1
|
Wang Y, Wu Q, Zhou Y, Liu W, Cao W, Fan Y, Li N. Functional analysis of 6 variations in FOXL2. SAGE Open Med 2025; 13:20503121251329287. [PMID: 40166712 PMCID: PMC11956509 DOI: 10.1177/20503121251329287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 03/07/2025] [Indexed: 04/02/2025] Open
Abstract
Objective We aimed to investigate the functional alterations caused by pathogenic variants in the FOXL2 gene, a forkhead transcriptional factor. Methods This study is an experimental research with a duration from January to September 2022. We selected six variants for analysis, including a double missense variant, c.150C>G (p. Asp50Glu) and c.326A>T (p. Asn109Ile); three deletions, c.411_412del (p. Met137Ilefs101), c.533_542del (p. Val178Alafs90), and c.684delA (p. Ala229Leufs43); a nonsense variant, c.214G>T (p. Glu72); and a duplication, c.663_692dup (p. Ala225_Ala234dup). We constructed expression vectors containing these variants and transfected them into HeLa cells. Confocal microscopy was used to observe the subcellular localization of the expressed proteins. We evaluated gene expression using dual luciferase reporter assays and quantitative PCR. Results Proteins expressed by vectors with deletion variants were predominantly localized to the nucleus, while those with the double missense variant exhibited diffuse expression throughout the cell. Proteins from nonsense and duplication variants localized to the cytoplasm. Luciferase activity assays revealed that proteins encoded by the p. Ala229Leufs43, p. Glu72, and p. Ala225_Ala234dup variants significantly diminished the inhibitory effects on the transcription of the StAR gene. Additionally, all proteins encoded by indel and nonsense variants, except for the double missense variant, demonstrated a marked reduction in their inhibitory effects on CCDN2 and INHBB gene expression. Conclusions The double missense variant does not exert a superimposed inhibitory effect on gene expression. Despite differences in subcellular localization, all mutant proteins produced by these variants likely interfere with downstream gene expression through a shared pathway. Furthermore, mutant FOXL2 proteins may disrupt ovarian development via multiple pathways, extending beyond their impact on StAR gene expression.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Ophthalmology, Beijing Children’s Hospital, Capital Medical University, China
| | - Qian Wu
- Department of Ophthalmology, Beijing Children’s Hospital, Capital Medical University, China
| | - Yunyu Zhou
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Wen Liu
- Department of Ophthalmology, Beijing Children’s Hospital, Capital Medical University, China
| | - Wenhong Cao
- Department of Ophthalmology, Beijing Children’s Hospital, Capital Medical University, China
| | - Yunwei Fan
- Department of Ophthalmology, Beijing Children’s Hospital, Capital Medical University, China
| | - Ningdong Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
2
|
Li X, Du H, Zhou H, Huang Y, Tang S, Yu C, Guo Y, Luo W, Gong Y. FOXL2 regulates RhoA expression to change actin cytoskeleton rearrangement in granulosa cells of chicken pre-ovulatory follicles†. Biol Reprod 2024; 111:391-405. [PMID: 38832713 DOI: 10.1093/biolre/ioae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/04/2024] [Accepted: 06/01/2024] [Indexed: 06/05/2024] Open
Abstract
Forkhead box L2 (FOXL2) is an indispensable key regulator of female follicular development, and it plays important roles in the morphogenesis, proliferation, and differentiation of follicle granulosa cells, such as establishing normal estradiol signaling and regulating steroid hormone synthesis. Nevertheless, the effects of FOXL2 on granulosa cell morphology and the underlying mechanism remain unknown. Using FOXL2 ChIP-seq analysis, we found that FOXL2 target genes were significantly enriched in the actin cytoskeleton-related pathways. We confirmed that FOXL2 inhibited the expression of RhoA, a key gene for actin cytoskeleton rearrangement, by binding to TCATCCATCTCT in RhoA promoter region. In addition, FOXL2 overexpression in granulosa cells induced the depolymerization of F-actin and disordered the actin filaments, resulting in a slowdown in the expansion of granulosa cells, while FOXL2 silencing inhibited F-actin depolymerization and stabilized the actin filaments, thereby accelerating granulosa cell expansion. RhoA/ROCK pathway inhibitor Y-27632 exhibited similar effects to FOXL2 overexpression, even reversed the actin polymerization in FOXL2 silencing granulosa cells. This study revealed for the first time that FOXL2 regulated granulosa cell actin cytoskeleton by RhoA/ROCK pathway, thus affecting granulosa cell expansion. Our findings provide new insights for constructing the regulatory network of FOXL2 and propose a potential mechanism for facilitating rapid follicle expansion, thereby laying a foundation for further understanding follicular development.
Collapse
Affiliation(s)
- Xuelian Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Hongting Du
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Haobo Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Ying Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Shuixin Tang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Chengzhi Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Yan Guo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Wei Luo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Yanzhang Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| |
Collapse
|
3
|
Skjold V, Afanasyev S, Burgerhout E, Sveen L, Rørvik KA, Mota VFCN, Dessen JE, Krasnov A. Endocrine and Transcriptome Changes Associated with Testicular Growth and Differentiation in Atlantic Salmon ( Salmo salar L.). Curr Issues Mol Biol 2024; 46:5337-5351. [PMID: 38920991 PMCID: PMC11202266 DOI: 10.3390/cimb46060319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Sexual maturation of Atlantic salmon males is marked by dramatic endocrine changes and rapid growth of the testes, resulting in an increase in the gonad somatic index (GSI). We examined the association of gonadal growth with serum sex steroids, as well as pituitary and testicular gene expression levels, which were assessed with a DNA oligonucleotide microarray. The testes transcriptome was stable in males with a GSI < 0.08% despite the large difference between the smallest and the largest gonads. Fish with a GSI ≥ 0.23% had 7-17 times higher serum levels of five male steroids and a 2-fold increase in progesterone, without a change in cortisol and related steroids. The pituitary transcriptome showed an upregulation of the hormone-coding genes that control reproduction and behavior, and structural rearrangement was indicated by the genes involved in synaptic transmission and the differentiation of neurons. The observed changes in the abundance of testicular transcripts were caused by the regulation of transcription and/or disproportional growth, with a greater increase in the germinative compartment. As these factors could not be separated, the transcriptome results are presented as higher or lower specific activities (HSA and LSA). LSA was observed in 4268 genes, including many genes involved in various immune responses and developmental processes. LSA also included genes with roles in female reproduction, germinal cell maintenance and gonad development, responses to endocrine and neural regulation, and the biosynthesis of sex steroids. Two functional groups prevailed among HSA: structure and activity of the cilia (95 genes) and meiosis (34 genes). The puberty of A. salmon testis is marked by the predominance of spermatogenesis, which displaces other processes; masculinization; and the weakening of external regulation. Results confirmed the known roles of many genes involved in reproduction and pointed to uncharacterized genes that deserve attention as possible regulators of sexual maturation.
Collapse
Affiliation(s)
- Vetle Skjold
- The Norwegian Institute of Aquaculture, Nofima, 9291 Tromsø, Norway; (V.S.); (E.B.); (L.S.); (K.-A.R.); (J.-E.D.)
- Department of Mechanical Engineering and Technology Management, Norwegian University of Life Sciences, 1433 Ås, Norway;
| | - Sergey Afanasyev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, 194223 Saint Petersburg, Russia;
| | - Erik Burgerhout
- The Norwegian Institute of Aquaculture, Nofima, 9291 Tromsø, Norway; (V.S.); (E.B.); (L.S.); (K.-A.R.); (J.-E.D.)
| | - Lene Sveen
- The Norwegian Institute of Aquaculture, Nofima, 9291 Tromsø, Norway; (V.S.); (E.B.); (L.S.); (K.-A.R.); (J.-E.D.)
| | - Kjell-Arne Rørvik
- The Norwegian Institute of Aquaculture, Nofima, 9291 Tromsø, Norway; (V.S.); (E.B.); (L.S.); (K.-A.R.); (J.-E.D.)
- Department of Mechanical Engineering and Technology Management, Norwegian University of Life Sciences, 1433 Ås, Norway;
| | | | - Jens-Erik Dessen
- The Norwegian Institute of Aquaculture, Nofima, 9291 Tromsø, Norway; (V.S.); (E.B.); (L.S.); (K.-A.R.); (J.-E.D.)
| | - Aleksei Krasnov
- The Norwegian Institute of Aquaculture, Nofima, 9291 Tromsø, Norway; (V.S.); (E.B.); (L.S.); (K.-A.R.); (J.-E.D.)
| |
Collapse
|
4
|
Song A, Gao Z, Zhou Y, Miao J, Xu R, Pan L. Effects of Benzo[a]pyrene on Food Metabolism and Reproductive Endocrine and Ovarian Development in Female Scallop Chlamys farreri at Different Reproductive Stages. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023. [PMID: 38088252 DOI: 10.1002/etc.5806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/05/2023] [Accepted: 12/07/2023] [Indexed: 02/01/2024]
Abstract
Benzo[a]pyrene (B[a]P), a polycyclic aromatic hydrocarbon (PAH) with the most carcinogenic effects of all the PAHs, has multiple toxic effects on marine bivalves. We investigated the interference mechanism of B[a]P on food metabolism (sugars, proteins, and sugars), and on reproductive endocrine and ovarian development in female scallops (Chlamys farreri). Scallops were exposed to different concentrations of B[a]P concentrations of 0, 0.38, 3.8, and 38 μg/L throughout gonadal development. Total cholesterol and triglyceride contents in the digestive glands were increased, and their synthesis genes were upregulated. The plasma glucose contents decreased with the inhibition of glycogen synthesis genes and the induction of glycolysis genes in the digestive gland. The results showed that B[a]P had endocrine-disrupting effects on scallops, that it negatively affected genes related to ovarian cell proliferation, sex differentiation, and egg development, and that it caused damage to ovarian tissue. Our findings supplement the information on B[a]P disruption in gonadal development of marine bivalves. Environ Toxicol Chem 2024;00:1-14. © 2023 SETAC.
