1
|
Qusa M, Qosa H, Volpe DA. Evaluation of In Vitro Metabolism- and Transporter-Based Drug Interactions with Sunscreen Active Ingredients. Pharm Res 2024; 41:1613-1620. [PMID: 39044045 DOI: 10.1007/s11095-024-03746-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
PURPOSE The aim of this study was to examine the ability of sunscreen active ingredients to inhibit in vitro drug metabolism via cytochrome P450 (CYP) enzymes and drug uptake transporters. METHODS Metabolism assays with human liver microsomes were conducted for CYP2C9, CYP2D6 and CYP3A4 using probe substrates warfarin, bufuralol and midazolam, respectively. Uptake transporter assays with transfected cell lines were conducted for OAT3, OCT2 and OATP1B1 with probe substrates estrone-3-sulfate, metformin and rosuvastatin, respectively. Six sunscreen active ingredients, avobenzone, enzacamene, oxybenzone, octinoxate, trolamine, and homosalate, were evaluated up to their aqueous solubility limits in the assays. RESULTS None of the sunscreen active ingredients inhibited CYP2D6 or CYP3A4 activities in the microsomes at concentration ranges up to tenfold higher than their known clinical total plasma levels. Only enzacamene, oxybenzone and trolamine were found to be inhibitory to CYP2C9 activity with IC50 values of 14.76, 22.46 and 154.7 µM, respectively. Avobenzone, enzacamene, homosalate and octinoxate were not inhibitory to the uptake transporters at the evaluated concentrations. Oxybenzone was inhibitory to OAT3 and OCT2 with IC50 values of 39.93 and 42.77 µM, respectively. Trolamine also inhibited uptake in OAT3 and OCT2 transfected cells with IC50 values of 448.1 and 1376 μM, respectively. CONCLUSIONS Although enzacamene, oxybenzone and trolamine inhibited CYP2C9 and the renal transporters OAT3 and OCT2 in vitro, their IC50 values exceeded total plasma levels found in clinical studies. Therefore, it is unlikely that these sunscreen active ingredients in sunscreen products will inhibit the metabolism or transport of co-administered drugs in consumers.
Collapse
Affiliation(s)
- Mohammed Qusa
- Division of Applied Regulatory Science, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, MD, 20993-0002, USA
| | - Hisham Qosa
- Division of Applied Regulatory Science, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, MD, 20993-0002, USA
- Bristol Myers Squibb, Princeton, NJ, USA
| | - Donna A Volpe
- Division of Applied Regulatory Science, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, MD, 20993-0002, USA.
| |
Collapse
|
2
|
Sánchez-Suárez J, Villamil L, Coy-Barrera E, Díaz L. Cliona varians-Derived Actinomycetes as Bioresources of Photoprotection-Related Bioactive End-Products. Mar Drugs 2021; 19:674. [PMID: 34940673 PMCID: PMC8707384 DOI: 10.3390/md19120674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
Sunscreen and sunblock are crucial skincare products to prevent photoaging and photocarcinogenesis through the addition of chemical filters to absorb or block ultraviolet (UV) radiation. However, several sunscreen and sunblock ingredients, mostly UV filters, have been associated with human and environmental safety concerns. Therefore, the exploration and discovery of promising novel sources of efficient and safer compounds with photoprotection-related activities are currently required. Marine invertebrates, particularly their associated microbiota, are promising providers of specialized metabolites with valuable biotechnological applications. Nevertheless, despite Actinobacteria members being a well-known source of bioactive metabolites, their photoprotective potential has been poorly explored so far. Hence, a set of methanolic extracts obtained from Cliona varians-derived actinomycetes was screened regarding their antioxidant and UV-absorbing capacities (i.e., photoprotection-related activities). The active extract-producing strains were identified and classified within genera Streptomyces, Micrococcus, Gordonia, and Promicromonospora. This is the first report of the isolation of these microorganisms from C. varians (an ecologically important Caribbean coral reef-boring sponge). The in vitro cytotoxicity on dermal fibroblasts of oxybenzone and the selected active extracts revealed that oxybenzone exerted a cytotoxic effect, whereas no cytotoxic effect of test extracts was observed. Accordingly, the most active (SPFi > 5, radical scavenging > 50%) and nontoxic (cell viability > 75%) extracts were obtained from Streptomyces strains. Finally, LC-MS-based characterization suggested a broad chemical space within the test strains and agreed with the reported streptomycetes' chemodiversity. The respective metabolite profiling exposed a strain-specific metabolite occurrence, leading to the recognition of potential hits. These findings suggest that marine Streptomyces produce photoprotectants ought to be further explored in skincare applications.
Collapse
Affiliation(s)
- Jeysson Sánchez-Suárez
- Doctorate in Biosciences, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia;
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia;
| | - Luisa Villamil
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia;
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Universidad Militar Nueva Granada, Cajicá 250247, Colombia;
| | - Luis Díaz
- Doctorate in Biosciences, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia;
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia;
| |
Collapse
|
3
|
Llewelyn VK, Berger L, Glass BD. Can models of percutaneous absorption based on in vitro data in frogs predict in vivo absorption? PLoS One 2020; 15:e0235737. [PMID: 32726322 PMCID: PMC7390353 DOI: 10.1371/journal.pone.0235737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 06/23/2020] [Indexed: 12/02/2022] Open
Abstract
The primary aim of in vitro testing of chemicals delivered via the percutaneous route is to predict the absorption that would ensue if exposure occurred in live animals. While there is mounting evidence that in vitro diffusion studies in mammalian skin can provide valid information regarding likely in vivo absorption, little is known whether such a correlation exists between in vitro diffusion testing and in vivo blood levels in amphibians. The current study used previously-reported in vitro absorption data for caffeine, benzoic acid, and ibuprofen across isolated skin from the cane toad (Rhinella marina) to produce a series of linear mixed-effect models of the absorption parameters flux and permeability coefficient (Kp). Models investigated the relative impacts of animal weight, physicochemical characteristics of the applied chemical (logP or molecular weight), and site of application. The top models were then used to predict the flux, Kp and serum concentrations of the same three model chemicals. Finally, the absorption of these chemicals was determined in live cane toads, and results compared to the model predictions. LogP and site of application were included in all top models. In vivo absorption rates were lower than predicted for all chemicals, however, the models provided reasonable predictions of serum concentration, with factors of difference (FOD) ranging from 2.5–10.5. Ibuprofen, the chemical with the highest relative lipophilicity, had the poorest predictive performance, consistently having the highest FOD for all predictions. This report presents the first models of percutaneous absorption in an amphibian. These models provide a basic method to establish the approximate in vivo absorption of hydrophilic and moderately-lipophilic chemicals through frog skin, and could therefore be used to predict absorption when formulating such chemicals for treatment of disease in frogs, or for risk-assessments regarding chemical pollutants in frog habitats.
