and potentially VEGF. In conclusion, targeting the ERK-VEGF axis might enhance the efficiency of radiotherapy.
Collapse
Affiliation(s)
- Annette Affolter
- Department of Otorhinolaryngology-Head and Neck Surgery, Molecular Tumor Biology Laboratory, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | | | | | | | | | | |
Collapse
|
24
|
Demethylation treatment restores hic1 expression and impairs aggressiveness of head and neck squamous cell carcinoma. Oral Oncol 2010; 46:678-83. [PMID: 20729134 DOI: 10.1016/j.oraloncology.2010.06.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 06/17/2010] [Accepted: 06/21/2010] [Indexed: 11/24/2022]
Abstract
Promoter hypermethylation of tumor suppressor genes is a common feature of primary cancer cells. However, at date the somatic epigenetic events that occur in head and neck squamous cell carcinoma (HNSCC) tumorigenesis are not yet been well defined. In the present study we analysed the methylation status of the gene hypermethylated in cancer-1 (hic1), a gene located on chromosome 17p13.3, a region frequently lost in HNSCC. We analysed 22 HNSCC samples and three cell lines using methylation specific PCR (MSP). We found hic1 methylated in 21 out of 22 samples and in all three cell lines. Treatment of the cell lines with the demethylating agent 5-Azacytidin (5-Aza) resulted in the demethylation of the hic1 promoter and reactivation of hic1 expression as determined by MSP, qPCR and Western blot. Functional analyses revealed decreased proliferative activity and colony forming ability of treated cells. In summary, we found in HNSCC hic1 regulated by promoter methylation. 5-Aza application resulted in the reexpression of hic1 and was followed by decreased aggressiveness of the cancer cells. Our data indicate that hic1 might be a player in HNSCC development and suggest further evaluation of 5-Aza for HNSCC treatment.
Collapse
|
25
|
Koutsimpelas D, Brieger J, Kim DW, Stenzel M, Hast J, Mann WJ. Proangiogenic effects of ionizing irradiation on squamous cell carcinoma of the hypopharynx. Auris Nasus Larynx 2007; 35:369-75. [PMID: 17980533 DOI: 10.1016/j.anl.2007.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2007] [Revised: 07/11/2007] [Accepted: 09/06/2007] [Indexed: 11/16/2022]
Abstract
OBJECTIVE There is experimental evidence that ionizing irradiation affects a proangiogenic response. However, the relevance of this effect on tumour growth in vivo is not in detail investigated yet. The present objectives were to examine the influence of ionizing radiation on the expression of the vascular endothelial growth factor (VEGF) and its receptors (flt-1 and flk-1), the microvessel density and the tumour proliferation, in head and neck squamous cell carcinoma (HNSCC). METHODS We used a HNSCC-cell line, derived from a hypopharyngeal tumour, for subcutaneous injection in 16 athymic nude mice. After reaching an average diameter of 12-14 mm the xenografts were randomised and 8 out of the 16 animals (therapy group) were irradiated with a single fraction of 6 Gy while the control group remained without any intervention. The irradiated and the respective control tumours were prepared after 7 (T7) and 70 days (T70) for immunohistochemical analysis. The expression of VEGF, its receptors flk-1 and flt-1, the vessel density (CD31) and the proliferation rate (Ki67) were quantified. RESULTS At the point of time T7 we observed a reduction of the tumour growth rate, of the proliferative activity and of the VEGF- as well as of the VEGF-R-expression. At the point of time T70 we found increased values for proliferation, microvessel density, VEGF- and flk-1 expression in the therapy group compared to the therapy group at T7 as well as to the control group at T70. CONCLUSION These changes might suggest a long-term proangiogenic effect of irradiation, which might result in growth promotion of the remaining tumour after the end of therapy.