Collapse
Affiliation(s)
- Aimin Song
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Zhongyuan Gao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yueyao Zhou
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Ruiyi Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| |
Collapse
|
5
|
Du X, Yu H, Wang Y, Liu J, Zhang Q. Comparative Studies on Duplicated foxl2 Paralogs in Spotted Knifejaw Oplegnathus punctatus Show Functional Diversification. Genes (Basel) 2023; 14:1847. [PMID: 37895196 PMCID: PMC10606028 DOI: 10.3390/genes14101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
As a member of the forkhead box L gene family, foxl2 plays a significant role in gonadal development and the regulation of reproduction. During the evolution of deuterostome, whole genome duplication (WGD)-enriched lineage diversifications and regulation mechanisms occurs. However, only limited research exists on foxl2 duplication in teleost or other vertebrate species. In this study, two foxl2 paralogs, foxl2 and foxl2l, were identified in the transcriptome of spotted knifejaw (Oplegnathus punctatus), which had varying expressions in the gonads. The foxl2 was expressed higher in the ovary, while foxl2l was expressed higher in the testis. Phylogenetic reconstruction, synteny analysis, and the molecular evolution test confirmed that foxl2 and foxl2l likely originated from the first two WGD. The expression patterns test using qRT-PCR and ISH as well as motif scan analysis revealed evidence of potentially functional divergence between the foxl2 and foxl2l paralogs in spotted knifejaw. Our results indicate that foxl2 and foxl2l may originate from the first two WGD, be active in transcription, and have undergone functional divergence. These results shed new light on the evolutionary trajectories of foxl2 and foxl2l and highlights the need for further detailed functional analysis of these two duplicated paralogs.
Collapse
Affiliation(s)
- Xinxin Du
- School of Life Science and Bioengineering, Jining University, Jining 273155, China; (X.D.); (H.Y.)
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China; (Y.W.); (J.L.)
| | - Haiyang Yu
- School of Life Science and Bioengineering, Jining University, Jining 273155, China; (X.D.); (H.Y.)
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China; (Y.W.); (J.L.)
| | - Yujue Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China; (Y.W.); (J.L.)
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China; (Y.W.); (J.L.)
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China; (Y.W.); (J.L.)
| |
Collapse
|
6
|
King AC, Zenker AK. Sex blind: bridging the gap between drug exposure and sex-related gene expression in Danio rerio using next-generation sequencing (NGS) data and a literature review to find the missing links in pharmaceutical and environmental toxicology studies. FRONTIERS IN TOXICOLOGY 2023; 5:1187302. [PMID: 37398910 PMCID: PMC10312089 DOI: 10.3389/ftox.2023.1187302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
The sex of both humans and Danio rerio has previously been shown to affect the way individuals respond to drug exposure. Genes which allow identification of sex in juvenile zebrafish show potential to reveal these confounding variables between sex in toxicological and preclinical trials but the link between these is so far missing. These sex-specific, early expressed genes where expression is not altered by drug exposure must be carefully selected for this purpose. We aimed to discover genes which can be used in pharmaceutical trials and environmental toxicology studies to uncover sex-related variations in gene expression with drug application using the model organism Danio rerio. Previously published early sex determining genes from King et al. were evaluated as well as additional genes selected from our zebrafish Next-generation sequencing (NGS) data which are known from previously published works not to be susceptible to changes in expression with drug exposure. NGS revealed a further ten female-specific genes (vtg1, cyp17a1, cyp19a1a, igf3, ftz-f1, gdf9, foxl2a, Nr0b1, ipo4, lhcgr) and five male related candidate genes (FKBP5, apobb1, hbaa1, dmrt1, spata6) which are also expressed in juvenile zebrafish, 28 days post fertilisation (dpf). Following this, a literature review was performed to classify which of these early-expressed sex specific genes are already known to be affected by drug exposure in order to determine candidate genes to be used in pharmaceutical trials or environmental toxicology testing studies. Discovery of these early sex-determining genes in Danio rerio will allow identification of sex-related responses to drug testing to improve sex-specific healthcare and the medical treatment of human patients.
Collapse
Affiliation(s)
| | - Armin K. Zenker
- University of Applied Sciences and Arts North-Western Switzerland (FHNW), Muttenz, Switzerland
| |
Collapse
|
7
|
Li J, Gao L, Wang A, Qian H, Zhu J, Ji S, Chen J, Liu Z, Ji C. Forkhead box L2 is a target of miR-133b and plays an important role in the pathogenesis of non-small cell lung cancer. Cancer Med 2023; 12:9826-9842. [PMID: 36846934 PMCID: PMC10166978 DOI: 10.1002/cam4.5746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/21/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Forkhead box L2 (FOXL2) has been recognized as a transcription factor in the progression of many malignancies, but its role in non-small cell lung cancer (NSCLC) remains unclear. This research clarified on the role of FOXL2 and the specific molecular mechanism in NSCLC. METHODS RNA and protein levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting assays. Cell proliferation was examined by cell counting kit-8 (CCK-8) and clonogenic assays. Transwell and wound healing assays were used to detect cell invasion and migration. Cell cycle alterations were assessed by flow cytometry. The relationship between FOXL2 and miR-133b was verified by dual-luciferase reporter assays. In vivo metastasis was monitored in the tail vein-injected mice. RESULTS FOXL2 was upregulated in NSCLC cells and tissues. Downregulation of FOXL2 restrained cell proliferation, migration, and invasion and arrested the cell cycle of NSCLC cells. Moreover, FOXL2 promoted the epithelial-mesenchymal transition (EMT) process of NSCLC cells by inducing the transforming growth factor-β (TGF-β)/Smad signaling pathway. miR-133b directly targeted the 3'-UTR of FOXL2 and negatively regulated FOXL2 expression. Knockdown of FOXL2 blocked metastasis in vivo. CONCLUSIONS miR-133b downregulates FOXL2 by targeting the 3'-UTR of FOXL2, thereby inhibiting cell proliferation, EMT and metastasis induced by the TGF-β/Smad signaling pathway in NSCLC. FOXL2 may be a potential molecular target for treating NSCLC.
Collapse
Affiliation(s)
- Juan Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China.,Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Lirong Gao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China
| | - Anqi Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China
| | - Huiwen Qian
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianjie Zhu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, China
| | - Shundong Ji
- Jiangsu Institute of Hematology, MOH Key Laboratory of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zeyi Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, China
| | - Cheng Ji
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
8
|
Sheng Y, Wan H, Zhang Z, Li S, Wang Y. A new insight into potential roles of Spfoxl-2 in the testicular development of Scylla paramamosain by RNAi and transcriptome analysis. Comp Biochem Physiol A Mol Integr Physiol 2023; 280:111410. [PMID: 36842753 DOI: 10.1016/j.cbpa.2023.111410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
In our previous study, we found that the Spfoxl-2 transcript was highly expressed in gonads and explored its potential target genes in the ovary of Scylla paramamosain. In the current study, we primally analyzed its potential target genes in the testis through RNAi and RNA-Seq technology and compared with that in the ovary. The results showed that a total of 7892 unigenes were differentially expressed after Spfoxl-2 silencing in the testis, including plenty of conserved genes involved in testicular development, such as Dmrt family genes, Sox family genes, Caspase family genes, Cdk family genes, Kinesin family genes, Fox family genes and other genes. Further analysis revealed that these differentially expressed genes (DEGs) were enriched in crucial pathways involved in spermatogenesis, such as DNA replication, Cell cycle, Spliceosome, Homologous recombination, Meiosis and Apoptosis. The comparison results of potential target genes in the ovary and testis reveal 135 common potential target genes, including some genes involved in the immune response. According to our knowledge, the present work was the first to disclose the functions of foxl-2 in the testis of crustacean species using transcriptome analysis. It not only identifies key genes and pathways involved in the testicular development of S. paramamosain, but also reveals a new molecular-level understanding of the function of foxl-2 in testicular development.
Collapse
Affiliation(s)
- Yinzhen Sheng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China
| | - Haifu Wan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China
| | - Ziping Zhang
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515003, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China.
| |
Collapse
|
9
|
Wang C, Liu Y, Zhang Y, Yang Y, Li G, Wang X, Gong S, Chen S, Wang H, He D. Molecular characterization and expression profiling of FOXL2 gene in goose (Anser cygnoides). Reprod Biol 2022; 22:100640. [DOI: 10.1016/j.repbio.2022.100640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/23/2022] [Accepted: 04/03/2022] [Indexed: 11/29/2022]
|
10
|
Identification and Characterization of MicroRNAs Involving in Initial Sex Differentiation of Chlamys farreri Gonads. BIOLOGY 2022; 11:biology11030456. [PMID: 35336829 PMCID: PMC8945268 DOI: 10.3390/biology11030456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Sex formation of gonads encompasses two ancient and highly conserved biological processes, sex determination and sex differentiation. The processes are strictly regulated by a complex of gene networks. There is increasing evidence that miRNAs play key roles in many biological processes. however, information is limited in their contribution to sex differentiation in animals. In the present study, we identified the novel miRNAs involved in sex-related genes regulation and explored the miRNA–mRNA networks underlying the posttranscriptional regulation during the initial sex differentiation in Zhikong scallop, Chlamys farreri. Our findings provide an important basis for studying the sex differentiation mechanisms, as well as developing sex control techniques in bivalves. Abstract Research on expressional regulation of genes at the initial sex differentiation of gonads will help to elucidate the mechanisms of sex determination and differentiation in animals. However, information on initial sex differentiation of gonads is limited in bivalves. MicroRNAs (miRNAs) are a class of endogenous small noncoding RNAs that can regulate the target gene expression at the posttranscription level by degrading the mRNA or repressing the mRNA translation. In the present study, we investigated the small RNAs transcriptome using the testes and ovaries of Zhikong scallop Chlamys farreri juveniles with a shell height of 5.0 mm, a critical stage of initial sex differentiation of gonads. A total of 75 known mature miRNAs and 103 novel miRNAs were identified. By comparing the expression of miRNAs between the ovary and testis, 11 miRNAs were determined to be differentially expressed. GO annotations and KEGG analyses indicated that many putative target genes that matched to these differentially expressed miRNAs participated in the regulation of sex differentiation. Furthermore, two selected miRNAs, cfa-novel_miR65 and cfa-miR-87a-3p_1, were confirmed to downregulate expressions of Foxl2 (a female-critical gene) and Klf4 (a male-critical gene), respectively, using a dual-luciferase reporter analysis. Our findings provided new insights into the initial sex differentiation of gonads regulated by miRNAs in bivalves.