Collapse
Affiliation(s)
- Victoria K. Llewelyn
- Pharmacy, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
- * E-mail:
| | - Lee Berger
- One Health Research Group, Melbourne Veterinary School, University of Melbourne, Werribee, Victoria, Australia
| | - Beverley D. Glass
- Pharmacy, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
4
|
Charalambides M, Kibbi N, Young A. Effect of sunscreen application under maximal‐use conditions on plasma concentration of sunscreen active ingredients: a critical appraisal. Br J Dermatol 2020; 182:1345-1347. [DOI: 10.1111/bjd.18803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2019] [Indexed: 11/30/2022]
Affiliation(s)
- M. Charalambides
- College of Medical and Dental Sciences University of Birmingham Birmingham U.K
| | - N. Kibbi
- Department of Dermatology Yale University New Haven CT U.S.A
| | - A.R. Young
- St John's Institute of Dermatology King's College London London U.K
| |
Collapse
|
5
|
Klotz K, Hof K, Hiller J, Göen T, Drexler H. Quantification of prominent organic UV filters and their metabolites in human urine and plasma samples. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1125:121706. [PMID: 31302475 DOI: 10.1016/j.jchromb.2019.06.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/21/2019] [Accepted: 06/27/2019] [Indexed: 11/27/2022]
Abstract
Monitoring human exposure to chemical UV filters is essential for an accurate assessment of the health risk caused by the resorbed compounds. We developed different procedures for the determination of the prominent UV filters octocrylene (OC), avobenzone (AVO) and 2-ethylhexyl salicylate (EHS) as well as for two OC and EHS metabolites in human urine and OC, AVO and 2-cyano-3,3-diphenylacrylic acid (CDAA) in plasma samples using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Since the development of a multi-method for all analytes proved to be difficult, three different procedures were established for the determination of AVO, OC and its metabolite CDAA in urine and plasma as well as for EHS and its metabolite 5-hydroxy-EHS in urine. The methods have been validated with good sensitivity, precision and accuracy. The procedures were satisfactorily applied to the determination of the target compounds in human samples collected from volunteers after sunscreen application. These new analytical procedures can provide information on the internal exposure to the UV filters OC, AVO and EHS, which has been little studied.
Collapse
Affiliation(s)
- Katrin Klotz
- Institute and Clinic of Occupational, Social and Environmental Medicine (IPASUM), University of Erlangen-Nürnberg, Henkestr. 9-11, 91054 Erlangen, Germany
| | - Kerstin Hof
- Institute and Clinic of Occupational, Social and Environmental Medicine (IPASUM), University of Erlangen-Nürnberg, Henkestr. 9-11, 91054 Erlangen, Germany
| | - Julia Hiller
- Institute and Clinic of Occupational, Social and Environmental Medicine (IPASUM), University of Erlangen-Nürnberg, Henkestr. 9-11, 91054 Erlangen, Germany
| | - Thomas Göen
- Institute and Clinic of Occupational, Social and Environmental Medicine (IPASUM), University of Erlangen-Nürnberg, Henkestr. 9-11, 91054 Erlangen, Germany.
