1
|
Sexual development dysgenesis in interspecific hybrids of Medaka fish. Sci Rep 2022; 12:5408. [PMID: 35354874 PMCID: PMC8967909 DOI: 10.1038/s41598-022-09314-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/16/2022] [Indexed: 11/24/2022] Open
Abstract
Fish are amongst vertebrates the group with the highest diversity of known sex-determining genes. Particularly, the genus Oryzias is a suitable taxon to understand how different sex determination genetic networks evolved in closely related species. Two closely related species, O. latipes and O. curvinotus, do not only share the same XX/XY sex chromosome system, but also the same male sex-determining gene, dmrt1bY. We performed whole mRNA transcriptomes and morphology analyses of the gonads of hybrids resulting from reciprocal crosses between O. latipes and O. curvinotus. XY male hybrids, presenting meiotic arrest and no production of sperm were sterile, and about 30% of the XY hybrids underwent male-to-female sex reversal. Both XX and XY hybrid females exhibited reduced fertility and developed ovotestis while aging. Transcriptome data showed that male-related genes are upregulated in the XX and XY female hybrids. The transcriptomes of both types of female and of the male gonads are characterized by upregulation of meiosis and germ cell differentiation genes. Differences in the parental species in the downstream pathways of sexual development could explain sex reversal, sterility, and the development of intersex gonads in the hybrids. We hypothesize that male-to-female sex reversal may be connected to a different development time between species at which dmrt1bY expression starts. Our results provide molecular clues for the proximate mechanisms of hybrid incompatibility and Haldane’s rule.
Collapse
|
2
|
Gong J, Li B, Zhao J, Zhou Z, Ke Q, Zhu Q, Xu D, Zhou T, Xu P. Sex-Specific Genomic Region Identification and Molecular Sex Marker Development of Rock Bream (Oplegnathus fasciatus). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:163-173. [PMID: 35122574 DOI: 10.1007/s10126-022-10095-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Rock bream (Oplegnathus fasciatus) is a valuable commercial marine teleost species, which exhibits sexual dimorphism in growth performance. However, the absence of a rapid and cost-effective sex identification method based on sex-specific genetic marker has impeded study on sex determination mechanisms and breeding applications. In the present study, we firstly developed the PCR method for identifying potential sex-specific sequences in Oplegnathus fasciatus with the next-generation sequencing. Sex-specific genomic regions/loci for sex determination were discovered on Chr2 and Chr6 by genome-wide association analysis, sequencing depth, and heterozygosity comparison between females and males. Candidate sex-determining genes (CCDC63, ITR, WNT4) were furtherly detected in transcriptome data of testes and ovaries. Taken together, a male-specific 34-bp deletion on the Chr2 was identified and developed into molecular marker of sex for O. fasciatus. After validation in individuals with known phenotypic sexes, the accuracy was 100%. This study gives an insight into the mechanism of sex determination in O. fasciatus, and the gender marker is crucial both for future genomic research and for development of efficient and sustainable aquaculture practice.
Collapse
Affiliation(s)
- Jie Gong
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Bijun Li
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ji Zhao
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Zhixiong Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Qiaozhen Ke
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
| | - Qihui Zhu
- Zhejiang Marine Fisheries Research Institute, Zhoushan, China
| | - Dongdong Xu
- Zhejiang Marine Fisheries Research Institute, Zhoushan, China
| | - Tao Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Peng Xu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China.
| |
Collapse
|
3
|
The Snakeskin Gourami (Trichopodus pectoralis) Tends to Exhibit XX/XY Sex Determination. FISHES 2021. [DOI: 10.3390/fishes6040043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The snakeskin gourami (Trichopodus pectoralis) has a high meat yield and is one of the top five aquaculture freshwater fishes in Thailand. The species is not externally sexually dimorphic, and its sex determination system is unknown. Understanding the sex determination system of this species will contribute to its full-scale commercialization. In this study, a cytogenetic analysis did not reveal any between-sex differences in chromosomal patterns. However, we used genotyping-by-sequencing to identify 4 male-linked loci and 1 female-linked locus, indicating that the snakeskin gourami tends to exhibit an XX/XY sex determination system. However, we did not find any male-specific loci after filtering the loci for a ratio of 100:0 ratio of males:females. This suggests that the putative Y chromosome is young and that the sex determination region is cryptic. This approach provides solid information that can help identify the sex determination mechanism and potential sex determination regions in the snakeskin gourami, allowing further investigation of genetic improvements in the species.
Collapse
|
4
|
Stöck M, Dedukh D, Reifová R, Lamatsch DK, Starostová Z, Janko K. Sex chromosomes in meiotic, hemiclonal, clonal and polyploid hybrid vertebrates: along the 'extended speciation continuum'. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200103. [PMID: 34304588 PMCID: PMC8310718 DOI: 10.1098/rstb.2020.0103] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
We review knowledge about the roles of sex chromosomes in vertebrate hybridization and speciation, exploring a gradient of divergences with increasing reproductive isolation (speciation continuum). Under early divergence, well-differentiated sex chromosomes in meiotic hybrids may cause Haldane-effects and introgress less easily than autosomes. Undifferentiated sex chromosomes are more susceptible to introgression and form multiple (or new) sex chromosome systems with hardly predictable dominance hierarchies. Under increased divergence, most vertebrates reach complete intrinsic reproductive isolation. Slightly earlier, some hybrids (linked in 'the extended speciation continuum') exhibit aberrant gametogenesis, leading towards female clonality. This facilitates the evolution of various allodiploid and allopolyploid clonal ('asexual') hybrid vertebrates, where 'asexuality' might be a form of intrinsic reproductive isolation. A comprehensive list of 'asexual' hybrid vertebrates shows that they all evolved from parents with divergences that were greater than at the intraspecific level (K2P-distances of greater than 5-22% based on mtDNA). These 'asexual' taxa inherited genetic sex determination by mostly undifferentiated sex chromosomes. Among the few known sex-determining systems in hybrid 'asexuals', female heterogamety (ZW) occurred about twice as often as male heterogamety (XY). We hypothesize that pre-/meiotic aberrations in all-female ZW-hybrids present Haldane-effects promoting their evolution. Understanding the preconditions to produce various clonal or meiotic allopolyploids appears crucial for insights into the evolution of sex, 'asexuality' and polyploidy. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
Collapse
Affiliation(s)
- Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries - IGB (Forschungsverbund Berlin), Müggelseedamm 301, 12587 Berlin, Germany
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Dmitrij Dedukh
- Institute of Animal Physiology and Genetics, Laboratory of Fish Genetics, The Czech Academy of Sciences, 277 21 Libechov, Czech Republic
| | - Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic
| | - Dunja K. Lamatsch
- Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Zuzana Starostová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic
| | - Karel Janko
- Institute of Animal Physiology and Genetics, Laboratory of Fish Genetics, The Czech Academy of Sciences, 277 21 Libechov, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 701 03 Ostrava, Czech Republic
| |
Collapse
|
5
|
Song W, Xie Y, Sun M, Li X, Fitzpatrick CK, Vaux F, O'Malley KG, Zhang Q, Qi J, He Y. A duplicated amh is the master sex-determining gene for Sebastes rockfish in the Northwest Pacific. Open Biol 2021; 11:210063. [PMID: 34255977 PMCID: PMC8277470 DOI: 10.1098/rsob.210063] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Teleost fish are the most diverse group of vertebrates and provide opportunities to study the evolution of sex determination (SD) systems. Using genomic and functional analyses, we identified a male-specific duplication of anti-Müllerian hormone (amh) gene as the male master sex-determining (MSD) gene in Sebastes schlegelii. By resequencing 10 males and 10 females, we characterized a 5 kb-long fragment in HiC_Scaffold_12 as a male-specific region, which contained an amh gene (named amhy). We then demonstrated that amhy is a duplication of autosomal amh that was later translocated to the ancestral Y chromosome. amha and amhy shared high-nucleotide identity with the most significant difference being two insertions in intron 4 of amhy. Furthermore, amhy overexpression triggered female-to-male sex reversal in S. schlegelii, displaying its fundamental role in driving testis differentiation. We developed a PCR assay which successfully identified sexes in two species of northwest Pacific rockfish related to S. schlegelii. However, the PCR assay failed to distinguish the sexes in a separate clade of northeast Pacific rockfish. Our study provides new examples of amh as the MSD in fish and sheds light on the convergent evolution of amh duplication as the driving force of sex determination in different fish taxa.