Collapse
|
11
|
Fan S, Li X, Lin S, Li Y, Ma H, Zhang Z, Qin Z. Screening and Identification of Transcription Factors Potentially Regulating Foxl2 Expression in Chlamys farreri Ovary. BIOLOGY 2022; 11:biology11010113. [PMID: 35053111 PMCID: PMC8772818 DOI: 10.3390/biology11010113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 04/09/2023]
Abstract
Foxl2 is an evolutionarily conserved female sex gene, which is specifically expressed in the ovary and mainly involved in oogenesis and ovarian function maintenance. However, little is known about the mechanism that regulates Foxl2 specific expression during the ovary development. In the present study, we constructed the gonadal yeast one-hybrid (Y1H) library of Chlamysfarreri with ovaries and testes at different developmental stages using the Gateway technology. The library capacity was more than 1.36 × 107 CFU, and the length of the inserted fragment was 0.75 Kb~2 Kb, which fully met the demand of yeast library screening. The highly transcriptional activity promoter sequence of C. farreri Foxl2 (Cf-Foxl2) was determined at -1000~-616 bp by dual-luciferase reporter (DLR) assay and was used as bait to screen possible transcription factors from the Y1H library. Eleven candidate factors, including five unannotated factors, were selected based on Y1H as well as their expressional differences between ovaries and testes and were verified for the first time to be involved in the transcriptional regulation of Cf-Foxl2 by RT-qPCR and DLR. Our findings provided valuable data for further studying the specific regulation mechanism of Foxl2 in the ovary.
Collapse
Affiliation(s)
- Shutong Fan
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.F.); (X.L.); (S.L.); (Y.L.); (H.M.)
| | - Xixi Li
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.F.); (X.L.); (S.L.); (Y.L.); (H.M.)
| | - Siyu Lin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.F.); (X.L.); (S.L.); (Y.L.); (H.M.)
| | - Yunpeng Li
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.F.); (X.L.); (S.L.); (Y.L.); (H.M.)
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Huixin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.F.); (X.L.); (S.L.); (Y.L.); (H.M.)
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.F.); (X.L.); (S.L.); (Y.L.); (H.M.)
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
- Correspondence: (Z.Z.); (Z.Q.)
| | - Zhenkui Qin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.F.); (X.L.); (S.L.); (Y.L.); (H.M.)
- Correspondence: (Z.Z.); (Z.Q.)
| |
Collapse
|
12
|
Tucker EJ. The Genetics and Biology of FOXL2. Sex Dev 2021; 16:184-193. [PMID: 34727551 DOI: 10.1159/000519836] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/22/2021] [Indexed: 11/19/2022] Open
Abstract
FOXL2 encodes a transcription factor that regulates a wide array of target genes including those involved in sex development, eyelid development, ovarian function and maintenance, genomic integrity as well as cellular pathways such as cell-cycle progression, proliferation, and apoptosis. The role of FOXL2 has been widely studied in humans and animals. Consistent with its role in ovarian and eyelid development, over 100 germline variants in FOXL2 are associated with blepharophimosis, ptosis, and epicanthus inversus syndrome in humans, an autosomal dominant condition characterised by ovarian dysgenesis/premature ovarian insufficiency, as well as defective eyelid development. Reflecting its role in apoptosis and proliferation, a somatic variant in FOXL2 causes adult granulosa cell tumours in humans. Despite being widely studied and having clear relevance to human disease, much remains unknown about the genes FOXL2 regulates and how it exerts its wide-reaching effect on multiple organs. This review focuses on FOXL2 and its varied roles as a transcription factor in sex determination, ovarian maintenance and function, eyelid development, genome integrity, and cell regulation, followed by discussion of the in vivo disruption of FOXL2 in humans and other species.
Collapse
Affiliation(s)
- Elena J Tucker
- Reproductive Development, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
13
|
Pilsworth JA, Todeschini AL, Neilson SJ, Cochrane DR, Lai D, Anttonen M, Heikinheimo M, Huntsman DG, Veitia RA. FOXL2 in adult-type granulosa cell tumour of the ovary: oncogene or tumour suppressor gene? J Pathol 2021; 255:225-231. [PMID: 34338304 DOI: 10.1002/path.5771] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/13/2021] [Accepted: 07/28/2021] [Indexed: 12/19/2022]
Abstract
A recurrent mutation in FOXL2 (c.402C>G; p.C134W) is present in over 95% of adult-type granulosa cell tumours (AGCTs). In contrast, various loss-of-function mutations in FOXL2 lead to the development of blepharophimosis, ptosis, and epicanthus inversus syndrome (BPES). BPES is characterised by an eyelid malformation often accompanied with primary ovarian insufficiency. Two recent studies suggest that FOXL2 C402G is a gain- or change-of-function mutation with altered DNA-binding specificity. Another study proposes that FOXL2 C402G is selectively targeted for degradation, inducing somatic haploinsufficiency, suggesting its role as a tumour suppressor. The latter study relies on data indicative of an FOXL2 allelic imbalance in AGCTs. Here we present RNA-seq data as genetic evidence that no real allelic imbalance is observed at the transcriptomic level in AGCTs. Additionally, there is no loss of protein expression in tumours harbouring the mutated allele. These data and other features of this mutation compared to other oncogenes and tumour suppressor genes argue strongly against FOXL2 being a tumour suppressor in this context. Given the likelihood that FOXL2 C402G is oncogenic, targeting the variant protein or its downstream consequences is the most viable path forward to identifying an effective treatment for this cancer. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jessica A Pilsworth
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Department of Molecular Oncology, BC Cancer, Vancouver, Canada
| | - Anne-Laure Todeschini
- Université de Paris, Paris, France.,Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | | | - Dawn R Cochrane
- Department of Molecular Oncology, BC Cancer, Vancouver, Canada
| | - Daniel Lai
- Department of Molecular Oncology, BC Cancer, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Mikko Anttonen
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Markku Heikinheimo
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - David G Huntsman
- Department of Molecular Oncology, BC Cancer, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, Canada
| | - Reiner A Veitia
- Université de Paris, Paris, France.,Université de Paris, CNRS, Institut Jacques Monod, Paris, France.,Université Paris-Saclay, Institut de Biologie F. Jacob, Commissariat à l'Energie Atomique, Fontenay aux Roses, France
| |
Collapse
|
14
|
Li F, Chen H, Wang Y, Yang J, Zhou Y, Song X, Fan J. Functional Studies of Novel FOXL2 Variants in Chinese Families With Blepharophimosis-Ptosis-Epicanthus Inversus Syndrome. Front Genet 2021; 12:616112. [PMID: 33796131 PMCID: PMC8007913 DOI: 10.3389/fgene.2021.616112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/04/2021] [Indexed: 12/23/2022] Open
Abstract
The blepharophimosis-ptosis-epicanthus inversus syndrome (BPES) is a rare autosomal dominant disease mainly caused by FOXL2 variants. This genetic disorder is usually characterized by eyelid malformation and ovarian dysfunction. However, no reliable genotype/phenotype correlations have been established considering the ovarian phenotype. Here, we detected 15 FOXL2 variants including nine novel ones from 7 families and 8 sporadic cases, which expanded the spectrum of FOXL2 variants and identified a potential clinical cause. Functional studies, with respect to the effect of FOXL2 on the StAR promoter, showed that non-sense variants that lead to protein truncation before the polyalanine tract and missense variants [c.307C > T; p.(Arg103Cys), c.311A > C; p.(His104Pro), c.320G > A; p.(Ser107Asn), and c.335T > A; p.(Phe112Tyr)] within the central portion of the FOXL2 forkhead domain significantly affect its suppressor activity. Such changes may explain the mechanism underlying a more severe phenotype, more likely to result in BPES type I. Furthermore, the missenses variants c.307C > T; p.(Arg103Cys), c.311A > C; p.(His104Pro), and c.320G > A; p.(Ser107Asn) were not able to transactivate OSR2, which is consistent with the eyelid malformation in these patients. The results from our cohort have expanded the spectrum of FOXL2 variants and have provided insights into genotype/phenotype correlations.
Collapse
Affiliation(s)
- Fang Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Huifang Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yefei Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jie Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yixiong Zhou
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Xin Song
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jiayan Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
15
|
The Genetic and Clinical Features of FOXL2-Related Blepharophimosis, Ptosis and Epicanthus Inversus Syndrome. Genes (Basel) 2021; 12:genes12030364. [PMID: 33806295 PMCID: PMC7998575 DOI: 10.3390/genes12030364] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 02/25/2021] [Indexed: 12/28/2022] Open
Abstract
Blepharophimosis, ptosis, and epicanthus inversus syndrome (BPES) is a craniofacial disorder caused by heterozygous variants of the forkhead box L2 (FOXL2) gene. It shows autosomal dominant inheritance but can also occur sporadically. Depending on the mutation, two phenotypic subtypes have been described, both involving the same craniofacial features: type I, which is associated with premature ovarian failure (POF), and type II, which has no systemic features. The genotype-phenotype correlation is not fully understood, but it has been hypothesised that type I BPES involves more severe loss of function variants spanning the whole gene. Type II BPES has been linked to frameshift mutations that result in elongation of the protein rather than complete loss of function. A mutational hotspot has been identified within the poly-alanine domain, although the exact function of this region is still unknown. However, the BPES subtype cannot be determined genetically, necessitating informed genetic counselling and careful discussion of family planning advice in view of the associated POF particularly as the patient may still be a child. Following puberty, female patients should be referred for ovarian reserve and response assessment. Oculofacial features can be managed with surgical intervention and regular monitoring to prevent amblyopia.