| | - Hans Drexler
- Institute and Clinic of Occupational, Social and Environmental Medicine (IPASUM), University of Erlangen-Nürnberg, Henkestr. 9-11, 91054 Erlangen, Germany
| |
Collapse
|
6
|
Matta MK, Zusterzeel R, Pilli NR, Patel V, Volpe DA, Florian J, Oh L, Bashaw E, Zineh I, Sanabria C, Kemp S, Godfrey A, Adah S, Coelho S, Wang J, Furlong LA, Ganley C, Michele T, Strauss DG. Effect of Sunscreen Application Under Maximal Use Conditions on Plasma Concentration of Sunscreen Active Ingredients: A Randomized Clinical Trial. JAMA 2019; 321:2082-2091. [PMID: 31058986 PMCID: PMC6549296 DOI: 10.1001/jama.2019.5586] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE The US Food and Drug Administration (FDA) has provided guidance that sunscreen active ingredients with systemic absorption greater than 0.5 ng/mL or with safety concerns should undergo nonclinical toxicology assessment including systemic carcinogenicity and additional developmental and reproductive studies. OBJECTIVE To determine whether the active ingredients (avobenzone, oxybenzone, octocrylene, and ecamsule) of 4 commercially available sunscreens are absorbed into systemic circulation. DESIGN, SETTING, AND PARTICIPANTS Randomized clinical trial conducted at a phase 1 clinical pharmacology unit in the United States and enrolling 24 healthy volunteers. Enrollment started in July 2018 and ended in August 2018. INTERVENTIONS Participants were randomized to 1 of 4 sunscreens: spray 1 (n = 6 participants), spray 2 (n = 6), a lotion (n = 6), and a cream (n = 6). Two milligrams of sunscreen per 1 cm2 was applied to 75% of body surface area 4 times per day for 4 days, and 30 blood samples were collected over 7 days from each participant. MAIN OUTCOMES AND MEASURES The primary outcome was the maximum plasma concentration of avobenzone. Secondary outcomes were the maximum plasma concentrations of oxybenzone, octocrylene, and ecamsule. RESULTS Among 24 participants randomized (mean age, 35.5 [SD, 1.5] years; 12 (50%] women; 14 [58%] black or African American; 14 [58%]), 23 (96%) completed the trial. For avobenzone, geometric mean maximum plasma concentrations were 4.0 ng/mL (coefficient of variation, 6.9%) for spray 1; 3.4 ng/mL (coefficient of variation, 77.3%) for spray 2; 4.3 ng/mL (coefficient of variation, 46.1%) for lotion; and 1.8 ng/mL (coefficient of variation, 32.1%). For oxybenzone, the corresponding values were 209.6 ng/mL (66.8%) for spray 1, 194.9 ng/mL (52.4%) for spray 2, and 169.3 ng/mL (44.5%) for lotion; for octocrylene, 2.9 ng/mL (102%) for spray 1, 7.8 ng/mL (113.3%) for spray 2, 5.7 ng/mL (66.3%) for lotion, and 5.7 ng/mL (47.1%) for cream; and for ecamsule, 1.5 ng/mL (166.1%) for cream. Systemic concentrations greater than 0.5 ng/mL were reached for all 4 products after 4 applications on day 1. The most common adverse event was rash, which developed in 1 participant with each sunscreen. CONCLUSIONS AND RELEVANCE In this preliminary study involving healthy volunteers, application of 4 commercially available sunscreens under maximal use conditions resulted in plasma concentrations that exceeded the threshold established by the FDA for potentially waiving some nonclinical toxicology studies for sunscreens. The systemic absorption of sunscreen ingredients supports the need for further studies to determine the clinical significance of these findings. These results do not indicate that individuals should refrain from the use of sunscreen. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03582215.
Collapse
Affiliation(s)
- Murali K. Matta
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Robbert Zusterzeel
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Nageswara R. Pilli
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Vikram Patel
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Donna A. Volpe
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Jeffry Florian
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Luke Oh
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Edward Bashaw
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Issam Zineh
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | | | - Sarah Kemp
- Spaulding Clinical Research, West Bend, Wisconsin
| | | | - Steven Adah
- Division of Nonprescription Drug Products, Office of Drug Evaluation IV, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Sergio Coelho
- Division of Nonprescription Drug Products, Office of Drug Evaluation IV, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Jian Wang
- Office of Drug Evaluation IV, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Lesley-Anne Furlong
- Office of Drug Evaluation IV, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Charles Ganley
- Office of Drug Evaluation IV, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Theresa Michele
- Division of Nonprescription Drug Products, Office of Drug Evaluation IV, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - David G. Strauss
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
7
|
Wang J, Ganley CJ. Safety Threshold Considerations for Sunscreen Systemic Exposure: A Simulation Study. Clin Pharmacol Ther 2018; 105:161-167. [PMID: 30094825 DOI: 10.1002/cpt.1178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sunscreens are regulated as over-the-counter drugs in the United States. Some sunscreen ingredients are absorbed into the systemic circulation, which raises concerns about the safety of these drugs. There is limited information on the systemic exposure for most sunscreen ingredients. This report estimates the systemic absorption of two sunscreen active ingredients, oxybenzone and enzacamene, by developing a pharmacokinetic model from published sunscreen absorption data and compares the results with safety thresholds proposed by the US Food and Drug Administration and in the literature. Our analysis indicates that systemic absorption can be substantial, and evaluation of the systemic exposure of sunscreen ingredients is warranted to better assess any long-term risks of use.
Collapse
Affiliation(s)
- Jian Wang
- Division of Nonprescription Drug Products, Office of Drug Evaluation IV, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Charles J Ganley
- Division of Nonprescription Drug Products, Office of Drug Evaluation IV, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
8
|
Rodriguez J, Maibach HI. Percutaneous penetration and pharmacodynamics: Wash-in and wash-off of sunscreen and insect repellent. J DERMATOL TREAT 2015; 27:11-8. [DOI: 10.3109/09546634.2015.1050350] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
9
|
Klimová Z, Hojerová J, Beránková M. Skin absorption and human exposure estimation of three widely discussed UV filters in sunscreens--In vitro study mimicking real-life consumer habits. Food Chem Toxicol 2015; 83:237-50. [PMID: 26151237 DOI: 10.1016/j.fct.2015.06.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 06/17/2015] [Accepted: 06/22/2015] [Indexed: 11/25/2022]
Abstract
Due to health concerns about safety, three UV-filters (Benzophenone-3, BP3, 10%; Ethylhexyl Methoxycinnamate, EHMC, 10%; Butyl Methoxydibenzoylmethane, BMDBM; 5%) were examined in vitro for absorption on full-thickness pig-ear skin, mimicking human in-use conditions. Kinetic profiles confirmed the rapid permeation of BP3; after the first hour of skin (frozen-stored) exposure to 2 mg/cm(2) (W/O sunscreen; recommended but unrealistic amount), about 0.5% of the applied dose passed into the receptor fluid. The absorption rate of filters was higher from W/O than from O/W emulsions. The fresh/frozen-stored skin permeability coefficient (0.83-0.54) for each UV filter was taken into account. Systemic Exposure Dosage of BP3, EHMC, BMDBM for humans as a consequence of (i) whole-body and (ii) face treatment with 0.5 mg/cm(2) of W/O sunscreen for 6-h skin exposure followed by washing and subsequent 18-h permeation (a realistic scenario) were estimated to be (i) 4744, 1032 and 1036 μg/kg-bw/day, and (ii) 153, 33 and 34 μg/kg-bw/day, respectively. From Margin of Safety for BP3, EHMC and BMDBM (i) 42, 485 and 192 as well as (ii) 1307; 15,151 and 5882, respectively, only the value of 42 (<100) for BP3 indicated a possible health risk. Escalation of a phobia towards all organic UV filters is undesirable.