Collapse
Affiliation(s)
- D Koutsimpelas
- Department of Otorhinolaryngology, University Hospital of Mainz, Langenbeckstr. 1, Mainz, Germany.
| | | | | | | | | | | |
Collapse
|
26
|
Tao L, Lefèvre M, Ricci S, Saintigny P, Callard P, Périé S, Lacave R, Bernaudin JF, Lacau St Guily J. Detection of occult carcinomatous diffusion in lymph nodes from head and neck squamous cell carcinoma using real-time RT-PCR detection of cytokeratin 19 mRNA. Br J Cancer 2006; 94:1164-9. [PMID: 16622440 PMCID: PMC2361256 DOI: 10.1038/sj.bjc.6603073] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The aim of the present study was to evaluate the occult lymph node carcinomatous diffusion in head and neck squamous cell carcinoma (HNSCC). A total of 1328 lymph nodes from 31 patients treated between 2004 and 2005 were prospectively evaluated by routine haematoxylin–eosin–safran (HES) staining, immunohistochemistry (IHC) and real-time Taqman reverse–transcriptase polymerase chain reaction (real-time RT–PCR) assay. Amplification of cytokeratin 19 (CK19) mRNA transcripts using real-time RT–PCR was used to quantify cervical micrometastatic burden. The cervical lymph node metastatic rates determined by routine HES staining and real-time RT–PCR assay were 16.3 and 36.0%, respectively (P<0.0001). A potential change in the nodal status was observed in 13 (42.0%) of the 31 patients and an atypical pattern of lymphatic spread was identified in four patients (12.9%). Moreover, CK19 mRNA expression values in histologically positive lymph nodes were significantly higher than those observed in histologically negative lymph nodes (P<0.0001). These results indicate that real-time RT–PCR assay for the detection of CK19 mRNA is a sensitive and reliable method for the detection of carcinomatous cells in lymph nodes. This type of method could be used to reassess lymph node status according to occult lymphatic spread in patients with HNSCC.
Collapse
Affiliation(s)
- L Tao
- Service d'ORL et Chirurgie Cervico-Faciale, Université Pierre et Marie Curie, Paris VI, Hôpital Tenon APHP, 4 rue de la Chine, Paris 75020, France
- Histologie-Biologie Tumorale, EA 3499 Université Pierre et Marie Curie Paris VI, Hôpital Tenon APHP, Paris 75020, France
- Department of Otolaryngology-HNS, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - M Lefèvre
- Anatomie-Pathologique, EA 3499 Université Pierre et Marie Curie Paris VI, Hôpital Tenon APHP, Paris 75020, France
| | - S Ricci
- Histologie-Biologie Tumorale, EA 3499 Université Pierre et Marie Curie Paris VI, Hôpital Tenon APHP, Paris 75020, France
| | - P Saintigny
- Histologie-Biologie Tumorale, EA 3499 Université Pierre et Marie Curie Paris VI, Hôpital Tenon APHP, Paris 75020, France
| | - P Callard
- Anatomie-Pathologique, EA 3499 Université Pierre et Marie Curie Paris VI, Hôpital Tenon APHP, Paris 75020, France
| | - S Périé
- Service d'ORL et Chirurgie Cervico-Faciale, Université Pierre et Marie Curie, Paris VI, Hôpital Tenon APHP, 4 rue de la Chine, Paris 75020, France
| | - R Lacave
- Histologie-Biologie Tumorale, EA 3499 Université Pierre et Marie Curie Paris VI, Hôpital Tenon APHP, Paris 75020, France
| | - J-F Bernaudin
- Histologie-Biologie Tumorale, EA 3499 Université Pierre et Marie Curie Paris VI, Hôpital Tenon APHP, Paris 75020, France
| | - J Lacau St Guily
- Service d'ORL et Chirurgie Cervico-Faciale, Université Pierre et Marie Curie, Paris VI, Hôpital Tenon APHP, 4 rue de la Chine, Paris 75020, France
- Service d'ORL et Chirurgie Cervico-Faciale, Université Pierre et Marie Curie, Paris VI, Hôpital Tenon APHP, 4 rue de la Chine, Paris 75020, France. E-mail:
| |
Collapse
|
27
|