Collapse
|
16
|
Rodríguez Gutiérrez D, Biason-Lauber A. Pluripotent Cell Models for Gonadal Research. Int J Mol Sci 2019; 20:ijms20215495. [PMID: 31690065 PMCID: PMC6862629 DOI: 10.3390/ijms20215495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 12/27/2022] Open
Abstract
Sex development is a complex process involving many genes and hormones. Defects in this process lead to Differences of Sex Development (DSD), a group of heterogeneous conditions not as rare as previously thought. Part of the obstacles in proper management of these patients is due to an incomplete understanding of the genetics programs and molecular pathways involved in sex development and DSD. Several challenges delay progress and the lack of a proper model system for the single patient severely hinders advances in understanding these diseases. The revolutionary techniques of cellular reprogramming and guided in vitro differentiation allow us now to exploit the versatility of induced pluripotent stem cells to create alternatives models for DSD, ideally on a patient-specific personalized basis.
Collapse
Affiliation(s)
- Daniel Rodríguez Gutiérrez
- Endocrinology Division, Department of Endocrinology, Metabolism and Cardiovascular System, Section of Medicine, University of Fribourg, 1700 Fribourg, Switzerland.
| | - Anna Biason-Lauber
- Endocrinology Division, Department of Endocrinology, Metabolism and Cardiovascular System, Section of Medicine, University of Fribourg, 1700 Fribourg, Switzerland.
| |
Collapse
|
17
|
Belli M, Secchi C, Stupack D, Shimasaki S. FOXO1 Negates the Cooperative Action of FOXL2 C134W and SMAD3 in CYP19 Expression in HGrC1 Cells by Sequestering SMAD3. J Endocr Soc 2019; 3:2064-2081. [PMID: 31701078 PMCID: PMC6797057 DOI: 10.1210/js.2019-00279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/23/2019] [Indexed: 12/25/2022] Open
Abstract
Adult granulosa cell tumor (aGCT) is a rare type of ovarian cancer characterized by estrogen excess. Interestingly, only the single somatic mutation FOXL2 C134W was found across virtually all aGCTs. We previously reported that FOXL2C134W stimulates CYP19 transcription synergistically with SMAD3, leading to elevated estradiol synthesis in a human granulosa cell line (HGrC1). This finding suggested a key role for FOXL2C134W in causing the typical estrogen overload in patients with aGCTs. We have now investigated the effect of FOXO1, a tumor suppressor, on CYP19 activation by FOXL2C134W in the presence of SMAD3. Intriguingly, FOXO1 antagonized the positive, synergistic effect of FOXL2C134W and SMAD3 on CYP19 transcription. Similar to FOXL2C134W, FOXO1 binds SMAD3 but not the proximal FOXL2C134W binding site (-199 bp) of the CYP19 promoter identified in our earlier studies. The results of a competitive binding assay suggested a possible underlying mechanism in which FOXO1 sequesters SMAD3 away from FOXL2C134W, thereby negating the cooperative action of FOXL2C134W and SMAD3 in inducing CYP19 expression. To our knowledge, this study is the first to demonstrate the ability of FOXO1 to restore an altered CYP19 expression by FOXL2C134W and SMAD3 and provides insight as to why FOXO1 deficiency promotes GCT development in mice.
Collapse
Affiliation(s)
- Martina Belli
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, California
| | - Christian Secchi
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, California
| | - Dwayne Stupack
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, California
| | - Shunichi Shimasaki
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, California
| |
Collapse
|
18
|
Niu BB, Tang N, Xu Q, Chai PW. Genomic Disruption of FOXL2 in Blepharophimosis-Ptosis-Epicanthus Inversus Syndrome Type 2: A Novel Deletion-Insertion Compound Mutation. Chin Med J (Engl) 2019; 131:2380-2383. [PMID: 30246734 PMCID: PMC6166469 DOI: 10.4103/0366-6999.241818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Bei-Bei Niu
- Scientific Research Center, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ning Tang
- Scientific Research Center, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Qin Xu
- Scientific Research Center, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Pei-Wei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
19
|
Wang Y, Liu X, Zhao J, Ouyang S, Li W, Zhu J, Zhu Y, Zhu X. Molecular cloning of ESR1, BMPR1B, and FOXL2 and differential expressions depend on maternal age and size during breeding season in cultured Asian yellow pond turtle (Mauremys mutica). Comp Biochem Physiol B Biochem Mol Biol 2019; 232:108-120. [DOI: 10.1016/j.cbpb.2019.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
|
20
|
Cheng Q, Shi YJ, Li Z, Kang H, Xiang Z, Kong LF. FAST1 promotes the migration and invasion of colorectal cancer cells. Biochem Biophys Res Commun 2018; 509:407-413. [PMID: 30594391 DOI: 10.1016/j.bbrc.2018.12.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 12/16/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND The forkhead activin signal transducer 1 (FAST1) is involved in several oncogenic signaling pathways and its abnormal expression has been discovered in some cancers. Yet the role of FAST1 in colorectal cancer (CRC) remains largely unclear. Therefore, the goal of this study was to explore the function of FAST1 in CRC. METHODS In this study, we analyzed FAST1 expression and its relationship with clinicopathological parameters and prognostic significance in CRC via immunohistochemistry analysis. The effects and mechanisms of FAST1 on cell proliferation, migration and invasion were explored in vitro and in vivo. RESULTS We found that increased FAST1 as an independent prognostic factor was positively associated with TNM stage and pathological grade in CRC. FAST1 overexpression promoted the CRC cell proliferation, migration and invasion in vivo. Furthermore, mechanistic studies implicated that FAST1 enhanced the pulmonary metastasis of CRC cells through down-regulating E-cadherin levels. CONCLUSIONS In summary, FAST1 was significantly associated with CRC progression and could serve as an independent prognostic factor. FAST1 may be potential therapeutic target for CRC patients.
Collapse
Affiliation(s)
- Qiong Cheng
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Yu-Jie Shi
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Zhen Li
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Hong Kang
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Zheng Xiang
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Ling-Fei Kong
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China.
| |
Collapse
|
21
|
Ovarian stromal cells as a source of cancer-associated fibroblasts in human epithelial ovarian cancer: A histopathological study. PLoS One 2018; 13:e0205494. [PMID: 30304016 PMCID: PMC6179287 DOI: 10.1371/journal.pone.0205494] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/26/2018] [Indexed: 01/29/2023] Open
Abstract
Fibroblasts are a major component of cancer tissue and known to contribute to cancer progression. However, it remains unknown whether they are derived from local fibroblasts or of other origin. This study was designed to identify the contribution of local stromal cells to cancer stroma in human epithelial ovarian cancer. Seventy-six cases of surgically resected primary ovarian carcinoma (48 cases confined to the ovaries and 28 cases with distant metastases) and 17 cases of secondary ovarian tumor (e.g. colon cancer metastasized to the ovary) were enrolled in this study. The tissues were immunostained for forkhead box protein L2 (FOXL2), a transcription factor crucial for ovarian development and function, and markers for cancer-associated fibroblasts (CAFs) and inflammatory cells. Under normal condition, FOXL2 expression was restricted to ovarian stromal cells and some other types of cells in female genital tracts and never found in other sites of the body. FOXL2-positive cells were found in all primary and secondary tumors in the ovary, and were the dominant stromal cells in most cases. In contrast, only a few FOXL2-positive cells were found in peritoneal seeding sites of four serous carcinoma cases, and all the other tumors at extraovarian sites had no FOXL2-positive cells. FOXL2-positive cells in the ovarian lesion variably expressed CAFs markers, such as alpha-smooth muscle actin and fibroblast activating protein, as determined by double immunostaining. Background inflammation, but not histological subtype or origin of the neoplasm seemed to correlate with the proportion of FOXL2-positive cells. These results suggest that ovarian stromal cells are the main source of cancer stroma in the ovary but do not seem to move to distant sites via circulation together with tumor cells. Our results also support the hypothesis that cancer-associated fibroblasts may originate locally, which was previously demonstrated using animal models.
Collapse
|
22
|
Abstract
Codon usage depends on mutation bias, tRNA-mediated selection, and the need for high efficiency and accuracy in translation. One codon in a synonymous codon family is often strongly over-used, especially in highly expressed genes, which often leads to a high dN/dS ratio because dS is very small. Many different codon usage indices have been proposed to measure codon usage and codon adaptation. Sense codon could be misread by release factors and stop codons misread by tRNAs, which also contribute to codon usage in rare cases. This chapter outlines the conceptual framework on codon evolution, illustrates codon-specific and gene-specific codon usage indices, and presents their applications. A new index for codon adaptation that accounts for background mutation bias (Index of Translation Elongation) is presented and contrasted with codon adaptation index (CAI) which does not consider background mutation bias. They are used to re-analyze data from a recent paper claiming that translation elongation efficiency matters little in protein production. The reanalysis disproves the claim.