Collapse
Affiliation(s)
- Z Klimová
- Laboratories of Cosmetology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, Bratislava, Slovak Republic.
| | - J Hojerová
- Laboratories of Cosmetology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, Bratislava, Slovak Republic.
| | - M Beránková
- Laboratories of Cosmetology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, Bratislava, Slovak Republic.
| |
Collapse
|
10
|
Stechschulte SA, Kirsner RS, Federman DG. Sunscreens for Non-Dermatologists: What you Should Know when Counseling Patients. Postgrad Med 2015; 123:160-7. [DOI: 10.3810/pgm.2011.07.2315] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Stiefel C, Schwack W. Photoprotection in changing times - UV filter efficacy and safety, sensitization processes and regulatory aspects. Int J Cosmet Sci 2014; 37:2-30. [DOI: 10.1111/ics.12165] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/20/2014] [Indexed: 12/14/2022]
Affiliation(s)
- C. Stiefel
- Institute of Food Chemistry; University of Hohenheim; Garbenstrasse 28 70599 Stuttgart Germany
| | - W. Schwack
- Institute of Food Chemistry; University of Hohenheim; Garbenstrasse 28 70599 Stuttgart Germany
| |
Collapse
|
12
|
Chisvert A, León-González Z, Tarazona I, Salvador A, Giokas D. An overview of the analytical methods for the determination of organic ultraviolet filters in biological fluids and tissues. Anal Chim Acta 2012; 752:11-29. [DOI: 10.1016/j.aca.2012.08.051] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 08/10/2012] [Accepted: 08/29/2012] [Indexed: 11/28/2022]
|
13
|
Lehman PA, Raney SG, Franz TJ. Percutaneous absorption in man: in vitro-in vivo correlation. Skin Pharmacol Physiol 2011; 24:224-30. [PMID: 21455015 DOI: 10.1159/000324884] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 01/22/2011] [Indexed: 11/19/2022]
Abstract
AIMS To examine the existing literature to determine the degree to which percutaneous absorption data obtained using the excised human skin model match those obtained from living man. METHODS The scientific literature was reviewed to collect data on compounds whose percutaneous absorption through human skin had been measured under both in vitro and in vivo conditions. The in vitro-in vivo (IVIV) correlation was evaluated by computing the in vitro/in vivo ratio using total absorption (percent of applied dose) as the metric for comparison. RESULTS A total of 92 data sets were collected from 30 published studies. The average IVIV ratio across all values was 1.6, though for any single data set there could be a nearly 20-fold difference between the in vitro and in vivo values. In 85% of the cases, however, the difference was less than 3-fold. The correlation was significantly improved when data were excluded from studies in which the protocols for both studies were not fully harmonized. For harmonized data sets the average IVIV ratio was 0.96 and there was a less than 2-fold difference between the in vitro and in vivo results for any one compound, with IVIV ratios ranging from 0.58 to 1.28. The dominant factors leading to exclusion of data were the use of skin from different anatomical sites and vehicles of differing composition. CONCLUSIONS Percutaneous absorption data obtained from the excised human skin model closely approximate those obtained from living man when the two study protocols are appropriately matched.
Collapse
Affiliation(s)
- P A Lehman
- Pre-Clinical Dermatology, Cetero Research, Fargo, N. Dak., USA
| | | | | |
Collapse
|
14
|
Gulson B, McCall M, Korsch M, Gomez L, Casey P, Oytam Y, Taylor A, McCulloch M, Trotter J, Kinsley L, Greenoak G. Small Amounts of Zinc from Zinc Oxide Particles in Sunscreens Applied Outdoors Are Absorbed through Human Skin. Toxicol Sci 2010; 118:140-9. [DOI: 10.1093/toxsci/kfq243] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
15
|
|
16
|
Safety assessment of personal care products/cosmetics and their ingredients. Toxicol Appl Pharmacol 2009; 243:239-59. [PMID: 20005888 DOI: 10.1016/j.taap.2009.12.001] [Citation(s) in RCA: 232] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 11/27/2009] [Accepted: 12/02/2009] [Indexed: 02/01/2023]
Abstract
We attempt to review the safety assessment of personal care products (PCP) and ingredients that are representative and pose complex safety issues. PCP are generally applied to human skin and mainly produce local exposure, although skin penetration or use in the oral cavity, on the face, lips, eyes and mucosa may also produce human systemic exposure. In the EU, US and Japan, the safety of PCP is regulated under cosmetic and/or drug regulations. Oxidative hair dyes contain arylamines, the most chemically reactive ingredients of PCP. Although arylamines have an allergic potential, taking into account the high number of consumers exposed, the incidence and prevalence of hair dye allergy appears to be low and stable. A recent (2001) epidemiology study suggested an association of oxidative hair dye use and increased bladder cancer risk in consumers, although this was not confirmed by subsequent or previous epidemiologic investigations. The results of genetic toxicity, carcinogenicity and reproductive toxicity studies suggest that modern hair dyes and their ingredients pose no genotoxic, carcinogenic or reproductive risk. Recent reports suggest that arylamines contained in oxidative hair dyes are N-acetylated in human or mammalian skin resulting in systemic exposure to traces of detoxified, i.e. non-genotoxic, metabolites, whereas human hepatocytes were unable to transform hair dye arylamines to potentially carcinogenic metabolites. An expert panel of the International Agency on Research of Cancer (IARC) concluded that there is no evidence for a causal association of hair dye exposure with an elevated cancer risk in consumers. Ultraviolet filters have important benefits by protecting the consumer against adverse effects of UV radiation; these substances undergo a stringent safety evaluation under current international regulations prior to their marketing. Concerns were also raised about the safety of solid nanoparticles in PCP, mainly TiO(2) and ZnO in sunscreens. However, current evidence suggests that these particles are non-toxic, do not penetrate into or through normal or compromised human skin and, therefore, pose no risk to human health. The increasing use of natural plant ingredients in personal care products raised new safety issues that require novel approaches to their safety evaluation similar to those of plant-derived food ingredients. For example, the Threshold of Toxicological Concern (TTC) is a promising tool to assess the safety of substances present at trace levels as well as minor ingredients of plant-derived substances. The potential human systemic exposure to PCP ingredients is increasingly estimated on the basis of in vitro skin penetration data. However, new evidence suggests that the in vitro test may overestimate human systemic exposure to PCP ingredients due to the absence of metabolism in cadaver skin or misclassification of skin residues that, in vivo, remain in the stratum corneum or hair follicle openings, i.e. outside the living skin. Overall, today's safety assessment of PCP and their ingredients is not only based on science, but also on their respective regulatory status as well as other issues, such as the ethics of animal testing. Nevertheless, the record shows that today's PCP are safe and offer multiple benefits to quality of life and health of the consumer. In the interest of all stakeholders, consumers, regulatory bodies and producers, there is an urgent need for an international harmonization on the status and safety requirements of these products and their ingredients.