Collapse
Affiliation(s)
- Weihao Song
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Yuheng Xie
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Minmin Sun
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Xuemei Li
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Cristín K Fitzpatrick
- State Fisheries Genomics Lab, Coastal Oregon Marine Experiment Station, Department of Fisheries and Wildlife, Hatfield Marine Science Center, Oregon State University, Newport, OR, USA
| | - Felix Vaux
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Kathleen G O'Malley
- State Fisheries Genomics Lab, Coastal Oregon Marine Experiment Station, Department of Fisheries and Wildlife, Hatfield Marine Science Center, Oregon State University, Newport, OR, USA
| | - Quanqi Zhang
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Jie Qi
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Yan He
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| |
Collapse
|
6
|
Cross I, García E, Rodríguez ME, Arias-Pérez A, Portela-Bens S, Merlo MA, Rebordinos L. The genomic structure of the highly-conserved dmrt1 gene in Solea senegalensis (Kaup, 1868) shows an unexpected intragenic duplication. PLoS One 2020; 15:e0241518. [PMID: 33137109 PMCID: PMC7605655 DOI: 10.1371/journal.pone.0241518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/15/2020] [Indexed: 01/17/2023] Open
Abstract
Knowing the factors responsible for sex determination in a species has significant theoretical and practical implications; the dmrt1 gene (Doublesex and Mab-3 (DM)-related Transcription factor 1) plays this role in diverse animal species. Solea senegalensis is a commercially important flat fish in which females grow 30% faster than males. It has 2n = 42 chromosomes and an XX / XY chromosome system for sex determination, without heteromorph chromosomes but with sex proto-chromosome. In the present study, we are providing the genomic structure and nucleotide sequence of dmrt1 gene obtained from cDNA from male and female adult gonads. A cDNA of 2027 containing an open-reading frame (ORF) of 1206 bp and encoding a 402 aa protein it is described for dmrt1 gene of S. senegalensis. Multiple mRNA isoforms indicating a high variable system of alternative splicing in the expression of dmrt1 of the sole in gonads were studied. None isoforms could be related to sex of individuals. The genomic structure of the dmrt1 of S. senegalensis showed a gene of 31400 bp composed of 7 exons and 6 introns. It contains an unexpected duplication of more than 10399 bp, involving part of the exon I, exons II and III and a SINE element found in the sequence that it is proposed as responsible for the duplication. A mature miRNA of 21 bp in length was localized at 336 bp from exon V. Protein-protein interacting networks of the dmrt1 gene showed matches with dmrt1 protein from Cynoglossus semilaevis and a protein interaction network with 11 nodes (dmrt1 plus 10 other proteins). The phylogenetic relationship of the dmrt1 gene in S. senegalensis is consistent with the evolutionary position of its species. The molecular characterization of this gene will enhance its functional analysis and the understanding of sex differentiation in Solea senegalensis and other flatfish.
Collapse
Affiliation(s)
- Ismael Cross
- Area de Genética, CASEM, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - Emilio García
- Area de Genética, CASEM, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - María E. Rodríguez
- Area de Genética, CASEM, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | | | | | - Manuel A. Merlo
- Area de Genética, CASEM, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | | |
Collapse
|
7
|
Kottler VA, Feron R, Nanda I, Klopp C, Du K, Kneitz S, Helmprobst F, Lamatsch DK, Lopez-Roques C, Lluch J, Journot L, Parrinello H, Guiguen Y, Schartl M. Independent Origin of XY and ZW Sex Determination Mechanisms in Mosquitofish Sister Species. Genetics 2020; 214:193-209. [PMID: 31704715 PMCID: PMC6944411 DOI: 10.1534/genetics.119.302698] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022] Open
Abstract
Fish are known for the outstanding variety of their sex determination mechanisms and sex chromosome systems. The western (Gambusia affinis) and eastern mosquitofish (G. holbrooki) are sister species for which different sex determination mechanisms have been described: ZZ/ZW for G. affinis and XX/XY for G. holbrooki Here, we carried out restriction-site associated DNA (RAD-) and pool sequencing (Pool-seq) to characterize the sex chromosomes of both species. We found that the ZW chromosomes of G. affinis females and the XY chromosomes of G. holbrooki males correspond to different linkage groups, and thus evolved independently from separate autosomes. In interspecific hybrids, the Y chromosome is dominant over the W chromosome, and X is dominant over Z. In G. holbrooki, we identified a candidate region for the Y-linked melanic pigmentation locus, a rare male phenotype that constitutes a potentially sexually antagonistic trait and is associated with other such characteristics, e.g., large body size and aggressive behavior. We developed a SNP-based marker in the Y-linked allele of GIPC PDZ domain containing family member 1 (gipc1), which was linked to melanism in all tested G. holbrooki populations. This locus represents an example for a color locus that is located in close proximity to a putative sex determiner, and most likely substantially contributed to the evolution of the Y.