Collapse
|
23
|
Belli M, Iwata N, Nakamura T, Iwase A, Stupack D, Shimasaki S. FOXL2C134W-Induced CYP19 Expression via Cooperation With SMAD3 in HGrC1 Cells. Endocrinology 2018; 159:1690-1703. [PMID: 29471425 PMCID: PMC6238151 DOI: 10.1210/en.2017-03207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/13/2018] [Indexed: 12/21/2022]
Abstract
Germline knockout studies in female mice demonstrated an essential role for forkhead box L2 (FOXL2) in early follicle development, whereas an inducible granulosa cell (GC)-specific deletion of Foxl2 in adults has shown ovary-to-testis somatic sex reprogramming. In women, over 120 different germline mutations in the FOXL2 gene have been shown to cause blepharophimosis/ptosis/epicantus inversus syndrome associated with or without primary ovarian insufficiency. By contrast, a single somatic mutation (FOXL2C134W) accounts for almost all adult-type GC tumors (aGCTs). To test the hypothesis that FOXL2C134W differentially regulates the expression of aGCT markers, we investigated the effect of FOXL2C134W on inhibin B and P450 aromatase expression using a recently established human GC line (HGrC1), which we now show to bear two normal alleles of FOXL2. Neither FOXL2wt nor FOXL2C134W regulate INHBB messenger RNA (mRNA) expression. However, FOXL2C134W selectively displays a 50-fold induction of CYP19 mRNA expression dependent upon activin A. Mechanistically, the CYP19 promoter is activated in a similar way by FOXL2C134W interaction with SMAD3, but not by FOXL2wt. SMAD2 had no effect. Moreover, FOXL2C134W interactions with SMAD3 and with the FOX binding element located at -199 bp upstream of the ATG initiation codon of CYP19 are more sustainable than FOXL2wt. Thus, FOXL2C134W potentiates CYP19 expression in HGrC1 cells via enhanced recruitment of SMAD3 to a proximal FOX binding element. These findings may explain the pathophysiology of estrogen excess in patients with aGCT.
Collapse
Affiliation(s)
- Martina Belli
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, California
| | - Nahoko Iwata
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, California
| | - Tomoko Nakamura
- Center for Maternal-Perinatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Akira Iwase
- Center for Maternal-Perinatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Dwayne Stupack
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, California
| | - Shunichi Shimasaki
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, California
- Correspondence: Shunichi Shimasaki, PhD, Department of Reproductive Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093. E-mail:
| |
Collapse
|
24
|
Yang XW, He WB, Gong F, Li W, Li XR, Zhong CG, Lu GX, Lin G, Du J, Tan YQ. Novel FOXL2 mutations cause blepharophimosis-ptosis-epicanthus inversus syndrome with premature ovarian insufficiency. Mol Genet Genomic Med 2018; 6:261-267. [PMID: 29378385 PMCID: PMC5902393 DOI: 10.1002/mgg3.366] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/29/2017] [Accepted: 12/27/2017] [Indexed: 01/02/2023] Open
Abstract
Background Blepharophimosis‐ptosis‐epicanthus inversus syndrome (BPES) is a malformation of the eyelids. Forkhead Box L2 (FOXL2) is the only gene known to be associated with BPES. Methods We identified two Han Chinese BPES families with premature ovarian insufficiency (POI). Sanger sequencing and in vitro functional analysis were performed to identify the genetic cause. Results Sanger sequencing identified two novel mutations (c.462_468del, c.988_989insG) in FOXL2, one in each family. The in vitro functional analysis confirmed that both novel mutations were associated with impaired transactivation of downstream genes. Specifically, the single‐base insertion, c.988_989insG, led to subcellular mislocalization and aggregation of the encoded protein, which validated the hypothesis that the two novel FOXL2 mutations are deleterious and associated with POI in the two BPES families. Conclusion The novel mutations identified in the present study will enhance the present knowledge of the mutation spectrum of FOXL2. The in vitro experiments provide further insights into the molecular mechanism by which the two new variants mediate disease pathogenesis and may contribute to elucidating the genotype‐phenotype correlation between the two novel FOXL2 mutations and POI.
Collapse
Affiliation(s)
- Xiao-Wen Yang
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China
| | - Wen-Bin He
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China.,Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, Hunan, China
| | - Fei Gong
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China.,Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, Hunan, China
| | - Wen Li
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China.,Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, Hunan, China
| | - Xiu-Rong Li
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China.,Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, Hunan, China
| | - Chang-Gao Zhong
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China.,Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, Hunan, China
| | - Guang-Xiu Lu
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China.,Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, Hunan, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China.,Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, Hunan, China
| | - Juan Du
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China.,Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, Hunan, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan, China.,Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, Hunan, China
| |
Collapse
|
25
|
Guo L, Rhen T. Characterization of the FoxL2 proximal promoter and coding sequence from the common snapping turtle (Chelydra serpentina). Comp Biochem Physiol A Mol Integr Physiol 2017; 212:45-55. [DOI: 10.1016/j.cbpa.2017.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 10/19/2022]
|
26
|
Kobayashi T, Chiba A, Sato T, Myosho T, Yamamoto J, Okamura T, Onishi Y, Sakaizumi M, Hamaguchi S, Iguchi T, Horie Y. Estrogen alters gonadal soma-derived factor (Gsdf)/Foxl2 expression levels in the testes associated with testis-ova differentiation in adult medaka, Oryzias latipes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 191:209-218. [PMID: 28866280 DOI: 10.1016/j.aquatox.2017.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
Testis-ova differentiation in sexually mature male medaka (Oryzias latipes) is easily induced by estrogenic chemicals, indicating that spermatogonia persist in sexual bipotentiality, even in mature testes in medaka. By contrast, the effects of estrogen on testicular somatic cells associated with testis-ova differentiation in medaka remain unclear. In this study, we focused on the dynamics of sex-related genes (Gsdf, Dmrt1, and Foxl2) expressed in Sertoli cells in the mature testes of adult medaka during estrogen-induced testis-ova differentiation. When mature male medaka were exposed to estradiol benzoate (EB; 800ng/L), testis-ova first appeared after EB treatment for 14days (observed as the first oocytes of the leptotene-zygotene stage). However, the testis remained structurally unchanged, even after EB treatment for 28days. Although Foxl2 is a female-specific sex gene, EB treatment for 7days induced Foxl2/FOXL2 expression in all Sertoli cell-enclosed spermatogonia before testis-ova first appeared; however, Foxl2 was not detected in somatic cells in control testes. Conversely, Sertoli-cell-specific Gsdf mRNA expression levels significantly decreased after EB treatment for 14days, and no changes were observed in DMRT1 localization following EB treatment, whereas Dmrt1 mRNA levels increased significantly. Furthermore, after EB exposure, FOXl2 and DMRT1 were co-localized in Sertoli cells during testis-ova differentiation, although FOXL2 localization was undetectable in Sertoli-cell-enclosed apoptotic testis-ova, whereas DMRT1 remained localized in Sertoli cells. These results indicated for the first time that based on the expression of female-specific sex genes, feminization of Sertoli cells precedes testis-ova differentiation induced by estrogen in mature testes in medaka; however, complete feminization of Sertoli cells was not induced in this study. Additionally, it is suggested strongly that Foxl2 and Gsdf expression constitute potential molecular markers for evaluating the effects of estrogenic chemicals on testicular somatic cells associated with estrogen-induced testis-ova differentiation in mature male medaka.
Collapse
Affiliation(s)
- Tohru Kobayashi
- Laboratory of Molecular Reproductive Biology, Institute for Environmental Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan.
| | - Ayaka Chiba
- Laboratory of Molecular Reproductive Biology, Institute for Environmental Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan.
| | - Tadashi Sato
- Institute for Science and Technology, Niigata University, Niigata, Niigata 950-2181, Japan.
| | - Taijun Myosho
- Laboratory of Molecular Reproductive Biology, Institute for Environmental Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan.
| | - Jun Yamamoto
- Institute of Environmental Ecology, IDEA Consultants Inc., 1334-5, Riemon, Yaizu, Shizuoka 421-0212, Japan.
| | - Tetsuro Okamura
- Institute of Environmental Ecology, IDEA Consultants Inc., 1334-5, Riemon, Yaizu, Shizuoka 421-0212, Japan.
| | - Yuta Onishi
- Institute of Environmental Ecology, IDEA Consultants Inc., 1334-5, Riemon, Yaizu, Shizuoka 421-0212, Japan.
| | - Mitsuru Sakaizumi
- Institute for Science and Technology, Niigata University, Niigata, Niigata 950-2181, Japan.
| | - Satoshi Hamaguchi
- Institute for Science and Technology, Niigata University, Niigata, Niigata 950-2181, Japan.
| | - Taisen Iguchi
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institute of Natural Sciences, Okazaki, Aichi 444-8787, Japan.
| | - Yoshifumi Horie
- Laboratory of Molecular Reproductive Biology, Institute for Environmental Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan; National Institute for Environmental Studies, Tsukuba, 305-8506, Japan.
| |
Collapse
|
27
|
Yang L, Li T, Xing Y. Identification of a novel FOXL2 mutation in a single family with both types of blepharophimosis‑-ptosis-epicanthus inversus syndrome. Mol Med Rep 2017; 16:5529-5532. [PMID: 28849110 DOI: 10.3892/mmr.2017.7226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 06/08/2017] [Indexed: 11/05/2022] Open
Abstract
Blepharophimosis-ptosis-epicanthus inversus syndrome (BPES) is a rare autosomal dominant disease, which has been divided into two types according to whether it involves premature ovarian failure (POF). Mutations in forkhead box L2 (FOXL2) have been identified in the majority of patients with BPES. The present study aimed to identify the causative mutation in FOXL2 in a Chinese family with both types of BPES. Clinical data and genomic DNA were collected from a single Chinese family with BPES. All the coding exons and adjacent regions of FOXL2 were screened in one affected member to detect the causative mutation using Sanger sequencing. The detected mutation was also screened in available family members and in 100 normal control chromosomes. In total, seven family members were recruited in the present study, including four affected and three unaffected members. The patient (II:5) exhibited typical features of type II BPES, characterized by a narrowed horizontal palpehral aperture, ptosis, epicanthus inversus and telecanthus without POF, whereas the patient's three daughters (III:1, III:2 and III:3) were diagnosed with type I BPES, in which a complex eyelid malformation was accompanied with POF. A novel heterozygous mutation in FOXL2 (c.844_860dup17, p.His291Argfs*71) was found in the four affected members, which was absent in the remaining three unaffected members and in the 100 control chromosomes. This novel duplicate mutation (c.844_860dup17, p.His291Argfs*71) in FOXL2 was identified in a Chinese family with both types of BPES. These findings expand current knowledge of the mutation spectrum of the FOXL2 gene and confirmed the intra‑family phenotypic heterogeneity of BPES.