Collapse
|
17
|
Durand L, Habran N, Henschel V, Amighi K. In vitro evaluation of the cutaneous penetration of sprayable sunscreen emulsions with high concentrations of UV filters. Int J Cosmet Sci 2009; 31:279-92. [PMID: 19496837 DOI: 10.1111/j.1468-2494.2009.00498.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aim of this study was to evaluate the possible penetration through human skin of organic and inorganic filters contained in sunscreen emulsions packaged in aerosol cans, using an in vitro method. Experiments were carried out on two different types of emulsion: W/Si and W/O. This study was conducted using static diffusion cells (Franz cells). The determination of organic UV filters [Methylene Bis Benzotriazolyl Tetramethylbutylphenol (MBBT); Bis-Ethylhexyloxyphenol Methoxyphenyl Triazine (BEMT); Diethylamino Hydroxybenzoyl Hexyl Benzoate (DHHB); Ethylhexyl Methoxycinnamate (EMC); and 2-Ethylhexyl Dimethyl PABA (ED-PABA)] was performed by High Performance Liquid Chromatography (HPLC). Therefore, it was important to develop a single analytical method for the quantification of the five organic filters with the aim of facilitating the experiment. The determination of inorganic filters [titanium dioxide (TiO(2)) and zinc oxide (ZnO)] was performed using an emission spectrometric analysis method (ICP-OES). The HPLC and ICP-OES methods were validated. After a penetration test of 24 h duration, the results showed very low penetration only for two of the organic filters (maximum penetration of 1.21 microg cm(-2) h(-1) for EMC and 0.14 microg cm(-2) h(-1) for MBBT) and no penetration for the inorganic filters. Moreover, more than 50% of each sunscreen agent stayed on the surface on the skin. These results are consistent with those in the literature that presents similar experiments. This study showed that the sprayable sunscreen products developed, which contained high concentrations of UV filters, presented a low level of skin penetration.
Collapse
Affiliation(s)
- L Durand
- Laboratory of Pharmaceutics and Biopharmaceutics, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | |
Collapse
|
18
|
Grégoire S, Ribaud C, Benech F, Meunier JR, Garrigues-Mazert A, Guy RH. Prediction of chemical absorption into and through the skin from cosmetic and dermatological formulations. Br J Dermatol 2008; 160:80-91. [PMID: 18811683 DOI: 10.1111/j.1365-2133.2008.08866.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND To date, risk assessment following topical exposure to cosmetic/dermatological formulations cannot be precisely evaluated. OBJECTIVES To provide a tool for optimization of active permeation into/through skin and for risk assessment. METHODS A predictive model was developed for estimating the cumulative mass of a chemical absorbed into and across the skin from a cosmetic/dermatological formulation. Account was taken of (i) the ionization state of the chemical, to correct the skin/vehicle partition coefficient; and (ii) the nature of the cosmetic/dermatological formulation. Three specific assumptions were made: firstly, steady-state transport across the skin was achieved despite application of a finite dose of chemical; secondly, vehicle effects were small relative to the precision of the prediction; and, thirdly, each formulation could be treated as an oil-in-water emulsion, in which only that fraction of the chemical in the aqueous phase was available to partition into the stratum corneum. A database of 101 ex vivo human skin experiments involving 36 chemicals was analysed. RESULTS For 91% of the data, the difference between predicted and experimental values was less than a factor 5; when the aforementioned corrections were not used, on the other hand, only 26% of the data was well predicted. The model was successfully applied to predict skin absorption of two compounds not included in the database, for which in vitro percutaneous penetration from cosmetic vehicles have been measured. CONCLUSION A model has been developed to predict the mass of a chemical absorbed into and through the skin from a cosmetic or dermatological formulation.