Collapse
Affiliation(s)
- Verena A Kottler
- Physiological Chemistry, Biocenter, University of Wuerzburg, 97074, Germany
| | - Romain Feron
- INRA, UR1037 Fish Physiology and Genomics, 35000 Rennes, France
- University of Lausanne and Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Indrajit Nanda
- Institute for Human Genetics, Biocenter, University of Wuerzburg, 97074, Germany
| | - Christophe Klopp
- Sigenae, Mathématiques et Informatique Appliquées de Toulouse, INRA, 31326 Castanet Tolosan, France
| | - Kang Du
- Physiological Chemistry, Biocenter, University of Wuerzburg, 97074, Germany
| | - Susanne Kneitz
- Physiological Chemistry, Biocenter, University of Wuerzburg, 97074, Germany
| | | | - Dunja K Lamatsch
- University of Innsbruck, Research Department for Limnology, Mondsee, 5310 Mondsee, Austria
| | | | - Jerôme Lluch
- INRA, US 1426, GeT-PlaGe, Genotoul, 31326 Castanet-Tolosan, France
| | - Laurent Journot
- Montpellier GenomiX (MGX), University Montpellier, CNRS, INSERM, 34094 France
| | - Hugues Parrinello
- Montpellier GenomiX (MGX), University Montpellier, CNRS, INSERM, 34094 France
| | - Yann Guiguen
- INRA, UR1037 Fish Physiology and Genomics, 35000 Rennes, France
| | - Manfred Schartl
- Physiological Chemistry, Biocenter, University of Wuerzburg, 97074, Germany
- Developmental Biochemistry, Biocenter, University of Wuerzburg, 97074, Germany
- Hagler Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
8
|
Pan Q, Feron R, Yano A, Guyomard R, Jouanno E, Vigouroux E, Wen M, Busnel JM, Bobe J, Concordet JP, Parrinello H, Journot L, Klopp C, Lluch J, Roques C, Postlethwait J, Schartl M, Herpin A, Guiguen Y. Identification of the master sex determining gene in Northern pike (Esox lucius) reveals restricted sex chromosome differentiation. PLoS Genet 2019; 15:e1008013. [PMID: 31437150 PMCID: PMC6726246 DOI: 10.1371/journal.pgen.1008013] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 09/04/2019] [Accepted: 07/26/2019] [Indexed: 01/17/2023] Open
Abstract
Teleost fishes, thanks to their rapid evolution of sex determination mechanisms, provide remarkable opportunities to study the formation of sex chromosomes and the mechanisms driving the birth of new master sex determining (MSD) genes. However, the evolutionary interplay between the sex chromosomes and the MSD genes they harbor is rather unexplored. We characterized a male-specific duplicate of the anti-Müllerian hormone (amh) as the MSD gene in Northern Pike (Esox lucius), using genomic and expression evidence as well as by loss-of-function and gain-of-function experiments. Using RAD-Sequencing from a family panel, we identified Linkage Group (LG) 24 as the sex chromosome and positioned the sex locus in its sub-telomeric region. Furthermore, we demonstrated that this MSD originated from an ancient duplication of the autosomal amh gene, which was subsequently translocated to LG24. Using sex-specific pooled genome sequencing and a new male genome sequence assembled using Nanopore long reads, we also characterized the differentiation of the X and Y chromosomes, revealing a small male-specific insertion containing the MSD gene and a limited region with reduced recombination. Our study reveals an unexpectedly low level of differentiation between a pair of sex chromosomes harboring an old MSD gene in a wild teleost fish population, and highlights both the pivotal role of genes from the amh pathway in sex determination, as well as the importance of gene duplication as a mechanism driving the turnover of sex chromosomes in this clade. In stark contrast to mammals and birds, a high proportion of teleosts have homomorphic sex chromosomes and display a high diversity of sex determining genes. Yet, population level knowledge of both the sex chromosome and the master sex determining gene is only available for the Japanese medaka, a model species. Here we identified and provided functional proofs of an old duplicate of anti-Müllerian hormone (Amh), a member of the Tgf- β family, as the male master sex determining gene in the Northern pike, Esox lucius. We found that this duplicate, named amhby (Y-chromosome-specific anti-Müllerian hormone paralog b), was translocated to the sub-telomeric region of the new sex chromosome, and now amhby shows strong sequence divergence as well as substantial expression pattern differences from its autosomal paralog, amha. We assembled a male genome sequence using Nanopore long reads and identified a restricted region of differentiation within the sex chromosome pair in a wild population. Our results provide insight on the conserved players in sex determination pathways, the mechanisms of sex chromosome turnover, and the diversity of levels of differentiation between homomorphic sex chromosomes in teleosts.
Collapse
Affiliation(s)
- Qiaowei Pan
- INRA, UR1037 LPGP, Campus de Beaulieu, Rennes, France
- Department of Ecology and Evolution, University of Lausanne,1015, Lausanne, Switzerland
| | - Romain Feron
- INRA, UR1037 LPGP, Campus de Beaulieu, Rennes, France
- Department of Ecology and Evolution, University of Lausanne,1015, Lausanne, Switzerland
| | - Ayaka Yano
- INRA, UR1037 LPGP, Campus de Beaulieu, Rennes, France
| | - René Guyomard
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | | | - Ming Wen
- INRA, UR1037 LPGP, Campus de Beaulieu, Rennes, France
| | - Jean-Mickaël Busnel
- Fédération d’Ille-et-Vilaine pour la pêche et la protection du milieu aquatique (FDPPMA35), CS 26713, Rennes, France
| | - Julien Bobe
- INRA, UR1037 LPGP, Campus de Beaulieu, Rennes, France
| | - Jean-Paul Concordet
- INSERM U1154, CNRS UMR7196, MNHN, Muséum National d'Histoire Naturelle, France
| | - Hugues Parrinello
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Laurent Journot
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Christophe Klopp
- Plate-forme bio-informatique Genotoul, Mathématiques et Informatique Appliquées de Toulouse, INRA, Castanet Tolosan, France
- SIGENAE, GenPhySE, Université de Toulouse, INRA, ENVT, Castanet Tolosan, France
| | - Jérôme Lluch
- INRA, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Céline Roques
- INRA, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - John Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Manfred Schartl
- University of Wuerzburg, Physiological Chemistry, Biocenter, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University Hospital, Würzburg, Germany
- Hagler Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Amaury Herpin
- INRA, UR1037 LPGP, Campus de Beaulieu, Rennes, France
| | - Yann Guiguen
- INRA, UR1037 LPGP, Campus de Beaulieu, Rennes, France
- * E-mail:
| |
Collapse
|
9
|
Becking T, Giraud I, Raimond M, Moumen B, Chandler C, Cordaux R, Gilbert C. Diversity and evolution of sex determination systems in terrestrial isopods. Sci Rep 2017; 7:1084. [PMID: 28439127 PMCID: PMC5430756 DOI: 10.1038/s41598-017-01195-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/27/2017] [Indexed: 11/17/2022] Open
Abstract
Sex determination systems are highly variable in many taxa, sometimes even between closely related species. Yet the number and direction of transitions between these systems have seldom been characterized, and the underlying mechanisms are still poorly understood. Here we generated transcriptomes for 19 species of terrestrial isopod crustaceans, many of which are infected by Wolbachia bacterial endosymbionts. Using 88 single-copy orthologous genes, we reconstructed a fully resolved and dated phylogeny of terrestrial isopods. An original approach involving crossings of sex-reversed individuals allowed us to characterize the heterogametic systems of five species (one XY/XX and four ZW/ZZ). Mapping of these and previously known heterogametic systems onto the terrestrial isopod phylogeny revealed between 3 and 13 transitions of sex determination systems during the evolution of these taxa, most frequently from female to male heterogamety. Our results support that WW individuals are viable in many species, suggesting sex chromosomes are at an incipient stage of their evolution. Together, these data are consistent with the hypothesis that nucleo-cytoplasmic conflicts generated by Wolbachia endosymbionts triggered recurrent turnovers of sex determination systems in terrestrial isopods. They further establish terrestrial isopods as a model to study evolutionary transitions in sex determination systems and pave the way to molecularly characterize these systems.