Collapse
Affiliation(s)
- Lin Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Tuo Li
- Department of Ophthalmology, Enshi Medical College of Wuhan University, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| | - Yiqiao Xing
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
28
|
Lacrimal Gland Involvement in Blepharophimosis-Ptosis-Epicanthus Inversus Syndrome. Ophthalmology 2017; 124:399-406. [DOI: 10.1016/j.ophtha.2016.10.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 11/18/2022] Open
|
29
|
Tucker EJ, Grover SR, Bachelot A, Touraine P, Sinclair AH. Premature Ovarian Insufficiency: New Perspectives on Genetic Cause and Phenotypic Spectrum. Endocr Rev 2016; 37:609-635. [PMID: 27690531 DOI: 10.1210/er.2016-1047] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Premature ovarian insufficiency (POI) is one form of female infertility, defined by loss of ovarian activity before the age of 40 and characterized by amenorrhea (primary or secondary) with raised gonadotropins and low estradiol. POI affects up to one in 100 females, including one in 1000 before the age of 30. Substantial evidence suggests a genetic basis for POI; however, the majority of cases remain unexplained, indicating that genes likely to be associated with this condition are yet to be discovered. This review discusses the current knowledge of the genetic basis of POI. We highlight genes typically known to cause syndromic POI that can be responsible for isolated POI. The role of mouse models in understanding POI pathogenesis is discussed, and a thorough list of candidate POI genes is provided. Identifying a genetic basis for POI has multiple advantages, such as enabling the identification of presymptomatic family members who can be offered counseling and cryopreservation of eggs before depletion, enabling personalized treatment based on the cause of an individual's condition, and providing better understanding of disease mechanisms that ultimately aid the development of improved treatments.
Collapse
Affiliation(s)
- Elena J Tucker
- Murdoch Children's Research Institute (E.J.T., S.R.G., A.H.S.), Royal Children's Hospital, Melbourne, VIC 3052 Australia; Department of Paediatrics (E.J.T., S.R.G., A.H.S.), University of Melbourne, Melbourne, VIC 3010, Australia; Department of Paediatric and Adolescent Gynaecology (S.R.G.), Royal Children's Hospital, Melbourne, VIC 3052, Australia; Assistance Publique Hôpitaux de Paris, (A.B., P.T.), IE3M, Université Pierre et Marie Curie, Paris 6 University, Department of Endocrinology and Reproductive Medicine, Centre de Référence des Maladies Endocriniennes Rares de la Croissance et des Pathologies Gynécologiques Rares, Pitié-Salpêtrière Hospital, Université Pierre et Marie Curie, 75013 Paris, France; Institut National de la Santé et de la Recherche Médicale (A.B., P.T.), 75654 Paris, France
| | - Sonia R Grover
- Murdoch Children's Research Institute (E.J.T., S.R.G., A.H.S.), Royal Children's Hospital, Melbourne, VIC 3052 Australia; Department of Paediatrics (E.J.T., S.R.G., A.H.S.), University of Melbourne, Melbourne, VIC 3010, Australia; Department of Paediatric and Adolescent Gynaecology (S.R.G.), Royal Children's Hospital, Melbourne, VIC 3052, Australia; Assistance Publique Hôpitaux de Paris, (A.B., P.T.), IE3M, Université Pierre et Marie Curie, Paris 6 University, Department of Endocrinology and Reproductive Medicine, Centre de Référence des Maladies Endocriniennes Rares de la Croissance et des Pathologies Gynécologiques Rares, Pitié-Salpêtrière Hospital, Université Pierre et Marie Curie, 75013 Paris, France; Institut National de la Santé et de la Recherche Médicale (A.B., P.T.), 75654 Paris, France
| | - Anne Bachelot
- Murdoch Children's Research Institute (E.J.T., S.R.G., A.H.S.), Royal Children's Hospital, Melbourne, VIC 3052 Australia; Department of Paediatrics (E.J.T., S.R.G., A.H.S.), University of Melbourne, Melbourne, VIC 3010, Australia; Department of Paediatric and Adolescent Gynaecology (S.R.G.), Royal Children's Hospital, Melbourne, VIC 3052, Australia; Assistance Publique Hôpitaux de Paris, (A.B., P.T.), IE3M, Université Pierre et Marie Curie, Paris 6 University, Department of Endocrinology and Reproductive Medicine, Centre de Référence des Maladies Endocriniennes Rares de la Croissance et des Pathologies Gynécologiques Rares, Pitié-Salpêtrière Hospital, Université Pierre et Marie Curie, 75013 Paris, France; Institut National de la Santé et de la Recherche Médicale (A.B., P.T.), 75654 Paris, France
| | - Philippe Touraine
- Murdoch Children's Research Institute (E.J.T., S.R.G., A.H.S.), Royal Children's Hospital, Melbourne, VIC 3052 Australia; Department of Paediatrics (E.J.T., S.R.G., A.H.S.), University of Melbourne, Melbourne, VIC 3010, Australia; Department of Paediatric and Adolescent Gynaecology (S.R.G.), Royal Children's Hospital, Melbourne, VIC 3052, Australia; Assistance Publique Hôpitaux de Paris, (A.B., P.T.), IE3M, Université Pierre et Marie Curie, Paris 6 University, Department of Endocrinology and Reproductive Medicine, Centre de Référence des Maladies Endocriniennes Rares de la Croissance et des Pathologies Gynécologiques Rares, Pitié-Salpêtrière Hospital, Université Pierre et Marie Curie, 75013 Paris, France; Institut National de la Santé et de la Recherche Médicale (A.B., P.T.), 75654 Paris, France
| | - Andrew H Sinclair
- Murdoch Children's Research Institute (E.J.T., S.R.G., A.H.S.), Royal Children's Hospital, Melbourne, VIC 3052 Australia; Department of Paediatrics (E.J.T., S.R.G., A.H.S.), University of Melbourne, Melbourne, VIC 3010, Australia; Department of Paediatric and Adolescent Gynaecology (S.R.G.), Royal Children's Hospital, Melbourne, VIC 3052, Australia; Assistance Publique Hôpitaux de Paris, (A.B., P.T.), IE3M, Université Pierre et Marie Curie, Paris 6 University, Department of Endocrinology and Reproductive Medicine, Centre de Référence des Maladies Endocriniennes Rares de la Croissance et des Pathologies Gynécologiques Rares, Pitié-Salpêtrière Hospital, Université Pierre et Marie Curie, 75013 Paris, France; Institut National de la Santé et de la Recherche Médicale (A.B., P.T.), 75654 Paris, France
| |
Collapse
|
30
|
A novel FOXL2 gene mutation and BMP15 variants in a woman with primary ovarian insufficiency and blepharophimosis-ptosis-epicanthus inversus syndrome. Menopause 2016; 22:1264-8. [PMID: 25988799 DOI: 10.1097/gme.0000000000000473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This study aims to search for mutations in relevant genes in a woman with primary ovarian insufficiency (POI) and blepharophimosis-ptosis-epicanthus inversus syndrome (BPES). METHODS This study reports on the case of a woman with POI, BPES, and autoimmune endocrine disorder. Bidirectional sequencing of the coding regions and intron/exon boundaries of FOXL2 and BMP15 genes and hormonal assays for the measurement of follicle-stimulating hormone, luteinizing hormone, estradiol, testosterone, Δ4-androstenedione, and dehydroepiandrosterone sulfate were employed. RESULTS A novel de novo heterozygous deletion (p.K150Rfs*121) in the FOXL2 gene was identified to coexist with two BMP15 gene variants located in the same allele (c.-9C>G; p.N103S). CONCLUSIONS The novel, de novo FOXL2 gene mutation (p.K150Rfs*121) expands the spectrum of molecular defects identified in women with BPES. Coexisting gene variants in POI-related genes, such as BMP15, may act synergistically and explain the observed phenotypic variability in women with BPES (ie, BPES with or without POI). The concept of digenic inheritance suggested herein has been previously introduced for other nosologies such as hypogonadotrophic hypogonadism. Endocrine autoimmunity might also contribute to the POI phenotype.
Collapse
|
31
|
Bertho S, Pasquier J, Pan Q, Le Trionnaire G, Bobe J, Postlethwait JH, Pailhoux E, Schartl M, Herpin A, Guiguen Y. Foxl2 and Its Relatives Are Evolutionary Conserved Players in Gonadal Sex Differentiation. Sex Dev 2016; 10:111-29. [PMID: 27441599 DOI: 10.1159/000447611] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Indexed: 11/19/2022] Open
Abstract
Foxl2 is a member of the large family of Forkhead Box (Fox) domain transcription factors. It emerged during the last 15 years as a key player in ovarian differentiation and oogenesis in vertebrates and especially mammals. This review focuses on Foxl2 genes in light of recent findings on their evolution, expression, and implication in sex differentiation in animals in general. Homologs of Foxl2 and its paralog Foxl3 are found in all metazoans, but their gene evolution is complex, with multiple gains and losses following successive whole genome duplication events in vertebrates. This review aims to decipher the evolutionary forces that drove Foxl2/3 gene specialization through sub- and neo-functionalization during evolution. Expression data in metazoans suggests that Foxl2/3 progressively acquired a role in both somatic and germ cell gonad differentiation and that a certain degree of sub-functionalization occurred after its duplication in vertebrates. This generated a scenario where Foxl2 is predominantly expressed in ovarian somatic cells and Foxl3 in male germ cells. To support this hypothesis, we provide original results showing that in the pea aphid (insects) foxl2/3 is predominantly expressed in sexual females and showing that in bovine ovaries FOXL2 is specifically expressed in granulosa cells. Overall, current results suggest that Foxl2 and Foxl3 are evolutionarily conserved players involved in somatic and germinal differentiation of gonadal sex.