Collapse
Affiliation(s)
- S Grégoire
- L'Oréal Recherche, 1 avenue Eugène Schueller, 93601 Aulnay-sous Bois, France.
| | | | | | | | | | | |
Collapse
|
19
|
Antoniou C, Kosmadaki MG, Stratigos AJ, Katsambas AD. Sunscreens - what's important to know. J Eur Acad Dermatol Venereol 2008. [DOI: 10.1111/j.1468-3083.2007.02580.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Jakasa I, Kezic S. Evaluation of in-vivo animal and in-vitro models for prediction of dermal absorption in man. Hum Exp Toxicol 2008; 27:281-8. [DOI: 10.1177/0960327107085826] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Risk assessment of dermal exposure to chemicals requires percutaneous absorption data to link the external exposure to the systemic uptake. The most reliable data on percutaneous absorption are obtained from in-vivo human volunteer studies. In addition to ethical constrains, the conduct of these studies is not feasible for the large number of industrial chemicals in use today. Therefore, there is an increasing need for alternative methods to determine percutaneous absorption such as in-vitro assays and methods performed in vivo in experimental animals. In this article, recent comparative in-vitro and in-vivo studies on percutaneous absorption have been addressed with emphasis on the factors that may affect the predictive value of the in-vitro models. Furthermore, the use of animal models, in particular the rat skin, in prediction of percutaneous absorption in the human skin has been reviewed. In-vitro assays showed to be largely influenced by the experimental circumstances, such as type and thickness of the skin, receptor fluid, and the way in which percutaneous absorption is calculated. Rat skin showed consistently to be more permeable than human skin. However, the difference between human and rat skin does not show a consistent pattern between chemicals hampering prediction of human percutaneous absorption. To increase predictive value of in-vitro and animal models, the influence of experimental factors on the percutaneous absorption should be systematically investigated by comparison with human in-vivo data, resulting in more prescriptive guidelines.
Collapse
Affiliation(s)
- I Jakasa
- Academic Medical Center, Coronel Institute of Occupational Health, University of Amsterdam, Amsterdam, The Netherlands
| | - S Kezic
- Academic Medical Center, Coronel Institute of Occupational Health, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
21
|
León Z, Balaguer A, Chisvert A, Salvador A, Herráez M, Díez O. A reversed-phase ion-interaction chromatographic method for in-vitro estimation of the percutaneous absorption of water-soluble UV filters. Anal Bioanal Chem 2008; 391:859-66. [PMID: 18365182 DOI: 10.1007/s00216-008-2013-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 01/23/2008] [Accepted: 02/22/2008] [Indexed: 11/30/2022]
Abstract
An analytical method based on ion-interaction chromatography with UV detection for simultaneous in-vitro estimation of the percutaneous absorption of the most used water-soluble UV filters in sunscreen cosmetics is proposed. These UV filters were phenylbenzimidazole sulfonic acid, disodium phenyl dibenzimidazole tetrasulfonate, benzophenone-4, and terephthalylidene dicamphor sulfonic acid. The methodology is based on applying the sunscreen containing the target UV filters to human epidermis in a diffusion cell. Analytes are determined in the receptor solution. To ensure skin integrity, screening of the cells was carried out by analytical determination of a marker. Analytical variables such as percentage ethanol, concentration of ion-pairing agent, pH of the mobile phase, and temperature were studied in order to achieve high resolution of the chromatographic peaks in the lowest possible time of analysis. The conditions selected consisted of a mobile phase composed of 35:65 (v/v) ethanol-ammonium acetate buffer solution (pH 4, containing 50 mmol L(-1) tetra-n-butylammonium bromide). The chromatographic determination was carried out with the analytical column at 50 degrees C. UV detection was carried out at the maximum absorption wavelength for each analyte. The limit of detection (3s(y/x)/b) ranged from 16 to 65 ng mL(-1), depending on the analyte.
Collapse
Affiliation(s)
- Z León
- Departamento de Química Analítica, Facultad de Quimica, Universitat de València, Doctor Moliner St. 50, Burjassot, 46100, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
22
|
Balaguer A, Chisvert A, Salvador A, Herraez M, Diez O. A solid-phase extraction and size-exclusion liquid chromatographic method for polyethylene glycol 25 p-aminobenzoic acid determination in urine: Validation for urinary excretion studies of users of sunscreens. Anal Chim Acta 2008; 611:220-5. [DOI: 10.1016/j.aca.2008.01.082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 01/23/2008] [Accepted: 01/25/2008] [Indexed: 10/22/2022]
|
23
|
Grégoire S, Patouillet C, Noé C, Fossa I, Benech Kieffer F, Ribaud C. Improvement of the Experimental Setup for Skin Absorption Screening Studies with Reconstructed Skin EPISKIN®. Skin Pharmacol Physiol 2008; 21:89-97. [DOI: 10.1159/000112959] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Accepted: 09/28/2007] [Indexed: 11/19/2022]
|
24
|
Kroes R, Renwick AG, Feron V, Galli CL, Gibney M, Greim H, Guy RH, Lhuguenot JC, van de Sandt JJM. Application of the threshold of toxicological concern (TTC) to the safety evaluation of cosmetic ingredients. Food Chem Toxicol 2007; 45:2533-62. [PMID: 17664037 DOI: 10.1016/j.fct.2007.06.021] [Citation(s) in RCA: 1423] [Impact Index Per Article: 83.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 05/25/2007] [Accepted: 06/15/2007] [Indexed: 12/31/2022]
Abstract
The threshold of toxicological concern (TTC) has been used for the safety assessment of packaging migrants and flavouring agents that occur in food. The approach compares the estimated oral intake with a TTC value derived from chronic oral toxicity data for structurally-related compounds. Application of the TTC approach to cosmetic ingredients and impurities requires consideration of whether route-dependent differences in first-pass metabolism could affect the applicability of TTC values derived from oral data to the topical route. The physicochemical characteristics of the chemical and the pattern of cosmetic use would affect the long-term average internal dose that is compared with the relevant TTC value. Analysis has shown that the oral TTC values are valid for topical exposures and that the relationship between the external topical dose and the internal dose can be taken into account by conservative default adjustment factors. The TTC approach relates to systemic effects, and use of the proposed procedure would not provide an assessment of any local effects at the site of application. Overall the TTC approach provides a useful additional tool for the safety evaluation of cosmetic ingredients and impurities of known chemical structure in the absence of chemical-specific toxicology data.