Collapse
Affiliation(s)
- Thomas Becking
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Isabelle Giraud
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Maryline Raimond
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Bouziane Moumen
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, TSA 51106, 86073, Poitiers Cedex 9, France
| | | | - Richard Cordaux
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, TSA 51106, 86073, Poitiers Cedex 9, France.
| | - Clément Gilbert
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, TSA 51106, 86073, Poitiers Cedex 9, France.
| |
Collapse
|
10
|
Chalopin D, Volff JN, Galiana D, Anderson JL, Schartl M. Transposable elements and early evolution of sex chromosomes in fish. Chromosome Res 2016; 23:545-60. [PMID: 26429387 DOI: 10.1007/s10577-015-9490-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In many organisms, the sex chromosome pair can be recognized due to heteromorphy; the Y and W chromosomes have often lost many genes due to the absence of recombination during meiosis and are frequently heterochromatic. Repetitive sequences are found at a high proportion on such heterochromatic sex chromosomes and the evolution and emergence of sex chromosomes has been connected to the dynamics of repeats and transposable elements. With an amazing plasticity of sex determination mechanisms and numerous instances of independent emergence of novel sex chromosomes, fish represent an excellent lineage to investigate the early stages of sex chromosome differentiation, where sex chromosomes often are homomorphic and not heterochromatic. We have analyzed the composition, distribution, and relative age of TEs from available sex chromosome sequences of seven teleost fish. We observed recent bursts of TEs and simple repeat accumulations around young sex determination loci. More strikingly, we detected transposable element (TE) amplifications not only on the sex determination regions of the Y and W sex chromosomes, but also on the corresponding regions of the X and Z chromosomes. In one species, we also clearly demonstrated that the observed TE-rich sex determination locus originated from a TE-poor genomic region, strengthening the link between TE accumulation and emergence of the sex determination locus. Altogether, our results highlight the role of TEs in the initial steps of differentiation and evolution of sex chromosomes.
Collapse
Affiliation(s)
- Domitille Chalopin
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France.,Department of Genetics, University of Georgia, Athens, GA, USA
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Delphine Galiana
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Jennifer L Anderson
- INRA, Fish Physiology and Genomics (UR1037), Campus de Beaulieu, Rennes, France.,Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Manfred Schartl
- Department Physiological Chemistry, Biozentrum, University of Wuerzburg, and Comprehensive Cancer Center Mainfranken, University Clinic Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
11
|
Cocca E, Petraccioli A, Morescalchi MA, Odierna G, Capriglione T. Laser microdissection-based analysis of the Y sex chromosome of the Antarctic fish Chionodracohamatus (Notothenioidei, Channichthyidae). COMPARATIVE CYTOGENETICS 2015; 9:1-15. [PMID: 25893071 PMCID: PMC4387377 DOI: 10.3897/compcytogen.v9i1.8731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/09/2014] [Indexed: 05/16/2023]
Abstract
Microdissection, DOP-PCR amplification and microcloning were used to study the large Y chromosome of Chionodracohamatus, an Antarctic fish belonging to the Notothenioidei, the dominant component of the Southern Ocean fauna. The species has evolved a multiple sex chromosome system with digametic males showing an X1YX2 karyotype and females an X1X1X2X2 karyotype. Fluorescence in situ hybridization, performed with a painting probe made from microdissected Y chromosomes, allowed a deeper insight on the chromosomal rearrangement, which underpinned the fusion event that generated the Y. Then, we used a DNA library established by microdissection and microcloning of the whole Y chromosome of Chionodracohamatus for searching sex-linked sequences. One clone provided preliminary information on the presence on the Y chromosome of the CHD1 gene homologue, which is sex-linked in birds but in no other vertebrates. Several clones from the Y-chromosome mini-library contained microsatellites and transposable elements, one of which mapped to the q arm putative fusion region of the Y chromosome. The findings confirm that interspersed repetitive sequences might have fostered chromosome rearrangements and the emergence of the Y chromosome in Chionodracohamatus. Detection of the CHD1 gene in the Y sex-determining region could be a classical example of convergent evolution in action.
Collapse
Affiliation(s)
- Ennio Cocca
- Istituto di Bioscienze e Biorisorse, CNR, via P. Castellino 111, 80131 Napoli, Italy
| | - Agnese Petraccioli
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, via Cinthia, 80126 Napoli, Italy
| | | | - Gaetano Odierna
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, via Cinthia, 80126 Napoli, Italy
| | - Teresa Capriglione
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, via Cinthia, 80126 Napoli, Italy
| |
Collapse
|
12
|
A syntenic region conserved from fish to Mammalian x chromosome. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2014; 2014:873935. [PMID: 25506037 PMCID: PMC4254068 DOI: 10.1155/2014/873935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/30/2014] [Accepted: 11/02/2014] [Indexed: 11/29/2022]
Abstract
Sex chromosomes bearing the sex-determining gene initiate development along the male or female pathway, no matter which sex is determined by XY male or ZW female heterogamety. Sex chromosomes originate from ancient autosomes but evolved rapidly after the acquisition of sex-determining factors which are highly divergent between species. In the heterogametic male system (XY system), the X chromosome is relatively evolutionary silent and maintains most of its ancestral genes, in contrast to its Y counterpart that has evolved rapidly and degenerated. Sex in a teleost fish, the Nile tilapia (Oreochromis niloticus), is determined genetically via an XY system, in which an unpaired region is present in the largest chromosome pair. We defined the differences in DNA contents present in this chromosome with a two-color comparative genomic hybridization (CGH) and the random amplified polymorphic DNA (RAPD) approach in XY males. We further identified a syntenic segment within this region that is well conserved in several teleosts. Through comparative genome analysis, this syntenic segment was also shown to be present in mammalian X chromosomes, suggesting a common ancestral origin of vertebrate sex chromosomes.
Collapse
|
13
|
Gene amplification and functional diversification of melanocortin 4 receptor at an extremely polymorphic locus controlling sexual maturation in the platyfish. Genetics 2013; 195:1337-52. [PMID: 24077304 DOI: 10.1534/genetics.113.155952] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In two swordtail species of the genus Xiphophorus, the onset of puberty has been shown to be modulated at the P locus by sequence polymorphism and gene copy-number variation affecting the type 4 melanocortin hormone receptor Mc4r. The system works through the interaction of two allelic types, one encoding wild type and the other dominant-negative receptors. We have analyzed the structure and evolution of the P locus in the platyfish Xiphophorus maculatus, where as many as nine alleles of P determining the onset of sexual maturity in males and females, fecundity in females, and adult size in males are located on both the X and Y chromosomes in a region linked to the master sex-determining locus. In this species, mc4r has been amplified to up to 10 copies on both the X and Y chromosomes through recent large serial duplications. Subsequently, mc4r paralogues have diverged considerably into many different subtypes. Certain copies have acquired new untranslated regions through genomic rearrangements, and transposable element insertions and other mutations have accumulated in promoter regions, possibly explaining observed deviations from the classical mc4r transcriptional pattern. In the mc4r-coding sequence, in-frame insertions and deletions as well as nonsense and missense mutations have generated a high diversity of Mc4r-predicted proteins. Most of these variants are expressed in embryos, adults, and/or tumors. Functional receptor characterization demonstrated major divergence in pharmacological behavior for Mc4r receptors encoded by different copies of platyfish mc4r, with differences in constitutive activity as well as binding and stimulation by hormones. The high degree of allelic and copy-number variation observed between individuals can explain the high level of polymorphism for sexual maturation, fecundity, and body size in the platyfish: multiple combinations of Mc4r variants with different biochemical properties might interact to modulate the melanocortin signaling that regulates the hypothalamus-pituitary-gonadal axis.