Collapse
Affiliation(s)
- Sylvain Bertho
- INRA, UR1037 Fish Physiology and Genomics, Rennes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zannoni GF, Improta G, Petrillo M, Pettinato A, Scambia G, Fraggetta F. FOXL2 molecular status in adult granulosa cell tumors of the ovary: A study of primary and metastatic cases. Oncol Lett 2016; 12:1159-1163. [PMID: 27446412 DOI: 10.3892/ol.2016.4711] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 04/29/2016] [Indexed: 01/04/2023] Open
Abstract
Granulosa cell tumors (GCTs) of the ovary are uncommon neoplasms, accounting for ~5% of all malignant ovarian tumors. GCTs are a relatively homogeneous group of tumors, categorized into two distinct subtypes, juvenile GCT and adult GCT (AGCT), likely arising from a limited set of molecular events usually involving the disruption of pathways that regulate granulosa cell proliferation. In the present study, the presence of forkheadbox L2 (FOXL2) c.402C>G mutation was investigated in a series of 42 samples of primary and metastatic AGCT of the ovary. The samples consisted of 37 primary and 5 metastatic ovarian AGCTs from 37 patients. FOXL2 mutational status was evaluated using a pyrosequencing approach on 2.5-µm sections of formalin-fixed paraffin-embedded tissue. FOXL2 c.402C>G mutation was found in 33/37 (89.2%) primary AGCTs and in 4/5 (80.0%) metastases, with the molecular status of the metastases recapitulating that of the primary tumors (4 mutated cases and 1 wild-type case). Overall, FOXL2 mutation is present in the majority of primary and metastatic AGCTs, and could be used as a valid tool in the diagnosis of the disease and in cases of metastatic lesions from an unknown primary origin. Moreover the concordance of FOXL2 molecular status in primary and associated metastases suggests its early appearance and genomic stability in AGCT tumorigenesis.
Collapse
Affiliation(s)
- Gian Franco Zannoni
- Department of Pathology, Catholic University of The Sacred Heart, I-00168 Rome, Italy
| | - Giuseppina Improta
- Laboratory of Clinical Research and Advanced Diagnostics, Hospitalization and Treatment Institute Scientific-Oncological Referral Center of Basilicata, I-85028 Potenza, Italy
| | - Marco Petrillo
- Department of Obstetrics and Gynecology, Catholic University of the Sacred Heart, I-00168 Rome, Italy
| | - Angela Pettinato
- Department of Pathology, Cannizzaro Hospital, I-95126 Catania, Italy
| | - Giovanni Scambia
- Department of Obstetrics and Gynecology, Catholic University of the Sacred Heart, I-00168 Rome, Italy
| | - Filippo Fraggetta
- Department of Pathology, Cannizzaro Hospital, I-95126 Catania, Italy
| |
Collapse
|
33
|
Bhat IA, Rather MA, Dar JY, Sharma R. Molecular cloning, computational analysis and expression pattern of forkhead box l2 (Foxl2) gene in catfish. Comput Biol Chem 2016; 64:9-18. [PMID: 27231827 DOI: 10.1016/j.compbiolchem.2016.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/05/2016] [Accepted: 05/01/2016] [Indexed: 10/21/2022]
Abstract
Foxl2 belongs to forkhead/HNF-3-related family of transcription factors which is involved in ovarian differentiation and development. In present study, the Foxl2 mRNA was cloned from ovary of C. batrachus. The full length cDNA sequence of the Foxl2 was 1056bp which consists of 5' (41bp) and 3' (106bp) non-coding regions, as well as a 909bp of open reading frame (ORF) that encodes 302 amino acids. The putative protein was having the theoretical molecular weight (MW) of 34.018kD and a calculated isoelectric point (pI) of 9.38. There were 11 serine (Ser), 5 threonine (Thr), and 5 tyrosine (Tyr) phosphorylation sites and 2 putative N-glycosylation sites on the predicted protein. The ligand binding sites were predicted to be present on amino acids 42, 49, 50, 91, 92 and 95 respectively. The signal peptide analysis predicted that C. batrachus Foxl2 is a non-secretory protein. The hydropathy profile of Foxl2 protein revealed that this protein is hydrophilic in nature. Protein-protein interaction demonstrated that Foxl2 protein chiefly interacts with cytochrome P450 protein family. The mRNA transcript analysis of various tissues indicated that the C. batrachus Foxl2 mRNA was more expressed in the brain, pituitary and ovary in female while, the former two tissues and testis showed low expression in male. This study provides a basis for further structural and functional exploration of the Foxl2 from C. batrachus, including its deduced protein and its signal transduction function.
Collapse
Affiliation(s)
- Irfan Ahmad Bhat
- Division of Fish Genetics and Biotechnology, Central Institute of Fisheries Education, Mumbai 400061, India
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Central Institute of Fisheries Education, Mumbai 400061, India
| | - Jaffer Yousuf Dar
- Division of Aquatic Environmental Management, Central Institute of Fisheries Education, Mumbai 400061, India
| | - Rupam Sharma
- Division of Fish Genetics and Biotechnology, Central Institute of Fisheries Education, Mumbai 400061, India.
| |
Collapse
|
34
|
Nuovo S, Passeri M, Di Benedetto E, Calanchini M, Meldolesi I, Di Giacomo MC, Petruzzi D, Piemontese MR, Zelante L, Sangiuolo F, Novelli G, Fabbri A, Brancati F. Characterization of endocrine features and genotype-phenotypes correlations in blepharophimosis-ptosis-epicanthus inversus syndrome type 1. J Endocrinol Invest 2016; 39:227-33. [PMID: 26100530 DOI: 10.1007/s40618-015-0334-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 06/07/2015] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Blepharophimosis syndrome (BPES) is an autosomal dominant genetic condition resulting from heterozygous mutations in the FOXL2 gene and clinically characterized by an eyelid malformation associated (type I) or not (type II) with premature ovarian failure. The distinction between the two forms is critical for female patients, as it may allow to predict fertility and to plan an appropriate therapy. Identifying an underlying causative mutation is not always predictive of the clinical type of BPES since genotype-phenotype correlations are not yet fully delineated. Here, we describe the clinical and hormonal phenotypes of three female patients with BPES type 1 from two novel families, correlate their phenotypes with identified mutations, and investigate the effects of hormone replacement therapy (HRT). METHODS Clinical, biochemical, and genetic evaluation were undertaken in all the patients and genotype-phenotype correlation was analyzed. The effects of substitutive hormonal therapy on secondary sexual characteristics development and induction of menarche were evaluated. RESULTS All patients presented with primary amenorrhea or other signs of ovarian dysfunction. Two distinct mutations, a missense p.H104R change and an in-frame p.A222_A231dup10 duplication in the FOXL2 gene were identified. Observed phenotypes were not in accordance with the prediction based on the current genotype-phenotype correlations. HRT significantly improved secondary sexual characteristics development, as well as the induction of menarche. CONCLUSIONS This study highlights the importance of early recognition of BPES and emphasizes the need of personalized therapy and follow-up in female patients carrying distinct FOXL2 mutations.
Collapse
Affiliation(s)
- S Nuovo
- Unità di Genetica Medica, Policlinico Universitario Tor Vergata, 00133, Rome, Italy
| | - M Passeri
- Unità di Endocrinologia, Dipartimento di Medicina dei Sistemi, Polo Ospedaliero Sant'Eugenio & CTO A. Alesini, Università Tor Vergata, 00145, Rome, Italy
| | - E Di Benedetto
- Unità di Endocrinologia, Dipartimento di Medicina dei Sistemi, Polo Ospedaliero Sant'Eugenio & CTO A. Alesini, Università Tor Vergata, 00145, Rome, Italy
| | - M Calanchini
- Unità di Endocrinologia, Dipartimento di Medicina dei Sistemi, Polo Ospedaliero Sant'Eugenio & CTO A. Alesini, Università Tor Vergata, 00145, Rome, Italy
| | - I Meldolesi
- Ginecologia, Consultorio Giovani, ASL RM/H, 00045, Rome, Italy
| | - M C Di Giacomo
- U.O.C Anatomia Patologica AOR Ospedale San Carlo, 85100, Potenza, Italy
| | - D Petruzzi
- U.O. Ostetricia e Ginecologia AOR Ospedale San Carlo, 85100, Potenza, Italy
| | - M R Piemontese
- Genetica Medica, Ospedale Casa Sollievo della Sofferenza, 71013, San Giovanni Rotondo, Italy
| | - L Zelante
- Genetica Medica, Ospedale Casa Sollievo della Sofferenza, 71013, San Giovanni Rotondo, Italy
| | - F Sangiuolo
- Unità di Genetica Medica, Policlinico Universitario Tor Vergata, 00133, Rome, Italy
- Dipartimento di Biomedicina e Prevenzione, Università Tor Vergata, 00133, Rome, Italy
| | - G Novelli
- Unità di Genetica Medica, Policlinico Universitario Tor Vergata, 00133, Rome, Italy
- Dipartimento di Biomedicina e Prevenzione, Università Tor Vergata, 00133, Rome, Italy
| | - A Fabbri
- Unità di Endocrinologia, Dipartimento di Medicina dei Sistemi, Polo Ospedaliero Sant'Eugenio & CTO A. Alesini, Università Tor Vergata, 00145, Rome, Italy.
| | - F Brancati
- Unità di Genetica Medica, Policlinico Universitario Tor Vergata, 00133, Rome, Italy.