Collapse
Affiliation(s)
- R Kroes
- Institute for Risk Assessment Sciences, Utrecht University, c/o Seminariehof 38, NL- 3768 EE Soest, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Vidal L, Chisvert A, Canals A, Salvador A. Sensitive determination of free benzophenone-3 in human urine samples based on an ionic liquid as extractant phase in single-drop microextraction prior to liquid chromatography analysis. J Chromatogr A 2007; 1174:95-103. [PMID: 17720175 DOI: 10.1016/j.chroma.2007.07.077] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 07/31/2007] [Accepted: 07/31/2007] [Indexed: 11/26/2022]
Abstract
Benzophenone-3 (BZ3), one of the compounds most commonly used as UV filter in cosmetic products, can be absorbed through the skin into the human body, since it can be found at trace levels in urine from users of cosmetic products that contain BZ3. Moreover, different undesirable effects have been attributed to this compound. Thus, sensitive analytical methods to monitor urinary excretion of this compound should be developed. This paper presents a selective and sensitive methodology for BZ3 determination at ultratrace levels in human urine samples. The methodology is based on a novel microextraction technique, known as single-drop microextraction (SDME). An ionic liquid (IL) has been used as extractant phase instead of an organic solvent. After the microextraction process, the extractant phase was injected into a liquid chromatography system. The variables of interest in the SDME process were optimized using a multivariate optimization approach. A Plackett-Burman design for screening and a circumscribed central composite design for optimizing the significant variables were applied. Ionic strength, extraction time, stirring speed, pH, ionic liquid type, drop volume and sample volume were the variables studied. The optimum experimental conditions found were: sodium chloride concentration, 13% (w/v); extraction time, 25 min; stirring speed, 900 rpm; pH, 2; ionic liquid type, 1-hexyl-3-methylimidazolium hexafluorophosphate ([C(6)MIM][PF(6)]); drop volume, 5 microL; and sample volume, 10 mL. The proposed method requires a standard addition calibration approach, and it has been successfully employed to determine free BZ3 in urine samples coming from human volunteers who applied a sunscreen cosmetic containing this UV filter. The limit of detection was in the order of 1.3 ng mL(-1) and repeatability of the method, expressed as relative standard deviation, was 6% (n=8).
Collapse
Affiliation(s)
- Lorena Vidal
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Ciencias, Universidad de Alicante, P.O. Box 99, E-03080 Alicante, Spain
| | | | | | | |
Collapse
|
26
|
|
27
|
Mavon A, Miquel C, Lejeune O, Payre B, Moretto P. In vitro percutaneous absorption and in vivo stratum corneum distribution of an organic and a mineral sunscreen. Skin Pharmacol Physiol 2006; 20:10-20. [PMID: 17035717 DOI: 10.1159/000096167] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 04/21/2006] [Indexed: 11/19/2022]
Abstract
Sunscreens, whose main function is to protect the skin against the harmful effects of solar irradiation, should remain at the skin surface or impregnate the first layers of the stratum corneum only and not penetrate into the underlying living tissue. The goal of this work was to assess the penetration of titanium dioxide (TiO(2)) and methylene bis-benzotriazoyl tetramethylbutylphenol (MBBT), included in a broad-spectrum sunscreen formulation, into human skin in vivo, using the tape stripping method, and in vitro, using a compartmental approach. An additional objective was to propose an easy and minimally invasive approach to determining the percutaneous uptake of sunscreens following topical application. TiO(2) and MBBT were quantified using colorimetric assay and HPLC analysis, respectively. The transmission electron microscopy and particle-induced X-ray emission techniques were used to localize the TiO(2) in skin sections. More than 90% of both sunscreens was recovered in the first 15 tape strippings. In addition we have shown that the remaining 10% did not penetrate the viable tissue, but was localized in the furrows and in the opened infundibulum. Less than 0.1% of MBBT was detected in the receptor medium, and no TiO(2) was detected in the follicle, viable epidermis or dermis. Thus, this in vivo and in vitro penetration study showed an absence of TiO(2) penetration into the viable skin layers through either transcorneal or transfollicular pathways and negligible transcutaneous absorption of MBBT. However, differences in distribution within the stratum corneum reinforced the need for a complementary approach, using minimally invasive in vivo methodology and in vitro compartmental analysis. This combination represents a well-adapted method for testing the safety of topically applied sunscreen formulations in real-life conditions.
Collapse
Affiliation(s)
- A Mavon
- Laboratoire de Pharmacocinétique Cutanée, Institut de Recherche Pierre Fabre, Castanet-Tolosan, France.
| | | | | | | | | |
Collapse
|
28
|
Balaguer A, Salvador A, Chisvert A, Meliá M, Herráez M, Díez O. A liquid chromatography–fluorimetric method for the in vitro estimation of the skin penetration of disodium phenyldibenzimidazole tetrasulfonate from sunscreen formulations through human skin. Anal Bioanal Chem 2006; 385:1225-32. [PMID: 16550422 DOI: 10.1007/s00216-006-0344-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 01/26/2006] [Accepted: 02/01/2006] [Indexed: 10/24/2022]
Abstract
Disodium phenyldibenzimidazole tetrasulfonate (PDT) is a new organic UV filter with hydrophilic properties used in modern sunscreen spray formulations. The aim of this work was to develop and validate an analytical method that can be used to study skin absorption of PDT from sunscreens. Results obtained in vitro for human skin showed a low level of absorption. The proposed in vitro method employs a diffusion cell. Sunscreen lotion was applied onto pretreated human skin, which was then placed in the cell. PDT was collected in a receptor liquid, the surface of which was in contact with the skin. The solutions obtained were diluted appropriately and analyzed by liquid chromatography without any interference. The analytical features of chromatographic determination with fluorimetic detection were suited to this analytical problem, since this method gave a limit of detection of 1 ng ml(-1). Phenol red (PR) was used as a marker to check the skin integrity, and a sensitive method based on sequential injection on-line solid-phase extraction coupled with spectrophotometric detection was developed for determining this marker in the receptor liquid in order to screen the cells.