Collapse
|
14
|
Linkage and Physical Mapping of Sex Region on LG23 of Nile Tilapia (Oreochromis niloticus). G3-GENES GENOMES GENETICS 2012; 2:35-42. [PMID: 22384380 PMCID: PMC3276181 DOI: 10.1534/g3.111.001545] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 11/03/2011] [Indexed: 11/18/2022]
Abstract
Evidence supports that sex determination (SD) in tilapia is controlled by major genetic factors that may interact with minor genetic as well as environmental factors, thus implying that SD should be analyzed as a quantitative trait. Quantitative trait loci (QTL) for SD in Oreochromis niloticus were previously detected on linkage groups (LG) 1 and 23. Twenty-one short single repeats (SSR) of >12 TGs and one single nucleotide polymorphism were identified using the unpublished tilapia genome sequence on LG23. All markers showed two segregating alleles in a mapping family that was obtained by a cross between O. niloticus male (XY) and sex-reversed female (ΔXY) yielding 29 females (XX) and 61 males (XY and YY). Interval mapping analysis mapped the QTL peak between SSR markers ARO172 and ARO177 with a maximum F value of 78.7 (P < 7.6 × 10(-14)). Twelve adjacent markers found in this region were homozygous in females and either homozygous for the alternative allele or heterozygous in males. This segment was defined as the sex region (SR). The SR encompasses 1.5 Mbp on a single tilapia scaffold (no. 101) harboring 51 annotated genes. Among 10 candidate genes for SD that were tested for gene expression, anti-Müllerian hormone (Amh), which is located in the center of the SR, showed the highest overexpression in male vs. female embryos at 3 to 7 days postfertilization.
Collapse
|
15
|
Hale MC, Xu P, Scardina J, Wheeler PA, Thorgaard GH, Nichols KM. Differential gene expression in male and female rainbow trout embryos prior to the onset of gross morphological differentiation of the gonads. BMC Genomics 2011; 12:404. [PMID: 21824436 PMCID: PMC3166948 DOI: 10.1186/1471-2164-12-404] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 08/08/2011] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND There are large differences between the sexes at the genetic level; these differences include heterogametic sex chromosomes and/or differences in expression of genes between the sexes. In rainbow trout (Oncorhynchus mykiss) qRT-PCR studies have found significant differences in expression of several candidate sex determining genes. However, these genes represent a very small fraction of the genome and research in other species suggests there are large portions of the transcriptome that are differentially expressed between the sexes. These differences are especially noticeable once gonad differentiation and maturation has occurred, but less is known at earlier stages of development. Here we use data from a microarray and qRT-PCR to identify genes differentially expressed between the sexes at three time points in pre-hatch embryos, prior to the known timing of sexual differentiation in this species. RESULTS The microarray study revealed 883 differentially expressed features between the sexes with roughly equal numbers of male and female upregulated features across time points. Most of the differentially expressed genes on the microarray were not related to sex function, suggesting large scale differences in gene expression between the sexes are present early in development. Candidate gene analysis revealed sox9, DMRT1, Nr5a1 and wt1 were upregulated in males at some time points and foxl2, ovol1, fst and cyp19a1a were upregulated in females at some time points. CONCLUSION This is the first study to identify sexual dimorphism in expression of the genome during embryogenesis in any fish and demonstrates that transcriptional differences are present before the completion of gonadogenesis.
Collapse
Affiliation(s)
- Matthew C Hale
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Böhne A, Schultheis C, Galiana-Arnoux D, Froschauer A, Zhou Q, Schmidt C, Selz Y, Ozouf-Costaz C, Dettai A, Segurens B, Couloux A, Bernard-Samain S, Barbe V, Chilmonczyk S, Brunet F, Darras A, Tomaszkiewicz M, Semon M, Schartl M, Volff JN. Molecular analysis of the sex chromosomes of the platyfish Xiphophorus maculatus: Towards the identification of a new type of master sexual regulator in vertebrates. Integr Zool 2011; 4:277-84. [PMID: 21392300 DOI: 10.1111/j.1749-4877.2009.00166.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In contrast to mammals and birds, fish display an amazing diversity of genetic sex determination systems, with frequent changes during evolution possibly associated with the emergence of new sex chromosomes and sex-determining genes. To better understand the molecular and evolutionary mechanisms driving this diversity, several fish models are studied in parallel. Besides the medaka (Oryzias latipes Temminck and Schlegel, 1846) for which the master sex-determination gene has been identified, one of the most advanced models for studying sex determination is the Southern platyfish (Xiphophorus maculatus, Günther 1966). Xiphophorus maculatus belongs to the Poeciliids, a family of live-bearing freshwater fish, including platyfish, swordtails and guppies that perfectly illustrates the diversity of genetic sex-determination mechanisms observed in teleosts. For X. maculatus, bacterial artificial chromosome contigs covering the sex-determination region of the X and Y sex chromosomes have been constructed. Initial molecular analysis demonstrated that the sex-determination region is very unstable and frequently undergoes duplications, deletions, inversions and other rearrangements. Eleven gene candidates linked to the master sex-determining gene have been identified, some of them corresponding to pseudogenes. All putative genes are present on both the X and the Y chromosomes, suggesting a poor degree of differentiation and a young evolutionary age for platyfish sex chromosomes. When compared with other fish and tetrapod genomes, syntenies were detected only with autosomes. This observation supports an independent origin of sex chromosomes, not only in different vertebrate lineages but also between different fish species.
Collapse
Affiliation(s)
- Astrid Böhne
- Institute of Functional Genomics, Ecole Normale Supérieure de Lyon / Université de Lyon, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Olmstead AW, Villeneuve DL, Ankley GT, Cavallin JE, Lindberg-Livingston A, Wehmas LC, Degitz SJ. A method for the determination of genetic sex in the fathead minnow, Pimephales promelas, to support testing of endocrine-active chemicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:3090-3095. [PMID: 21361318 DOI: 10.1021/es103327r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Certain endocrine-active toxicants have been reported to completely sex reverse both male and female individuals in amphibian, avian, fish, invertebrate, and reptile species, resulting in a phenotype indistinguishable from unaffected individuals. Detection of low-level sex reversal often requires large numbers of organisms to achieve the necessary statistical power, especially in those species with predominantly genetic sex determination and cryptic/homomorphic sex chromosomes. Here we describe a method for determining the genetic sex in the commonly used ecotoxicological model, the fathead minnow (Pimephales promelas). Analysis of amplified fragment length polymorphisms (AFLP) in a spawn of minnows resulted in detection of 10 sex-linked AFLPs, which were isolated and sequenced. No recombination events were observed with any sex-linked AFLP in the animals examined (n=112). A polymerase chain reaction (PCR) method was then developed that determined the presence of one of these sex-linked polymorphisms for utilization in routine toxicological testing. Analyses of additional spawns from our in-house culture indicate that fathead minnows utilize a XY sex determination strategy and confirm that these markers can be used to genotype sex; however, this method is currently limited to use in laboratory studies in which breeders possess a defined genetic makeup. The genotyping method described herein can be incorporated into endocrine toxicity assays that examine the effects of chemicals on gonad differentiation.