Lin W, Zhang X, Chen Z, Borson N, Voss S, Sanderson S, Murphy L, Wettstein P, Strome SE. Development and immunophenotyping of squamous cell carcinoma xenografts: tools for translational immunology. Laryngoscope 2005; 115:1154-62. [PMID: 15995500 DOI: 10.1097/01.mlg.0000165368.81032.e2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES/HYPOTHESIS The objectives of this study were to delineate methods for the development of primary squamous cell carcinoma (SCCHN) xenografts and to define human leukocyte antigen (HLA), melanoma-associated antigen (MAGE)-A3, and human papilloma virus (HPV) 16 antigenic expression in resultant cellular products. STUDY DESIGN Prospective experimental model. METHODS Freshly isolated SCCHN xenografts were established in nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice using a variety of methods. Resultant tumors were analyzed for expression patterns of HLA-A, MAGE-A3, and HPV 16. Appropriate controls were included to ensure the presence of human RNA. RESULTS Three xenografts were successfully established and passaged in vivo. Characterization of the resultant products revealed that one was positive for HLA-A2 at both the DNA and protein levels. One of the tumor lines expressed MAGE-A3, whereas none expressed HPV 16. CONCLUSIONS Freshly isolated SCCHN can be used to generate primary xenografts. Characterization of select patterns of protein expression in established xenografts is a precursor to the development of a mouse model for SCCHN using tumor bearing animals reconstituted with autologous patient leukocytes.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/immunology
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor/immunology
- Cell Line, Tumor/pathology
- DNA, Neoplasm/genetics
- DNA, Neoplasm/immunology
- HLA-A2 Antigen/genetics
- HLA-A2 Antigen/immunology
- Immunohistochemistry
- Immunophenotyping/methods
- Mice
- Mice, Inbred NOD
- Neoplasm Proteins/genetics
- Neoplasm Proteins/immunology
- Neoplasm Transplantation/immunology
- Neoplasm Transplantation/pathology
- Papillomaviridae/genetics
- Papillomaviridae/immunology
- Prospective Studies
- RNA
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- RNA, Neoplasm/genetics
- RNA, Neoplasm/immunology
- Reverse Transcriptase Polymerase Chain Reaction
- T-Lymphocytes, Cytotoxic/immunology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Wei Lin
- Department of Otorhinolaryngology--Head and Neck Surgery, University of Maryland Medical Center, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Brieger J, Schroeder P, Gosepath J, Mann WJ. The cyclooxygenase inhibitor flurbiprofen reduces radiation-induced angiogenic growth factor secretion of squamous cell carcinoma cell lines. Ann N Y Acad Sci 2005; 1030:37-42. [PMID: 15659778 DOI: 10.1196/annals.1329.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Surgical intervention and radiotherapy still represent the gold standard in the therapy of head and neck squamous cell carcinoma (SCC), although often with unsatisfactory results. Radiation might induce the expression and secretion of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) by unknown mechanisms. These two highly active proangiogenic and cytoprotective factors might contribute to a limited therapeutic success by promoting revascularization and cytoprotection of the radiated tumor. The aim of the present study was to analyze the potential of the cyclooxygenase inhibitor flurbiprofen to reduce radiation-induced increase of VEGF and bFGF secretion of tumor cells. We analyzed the expression of VEGF and bFGF at 72 h after radiation with 30 Gy in four SCC cell lines (De-pt, Hun, Lau, and A549) in cell culture with or without added flurbiprofen. Controls were not exposed to radiation and were analyzed at the same time after culture in the same media. We observed increased VEGF levels in all and increased bFGF levels in three of four lines after radiation. In irradiated cultures with flurbiprofen, VEGF was reduced between 13% and 26% and bFGF was reduced between 84% and 93% compared with radiated cultures without flurbiprofen. We found no reduction of VEGF and bFGF secretion in the unirradiated cultures despite added flurbiprofen. We conclude that flurbiprofen is able to alter the radiation-induced secretion of these two growth factors and might be useful in decreasing the resistance of SCC to radiation.
Collapse
Affiliation(s)
- Jürgen Brieger
- Department of Otorhinolaryngology, Mainz Medical School, Germany.
| | | | | | | |
Collapse
|