Collapse
Affiliation(s)
- A Balaguer
- Departamento de Química Analítica, Facultad de Química, Universitat de València, Doctor Moliner St. 50-Burjassot, 46100, València, Spain
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Because of increases in the number of skin cancers diagnosed annually, adverse effects of ultraviolet (UV) rays are being recognized, and major public education programs have been undertaken concerning photoprotection, including the use of sunscreen. In daily life, UV exposure is unavoidable; therefore sunscreen should be used regularly. Development in sunscreen manufacturing has grown tremendously in the last decade. Sunscreen active ingredients now are incorporated into cosmetics products to minimize photoaging changes. With the advances in technologies, many new UV filters have been developed recently. These have improved efficacy and safety. This article reviews these new filters, along with regulatory issues in the United States.
Collapse
|
30
|
Hueber-Becker F, Nohynek GJ, Meuling WJA, Benech-Kieffer F, Toutain H. Human systemic exposure to a [14C]-para-phenylenediamine-containing oxidative hair dye and correlation with in vitro percutaneous absorption in human or pig skin. Food Chem Toxicol 2004; 42:1227-36. [PMID: 15207372 DOI: 10.1016/j.fct.2004.02.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Accepted: 02/22/2004] [Indexed: 10/26/2022]
Abstract
We investigated the absorption of a commercial [14C]-PPD-containing oxidative dark-shade hair dye in human volunteers as well as in vitro using human or pig ear skin. The hair of eight male volunteers was cut to a standard length, dyed, washed, dried, clipped and collected. Hair, washing water, materials used in the study and a 24-h scalp wash were collected for determination of radioactivity. Blood, urine and faeces were analysed up to 120 h after hair dyeing. An identical [14C]-PPD-containing hair dye formulation was applied in vitro for 0.5 h to human and pig ear skin, and radioactivity was determined in skin compartments after 24 h. In humans, the recovery rate was 95.7+/-1.5% of the applied radioactivity. Washing water, cut hair, gloves, paper towels, caps or scalp wash contained a total of 95.16+/-1.46% of the applied [14C]. Absorbed radioactivity amounted to 0.50+/-0.24% in the urine and 0.04+/-0.04% in the faeces, corresponding to a mean of 7.0+/-3.4 mg [14C]-PPD-equivalents absorbed. Within 24 h after application, most of the radioactivity was eliminated. The Cmax of [14C]-PPD-equivalents in the plasma was 0.087 microgeq/ml, the Tmax was approximately 2 h, and the mean the AUC(0-12h) was 0.67 microgeq h/ml. In vitro tests in human or pig skin found total absorbed amounts of 2.4+/-1.6% (10.6+/-6.7 microgeq/cm2) or 3.4+/-1.7% (14.6+/-6.9 microgeq/cm2), respectively. Percentage-based in vitro results were considerably higher than corresponding in vivo data, whereas, in units of microg/cm2, they corresponded to a total absorbed amount of 7.40 or 10.22 mgeq for human or pig skin, respectively. All results suggested that hair dyeing with oxidative hair dyes produces minimal systemic exposure that is unlikely to pose a risk to human health.
Collapse
Affiliation(s)
- Frédérique Hueber-Becker
- L'OREAL Research, Global Safety, River Plaza Building, 25-29 quai Aulagnier, 92600 Asnières, France
| | | | | | | | | |
Collapse
|
31
|
Nohynek GJ, Fautz R, Benech-Kieffer F, Toutain H. Toxicity and human health risk of hair dyes. Food Chem Toxicol 2004; 42:517-43. [PMID: 15019177 DOI: 10.1016/j.fct.2003.11.003] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Accepted: 11/05/2003] [Indexed: 11/19/2022]
Abstract
Hair dyes and their ingredients have moderate to low acute toxicity. Human poisoning accidents are rare and have only been reported following oral ingestion. Contact sensitisation to hair dyes has been a safety issue, mainly as a consequence of unprotected professional exposure. Although the use of hair dyes has dramatically increased in industrialised countries during the last decades, the prevalence of sensitisation to hair dyes in the general and professional populations has stabilised or declined. In vitro genotoxicity tests on hair dye ingredients frequently had positive results, although their correlation with in vivo carcinogenicity for the chemical class of oxidative hair dye ingredients (aromatic amines) is uncertain. Positive in vivo genotoxicity results on hair dyes are rare. Studies in man found no evidence of genotoxic effects of hair dyes or their ingredients. On the basis of mechanistic studies, some in vivo positive hair dye ingredients (p-aminophenol, Lawsone) have been shown to pose no or negligible risk to human health. Although a recent case-control epidemiology study suggested an association of hair dye use and bladder cancer, a number of other studies, including prospective investigations on large populations, found no or negative correlations for bladder or other cancers. Although in vivo topical carcinogenicity studies on hair dye ingredients or commercial formulations yielded no evidence for systemic toxicity or carcinogenicity, oral carcinogenicity studies on hair dye ingredients at oral doses up to the maximum tolerated dose (MTD) suggested that some ingredients are carcinogenic in rodents. Human systemic exposure to various (14)C-labelled oxidative hair dyes under conditions of use was below 1.0% of the amount applied. Conservative risk assessments suggested no or negligible cancer risk, including for ingredients that were found to be positive in oral carcinogenicity studies. The results of reproductive toxicity studies and epidemiological investigations suggested that hair dyes and their ingredients pose no risk of adverse reproductive effects. In conclusion, the weight of evidence suggests that consumer or professional exposure to hair dyes poses no carcinogenic or other human health risks.
Collapse
Affiliation(s)
- Gerhard J Nohynek
- L'Oreal Research and Development, Worldwide Safety Department, 25-29, quai Aulagnier, 92600 Asnières, France.
| | | | | | | |
Collapse
|