Collapse
Affiliation(s)
- Allen W Olmstead
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, U.S. Environmental Protection Agency, 6201 Congdon Blvd., Duluth, Minnesota 55804, United States.
| | | | | | | | | | | | | |
Collapse
|
18
|
Villarreal LP. The source of self: genetic parasites and the origin of adaptive immunity. Ann N Y Acad Sci 2009; 1178:194-232. [PMID: 19845639 DOI: 10.1111/j.1749-6632.2009.05020.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stable colonization of the host by viruses (genetic parasites) can alter the systems of host identity and provide immunity against related viruses. To attain the needed stability, some viruses of prokaryotes (P1 phage) use a strategy called an addiction module. The linked protective and destructive gene functions of an addiction module insures both virus persistence but will also destroy cells that interrupt this module and thereby prevent infection by competitors. Previously, I have generalized this concept to also include persistent and lytic states of virus infection, which can be considered as a virus addiction module. Such states often involve defective viruses. In this report, I examine the origin of the adaptive immune system from the perspective of a virus addiction module. The likely role of both endogenous and exogenous retroviruses, DNA viruses, and their defective elements is considered in the origin of all the basal components of adaptive immunity (T-cell receptor, RAG-mediated gene rearrangement, clonal lymphocyte proliferation, antigen surface presentation, apoptosis, and education of immune cells). It is concluded that colonization by viruses and their defectives provides a more coherent explanation for the origin of adaptive immunity.
Collapse
Affiliation(s)
- Luis P Villarreal
- Center for Virus Research, Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA.
| |
Collapse
|
19
|
Mapping loci associated with tail color and sex determination in the short-lived fish Nothobranchius furzeri. Genetics 2009; 183:1385-95. [PMID: 19786620 DOI: 10.1534/genetics.109.108670] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The African fish Nothobranchius furzeri is the shortest-lived vertebrate species that can reproduce in captivity, with a median life span of 9-11 weeks for the shortest-lived strain. Natural populations of N. furzeri display differences in life span, aging biomarkers, behavior, and color, which make N. furzeri a unique vertebrate system for studying the genetic basis of these traits. We mapped regions of the genome involved in sex determination and tail color by genotyping microsatellite markers in the F(2) progeny of a cross between a short-lived, yellow-tailed strain and a long-lived, red-tailed strain of N. furzeri. We identified one region linked with the yellow/red tail color that maps close to melanocortin 1 receptor (mc1r), a gene involved in pigmentation in several vertebrate species. Analysis of the segregation of sex-linked markers revealed that N. furzeri has a genetic sex determination system with males as the heterogametic sex and markedly reduced recombination in the male sex-determining region. Our results demonstrate that both naturally-evolved pigmentation differences and sex determination in N. furzeri are controlled by simple genetic mechanisms and set the stage for the molecular genetic dissection of factors underlying such traits. The microsatellite-based linkage map we developed for N. furzeri will also facilitate analysis of the genetic architecture of traits that characterize this group of vertebrates, including short life span and adaptation to extreme environmental conditions.
Collapse
|
20
|
Phillips RB, DeKoning JJ, Ventura AB, Nichols KM, Drew RE, Chaves LD, Reed KM, Felip A, Thorgaard GH. Recombination is suppressed over a large region of the rainbow trout Y chromosome. Anim Genet 2009; 40:925-32. [PMID: 19744144 DOI: 10.1111/j.1365-2052.2009.01944.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The previous genetic mapping data have suggested that most of the rainbow trout sex chromosome pair is pseudoautosomal, with very small X-specific and Y-specific regions. We have prepared an updated genetic and cytogenetic map of the male rainbow trout sex linkage group. Selected sex-linked markers spanning the X chromosome of the female genetic map have been mapped cytogenetically in normal males and genetically in crosses between the OSU female clonal line and four different male clonal lines as well as in outcrosses involving outbred OSU and hybrids between the OSU line and the male clonal lines. The cytogenetic maps of the X and Y chromosomes were very similar to the female genetic map for the X chromosome. Five markers on the male maps are genetically very close to the sex determination locus (SEX), but more widely spaced on the female genetic map and on the cytogenetic map, indicating a large region of suppressed recombination on the Y chromosome surrounding the SEX locus. The male map is greatly extended at the telomere. A BAC clone containing the SCAR (sequence characterized amplified region) Omy-163 marker, which maps close to SEX, was subjected to shotgun sequencing. Two carbonyl reductase genes and a gene homologous to the vertebrate skeletal ryanodine receptor were identified. Carbonyl reductase is a key enzyme involved in production of trout ovarian maturation hormone. This brings the number of type I genes mapped to the sex chromosome to six and has allowed us to identify a region on zebrafish chromosome 10 and medaka chromosome 13 which may be homologous to the distal portion of the long arm of the rainbow trout Y chromosome.
Collapse
Affiliation(s)
- R B Phillips
- School of Biological Sciences, Washington State University, Vancouver, WA 98686-9600, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Intralocus sexual conflict arises when there are sex-specific optima for a trait that is expressed in both sexes and when the constraint of a shared gene pool prevents males and females from reaching their optima independently. This situation may result in a negative intersexual correlation for fitness. Here I first discuss key differences between intra- and interlocus conflict, the type of sexual conflict that arises in mating interactions between males and females. I then review the experimental evidence for the existence of genomewide sexually antagonistic variation and discuss how intralocus conflict can be resolved. Substantial genomewide sexually antagonistic variation exists in Drosophila melanogaster lab populations. Yet, in the same species, sex-specific gene regulation appears to evolve rapidly, suggesting that the obstacles to the resolution of intralocus conflict are minor. The fact that negative intersexual correlations for fitness are observed even if sexual dimorphism can evolve rapidly suggests that intralocus conflict is highly dynamic. The final part of this review examines the evolutionary consequences of intralocus sexual conflict for the evolution of the sex chromosomes, sexual selection, and sex determination. Intralocus conflict helps to explain many of the peculiar features of the sex chromosomes and has shaped the functional bias and expression biases of sex-linked genes. The genomic distribution of sexually selected genes, in particular, affects sexual selection in various ways. The presence of sexually antagonistic variation can strongly interfere with the good genes' process of sexual selection and erode the genetic benefits of mate choice. Regarding sex determination, this review concentrates on evolutionary transitions between different sex determination mechanisms. Such transitions have occurred frequently in several taxa. Theory and empirical data suggest an important role for intralocus conflict in triggering switches between sex determination systems.
Collapse
|
22
|
Linkage analysis reveals the independent origin of Poeciliid sex chromosomes and a case of atypical sex inheritance in the guppy (Poecilia reticulata). Genetics 2009; 182:365-74. [PMID: 19299341 DOI: 10.1534/genetics.108.098541] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Among different teleost fish species, diverse sex-determining mechanisms exist, including environmental and genetic sex determination, yet chromosomal sex determination with male heterogamety (XY) prevails. Different pairs of autosomes have evolved as sex chromosomes among species in the same genus without evidence for a master sex-determining locus being identical. Models for evolution of Y chromosomes predict that male-advantageous genes become linked to a sex-determining locus and suppressed recombination ensures their co-inheritance. In the guppy, Poecilia reticulata, a set of genes responsible for adult male ornaments are linked to the sex-determining locus on the incipient Y chromosome. We have identified >60 sex-linked molecular markers to generate a detailed map for the sex linkage group of the guppy and compared it with the syntenic autosome 12 of medaka. We mapped the sex-determining locus to the distal end of the sex chromosome. We report a sex-biased distribution of recombination events in female and male meiosis on sex chromosomes. In one mapping cross, we observed sex ratio and male phenotype deviations and propose an atypical mode of genetic sex inheritance as its basis.
Collapse
|
23
|
Cnaani A, Kocher TD. Sex-linked markers and microsatellite locus duplication in the cichlid species Oreochromis tanganicae. Biol Lett 2009; 4:700-3. [PMID: 18700198 DOI: 10.1098/rsbl.2008.0286] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cichlid species of the genus Oreochromis vary in their genetic sex-determination systems. In this study, we used microsatellite DNA markers to characterize the sex-determination system in Oreochromis tanganicae. Markers on linkage group 3 were associated with phenotypic sex, with an inheritance pattern typical of a female heterogametic species (WZ-ZZ). Further, locus duplication was observed for two separate microsatellite markers on the sex chromosome. These results further advance our understanding of the rapidly evolving sex-determination systems among these closely related tilapia species.
Collapse
Affiliation(s)
- Avner Cnaani
- Department of Poultry and Aquaculture, Institute of Animal Science, Agricultural Research Organization, Bet-Dagan 50250, Israel.
| | | |
Collapse
|
24
|
Penman DJ, Piferrer F. Fish Gonadogenesis. Part I: Genetic and Environmental Mechanisms of Sex Determination. ACTA ACUST UNITED AC 2008. [DOI: 10.1080/10641260802324610] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Affiliation(s)
- Ferenc Müller
- Institute of Toxicology and Genetics, Forschungszentrum Karlsruhe, Karlsruhe D-76021, Germany.
| |
Collapse
|
26
|
Literature watch. Xiphophorus. Zebrafish 2008; 3:105-10. [PMID: 18248251 DOI: 10.1089/zeb.2006.3.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
27
|
Kikuchi K, Kai W, Hosokawa A, Mizuno N, Suetake H, Asahina K, Suzuki Y. The sex-determining locus in the tiger pufferfish, Takifugu rubripes. Genetics 2007; 175:2039-42. [PMID: 17287528 PMCID: PMC1855111 DOI: 10.1534/genetics.106.069278] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The tiger pufferfish (fugu), Takifugu rubripes, is a model fish that has had its genome entirely sequenced. By performing genomewide linkage analyses, we show that the sex of fugu is determined by a single chromosomal region on linkage group 19 in an XX-XY system.
Collapse
Affiliation(s)
- Kiyoshi Kikuchi
- Fisheries Laboratory, University of Tokyo, Maisaka, Shizuoka 431-0214, Japan.
| | | | | | | | | | | | | |
Collapse
|
28
|
Veith AM, Schäfer M, Klüver N, Schmidt C, Schultheis C, Schartl M, Winkler C, Volff JN. Tissue-Specific Expression ofdmrtGenes in Embryos and Adults of the PlatyfishXiphophorus maculatus. Zebrafish 2006; 3:325-37. [DOI: 10.1089/zeb.2006.3.325] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Anne-Marie Veith
- Physiologische Chemie I, Biozentrum, University of Würzburg, Würzburg, Germany
| | - Matthias Schäfer
- Physiologische Chemie I, Biozentrum, University of Würzburg, Würzburg, Germany
| | - Nils Klüver
- Physiologische Chemie I, Biozentrum, University of Würzburg, Würzburg, Germany
| | - Cornelia Schmidt
- Physiologische Chemie I, Biozentrum, University of Würzburg, Würzburg, Germany
| | | | - Manfred Schartl
- Physiologische Chemie I, Biozentrum, University of Würzburg, Würzburg, Germany
| | - Christoph Winkler
- Physiologische Chemie I, Biozentrum, University of Würzburg, Würzburg, Germany
| | - Jean-Nicolas Volff
- Physiologische Chemie I, Biozentrum, University of Würzburg, Würzburg, Germany
| |
Collapse
|
29
|
Schultheis C, Zhou Q, Froschauer A, Nanda I, Selz Y, Schmidt C, Matschl S, Wenning M, Veith AM, Naciri M, Hanel R, Braasch I, Dettai A, Böhne A, Ozouf-Costaz C, Chilmonczyk S, Ségurens B, Couloux A, Bernard-Samain S, Schmid M, Schartl M, Volff JN. Molecular Analysis of the Sex-Determining Region of the PlatyfishXiphophorus maculatus. Zebrafish 2006; 3:299-309. [DOI: 10.1089/zeb.2006.3.299] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
| | - Qingchun Zhou
- Physiologische Chemie I, Biozentrum , University of Würzburg, Würzburg, Germany
- Present address: Department of Zoology and Stephenson Research and Technology Center, University of Oklahoma, Norman, Oklahoma
| | - Alexander Froschauer
- Physiologische Chemie I, Biozentrum , University of Würzburg, Würzburg, Germany
- Present address: Institut für Zoologie, Technische Universität Dresden, Dresden, Germany
| | - Indrajit Nanda
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Yvonne Selz
- Physiologische Chemie I, Biozentrum , University of Würzburg, Würzburg, Germany
| | - Cornelia Schmidt
- Physiologische Chemie I, Biozentrum , University of Würzburg, Würzburg, Germany
| | - Sabine Matschl
- Physiologische Chemie I, Biozentrum , University of Würzburg, Würzburg, Germany
| | - Marina Wenning
- Physiologische Chemie I, Biozentrum , University of Würzburg, Würzburg, Germany
| | - Anne-Marie Veith
- Physiologische Chemie I, Biozentrum , University of Würzburg, Würzburg, Germany
| | - Mariam Naciri
- Physiologische Chemie I, Biozentrum , University of Würzburg, Würzburg, Germany
- Present address: Université Mohamed V, Faculté des Sciences, Rabat, Morocco
| | - Reinhold Hanel
- Physiologische Chemie I, Biozentrum , University of Würzburg, Würzburg, Germany
- Present address: Leibniz Institut für Meereswissenschaften, IFM-GEOMAR, Kiel, Germany
| | - Ingo Braasch
- Physiologische Chemie I, Biozentrum , University of Würzburg, Würzburg, Germany
| | - Agnès Dettai
- Physiologische Chemie I, Biozentrum , University of Würzburg, Würzburg, Germany
- Département Systématique et Evolution, Muséum National d'Histoire Naturelle, Paris, France
| | - Astrid Böhne
- Physiologische Chemie I, Biozentrum , University of Würzburg, Würzburg, Germany
| | - Catherine Ozouf-Costaz
- Département Systématique et Evolution, Muséum National d'Histoire Naturelle, Paris, France
| | - Stefan Chilmonczyk
- Laboratoire de Virologie et Immunologie Molécularies, INRA, Jouy en Josas, France
| | | | - Arnaud Couloux
- Genoscope/Centre National de Séquençage, CNRS-UMR, Evry, France
| | | | - Michael Schmid
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Manfred Schartl
- Physiologische Chemie I, Biozentrum , University of Würzburg, Würzburg, Germany
| | - Jean-Nicolas Volff
- Physiologische Chemie I, Biozentrum , University of Würzburg, Würzburg, Germany
| |
Collapse
|
30
|
Zhou Q, Froschauer A, Schultheis C, Schmidt C, Bienert GP, Wenning M, Dettai A, Volff JN. Helitron Transposons on the Sex Chromosomes of the PlatyfishXiphophorus maculatusand Their Evolution in Animal Genomes. Zebrafish 2006; 3:39-52. [DOI: 10.1089/zeb.2006.3.39] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Qingchun Zhou
- Biofuture Research Group, Physiologische Chemie I, Biozentrum, University of Würzburg, Würzburg, Germany
- Present address: Department of Zoology and Stephenson Research & Technology Center, University of Oklahoma, Norman, Oklahoma
| | - Alexander Froschauer
- Biofuture Research Group, Physiologische Chemie I, Biozentrum, University of Würzburg, Würzburg, Germany
- Present address: Institut für Zoologie, Technische Universität Dresden, Dresden, Germany
| | - Christina Schultheis
- Biofuture Research Group, Physiologische Chemie I, Biozentrum, University of Würzburg, Würzburg, Germany
| | - Cornelia Schmidt
- Biofuture Research Group, Physiologische Chemie I, Biozentrum, University of Würzburg, Würzburg, Germany
| | - Gerd P. Bienert
- Biofuture Research Group, Physiologische Chemie I, Biozentrum, University of Würzburg, Würzburg, Germany
| | - Marina Wenning
- Biofuture Research Group, Physiologische Chemie I, Biozentrum, University of Würzburg, Würzburg, Germany
| | - Agnès Dettai
- Biofuture Research Group, Physiologische Chemie I, Biozentrum, University of Würzburg, Würzburg, Germany
- Present address: Département Systématique et Evolution, Muséum National d'Histoire Naturelle, Paris, France
| | - Jean-Nicolas Volff
- Biofuture Research Group, Physiologische Chemie I, Biozentrum, University of Würzburg, Würzburg, Germany
| |
Collapse
|
31
|
Abstract
Teleost fish, which roughly make up half of the extant vertebrate species, exhibit an amazing level of biodiversity affecting their morphology, ecology and behaviour as well as many other aspects of their biology. This huge variability makes fish extremely attractive for the study of many biological questions, particularly of those related to evolution. New insights gained from different teleost species and sequencing projects have recently revealed several peculiar features of fish genomes that might have played a role in fish evolution and speciation. There is now substantial evidence that a round of tetraploidization/rediploidization has taken place during the early evolution of the ray-finned fish lineage, and that hundreds of duplicate pairs generated by this event have been maintained over hundreds of millions of years of evolution. Differential loss or subfunction partitioning of such gene duplicates might have been involved in the generation of fish variability. In contrast to mammalian genomes, teleost genomes also contain multiple families of active transposable elements, which might have played a role in speciation by affecting hybrid sterility and viability. Finally, the amazing diversity of sex determination systems and the plasticity of sex chromosomes observed in teleost might have been involved in both pre- and postmating reproductive isolation. Comparison of data generated by current and future genome projects as well as complementary studies in other species will allow one to approach the molecular and evolutionary mechanisms underlying genome diversity in fish, and will certainly significantly contribute to our understanding of gene evolution and function in humans and other vertebrates.
Collapse
Affiliation(s)
- J-N Volff
- BioFuture Research Group, Physiologische Chemie I, Biozentrum, University of Würzburg, am Hubland, D-97074 Würzburg, Germany.
| |
Collapse
|
32
|
Winnemoeller D, Wellbrock C, Schartl M. Activating mutations in the extracellular domain of the melanoma inducing receptor Xmrk are tumorigenicin vivo. Int J Cancer 2005; 117:723-9. [PMID: 15957173 DOI: 10.1002/ijc.21232] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mutated versions or overexpression of receptor tyrosine kinases such as the epidermal growth factor receptor are found frequently in various cancers. In Xiphophorus the formation of hereditary melanoma is caused by the overexpression of the Xmrk oncogene locus. Xmrk is a mutationally altered version of the epidermal growth factor receptor. Two amino acid changes in the extracellular domain of the receptor were shown in vitro to be responsible for a constitutive, ligand-independent activity of Xmrk. To analyze whether these two mutations are indeed responsible for the in vivo oncogenic activity of the receptor, both were independently introduced into the wild-type, non-oncogenic Xiphophorus EGF-receptor and tested in Medaka embryos for their tumorigenic capacity. Both mutations were sufficient to induce tumors after short latency periods and at a comparable frequency as the native Xmrk oncogene. The G359R mutation led to a significantly higher tumor rate than the C578S mutation. Our study shows that subtle point mutations of the EGF-receptor can lead to a highly tumorigenic oncoprotein.
Collapse
Affiliation(s)
- Dirk Winnemoeller
- Department of Physiological Chemistry I, University of Wuerzburg, Germany
| | | | | |
Collapse
|
33
|
Peichel CL, Ross JA, Matson CK, Dickson M, Grimwood J, Schmutz J, Myers RM, Mori S, Schluter D, Kingsley DM. The master sex-determination locus in threespine sticklebacks is on a nascent Y chromosome. Curr Biol 2004; 14:1416-24. [PMID: 15324658 DOI: 10.1016/j.cub.2004.08.030] [Citation(s) in RCA: 280] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 06/25/2004] [Accepted: 06/25/2004] [Indexed: 10/26/2022]
Abstract
BACKGROUND Many different environmental and genetic sex-determination mechanisms are found in nature. Closely related species can use different master sex-determination switches, suggesting that these developmental pathways can evolve very rapidly. Previous cytological studies suggest that recently diverged species of stickleback fish have different sex chromosome complements. Here, we investigate the genetic and chromosomal mechanisms that underlie sex determination in the threespine stickleback (Gasterosteus aculeatus). RESULTS Genome-wide linkage mapping identifies a single chromosome region at the distal end of linkage group (LG) 19, which controls male or female sexual development in threespine sticklebacks. Although sex chromosomes are not cytogenetically visible in this species, several lines of evidence suggest that LG 19 is an evolving sex chromosome system, similar to the XX female/XY male system in many other species: (1) males are consistently heterozygous for unique alleles in this region; (2) recombination between loci linked to the sex-determination region is reduced in male meiosis relative to female meiosis; (3) sequence analysis of X- and Y-specific bacterial artificial chromosome (BAC) clones from the sex-determination region reveals many sequence differences between the X- and Y-specific clones; and (4) the Y chromosome has accumulated transposable elements and local duplications. CONCLUSIONS Taken together, our data suggest that threespine sticklebacks have a simple chromosomal mechanism for sex determination based on a nascent Y chromosome that is less than 10 million years old. Further analysis of the stickleback system will provide an exciting window into the evolution of sex-determination pathways and sex chromosomes in vertebrates.
Collapse
Affiliation(s)
- Catherine L Peichel
- Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University School of Medicine, Palo Alto, CA 94305, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Recent analyses of the chromosomal regions that determine male development in sticklebacks and medaka have revealed several features associated with incipient Y chromosome evolution, including suppressed crossing over and the accumulation of repetitive DNA.
Collapse
Affiliation(s)
- Brian Charlesworth
- Institute for Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK.
| |
Collapse
|