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, Università D'Annunzio, 66013, Chieti, Italy.
| |
Collapse
|
35
|
Wang DD, Zhang GR, Wei KJ, Ji W, Gardner JPA, Yang RB, Chen KC. Molecular identification and expression of the Foxl2 gene during gonadal sex differentiation in northern snakehead Channa argus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:1419-1433. [PMID: 26159319 DOI: 10.1007/s10695-015-0096-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 07/06/2015] [Indexed: 06/04/2023]
Abstract
Channa argus is one of the most commercially important fish species in China. Studies show that males of C. argus grow faster than females at the same age. In order to explore the sex differentiation mechanism of C. argus, we isolated the full length of the sex-related gene Foxl2 cDNA and analysed its expression patterns during gonadal sex differentiation. Alignment of known Foxl2 amino acid sequences from vertebrates confirmed the conservation of the Foxl2 open reading frame, especially the forkhead domain and C-terminal region. Quantitative RT-PCR revealed that Foxl2 is predominantly expressed in brain, pituitary, gill and ovary, with its highest level in ovary but low levels in testis and other tissues, reflecting a potential role for Foxl2 in the brain-pituitary-gonad axis in C. argus. Our ontogenetic stage data showed that C. argus Foxl2 expression was significantly upregulated from 1 to 11 days posthatching (dph) and that the initiation of expression preceded the first anatomical ovarian differentiation (27 dph), suggesting that Foxl2 might play a potential role in early gonadal sex differentiation in C. argus. In addition, the Foxl2 protein was primarily located in granulosa cells surrounding the oocytes of mature C. argus, implying that Foxl2 may have a basic function in granulosa cell differentiation and the maintenance of oocytes.
Collapse
Affiliation(s)
- Dan-Dan Wang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Gui-Rong Zhang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Kai-Jian Wei
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China.
| | - Wei Ji
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Jonathan P A Gardner
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Rui-Bin Yang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Kun-Ci Chen
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, People's Republic of China
| |
Collapse
|
36
|
Xue M, Zheng J, Zhou Q, Hejtmancik JF, Wang Y, Li S. Novel FOXL2 mutations in two Chinese families with blepharophimosis-ptosis-epicanthus inversus syndrome. BMC MEDICAL GENETICS 2015; 16:73. [PMID: 26323275 PMCID: PMC4593235 DOI: 10.1186/s12881-015-0217-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 08/17/2015] [Indexed: 11/10/2022]
Abstract
Background Blepharophimosis-ptosis-epicanthus inversus syndrome (BPES) is a rare autosomal dominant disease. Mutations in the forkhead box L2 (FOXL2) gene cause two types of BPES distinguished by the presence (type I) and absence (type II) of premature ovarian failure (POF). The purpose of this study was to identify possible mutations in FOXL2 in two Chinese families with BPES. Methods Two large autosomal dominant Chinese BPES families were enrolled in this study. Genomic DNA was obtained from the leukocytes in peripheral venous blood. Four overlapping sets of primers were used to amplify the entire coding region and nearby intron sequences of the FOXL2 gene for mutations detection using polymerase chain reaction (PCR) and sequencing analyses. The sequencing results were analyzed using DNAstar software. Results All patients of the two families demonstrated typical features of BPES type II, including small palpebral fissures, ptosis, telecanthus, and epicanthus inversus without female infertility (POF). A novel FOXL2 heterozygous indel mutation c.675_690delinsT, including a 16-bp deletion and a 1-bp(T) insertion (p.Ala226_Ala230del), which would result in deletion of 5 alanine residues of a poly-alanine (poly-Ala) tract in the protein, was identified in all affected members of family A. A novel heterozygous missense mutation (c.223C > T, p.Leu75Phe) was identified in family B. Conclusions Two novel FOXL2 mutations were identified in Chinese families with BPES. Our results expand the spectrum of FOXL2 mutations and provide additional structure-function insights into the FOXL2 protein.
Collapse
Affiliation(s)
- Min Xue
- Department of Ophthalmology, the First Affiliated Hospital of Anhui Medical University, Hefei, China. .,Department of Ophthalmology, Anhui NO.2 Provincial people's hospital, Hefei, China.
| | - Jie Zheng
- Department of Ophthalmology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Qing Zhou
- National MOE Key Laboratory of Gene Resource Utilization for Important Genetic Disease, Anhui Key Laboratory of Genetic Research, Hefei, China.
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Yuan Wang
- National MOE Key Laboratory of Gene Resource Utilization for Important Genetic Disease, Anhui Key Laboratory of Genetic Research, Hefei, China.
| | - Shouling Li
- Department of Ophthalmology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
37
|
Foxl2 of the Hong Kong catfish (Clarias fuscus): cDNA cloning, tissue distribution and changes in gene expression towards methyltestosterone, estradiol and letrozole exposure of the fries during gonadal differentiation. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0296-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Heude É, Bellessort B, Fontaine A, Hamazaki M, Treier AC, Treier M, Levi G, Narboux-Nême N. Etiology of craniofacial malformations in mouse models of blepharophimosis, ptosis and epicanthus inversus syndrome. Hum Mol Genet 2014; 24:1670-81. [PMID: 25416281 DOI: 10.1093/hmg/ddu579] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Blepharophimosis, ptosis, epicanthus-inversus syndrome (BPES) is an autosomal dominant genetic disorder characterized by narrow palpebral fissures and eyelid levator muscle defects. BPES is often associated to premature ovarian insufficiency (BPES type I). FOXL2, a member of the forkhead transcription factor family, is the only gene known to be mutated in BPES. Foxl2 is essential for maintenance of ovarian identity, but the developmental origin of the facial malformations of BPES remains, so far, unexplained. In this study, we provide the first detailed account of the developmental processes leading to the craniofacial malformations associated to Foxl2. We show that, during development, Foxl2 is expressed both by Cranial Neural Crest Cells (CNCCs) and by Cranial Mesodermal Cells (CMCs), which give rise to skeletal (CNCCs and CMCs) and muscular (CMCs) components of the head. Using mice in which Foxl2 is selectively inactivated in either CNCCs or CMCs, we reveal that expression of Foxl2 in CNCCs is essential for the development of extraocular muscles. Indeed, inactivation of Foxl2 in CMCs has only minor effects on muscle development, whereas its inactivation in CNCCs provokes a severe hypoplasia of the levator palpabrae superioris and of the superior and inferior oblique muscles. We further show that Foxl2 deletion in either CNCCs or CMCs prevents eyelid closure and induces subtle skeletal developmental defects. Our results provide new insights in the complex developmental origin of human BPES and could help to understand the origin of other ocular anomalies associated to this syndrome.
Collapse
Affiliation(s)
- Églantine Heude
- Évolution des Régulations Endocriniennes, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Paris 75005, France
| | - Brice Bellessort
- Évolution des Régulations Endocriniennes, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Paris 75005, France
| | - Anastasia Fontaine
- Évolution des Régulations Endocriniennes, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Paris 75005, France
| | - Manatsu Hamazaki
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Anna-Corina Treier
- Max-Delbrück Center for Molecular Medicine (MDC) - Genetics of Metabolic and Reproductive Disorders, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Mathias Treier
- Max-Delbrück Center for Molecular Medicine (MDC) - Genetics of Metabolic and Reproductive Disorders, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Giovanni Levi
- Évolution des Régulations Endocriniennes, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Paris 75005, France
| | - Nicolas Narboux-Nême
- Évolution des Régulations Endocriniennes, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Paris 75005, France,
| |
Collapse
|
39
|
Hu Q, Guo W, Gao Y, Tang R, Li D. Molecular cloning and analysis of gonadal expression of Foxl2 in the rice-field eel Monopterus albus. Sci Rep 2014; 4:6884. [PMID: 25363394 PMCID: PMC4217102 DOI: 10.1038/srep06884] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 10/13/2014] [Indexed: 12/16/2022] Open
Abstract
We isolated the complete Foxl2 (Foxl2a) cDNA from the Monopterus albus ovary. An alignment of known Foxl2 amino-acid sequences confirmed the conservation of the Foxl2 open reading frame, especially the forkhead domain and C-terminal region. The expression of Foxl2 was detected in the brain, eyes, and gonads. A high level of Foxl2 expression in the ovary before sex reversal, but its transcripts decreased sharply when the gonad developed into the ovotestis and testis. The correlation between the Foxl2 expression and the process of sex development revealed the important function of Foxl2 during the sex reversal of M. albus. Immunohistochemical analysis showed that Foxl2 was expressed abundantly in granulosa cells and in the interstitial cells of the ovotestis and testis. These results suggest that Foxl2 plays a pivotal role in the development and maintenance of ovarian function. Foxl2 may be also involved in the early development of testis and the development of ocular structures of M. albus.
Collapse
Affiliation(s)
- Qing Hu
- 1] College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China [2] Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China [3] Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, China
| | - Wei Guo
- 1] College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China [2] Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China [3] Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, China
| | - Yu Gao
- 1] College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China [2] Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China [3] Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, China
| | - Rong Tang
- 1] College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China [2] Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China [3] Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, China
| | - Dapeng Li
- 1] College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China [2] Life Science College, Hunan University of Arts and Science, Changde 415000, China [3] Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China [4] Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, China
| |
Collapse
|
40
|
Gulati R, Verdin H, Halanaik D, Bhat BV, De Baere E. Co-occurrence of congenital hydronephrosis and FOXL2-associated blepharophimosis, ptosis, epicanthus inversus syndrome (BPES). Eur J Med Genet 2014; 57:576-8. [PMID: 25192944 DOI: 10.1016/j.ejmg.2014.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 08/01/2014] [Indexed: 10/24/2022]
Abstract
Blepharophimosis, ptosis, epicanthus inversus syndrome (BPES) is an autosomal dominantly inherited congenital malformation of the eyelids. Diagnostic criteria include blepharophimosis, ptosis, epicanthus inversus and telecanthus. Type І BPES has additional features of premature ovarian failure and female infertility, while type ІІ occurs isolated. We report a two-year old male child with typical features of BPES and bilateral congenital hydronephrosis. The child, first-born to non-consanguineous parents, presented to us with hypertension. Congenital hydronephrosis and reduced renal function were confirmed by renal dynamic scan. Pyeloplasty and stent placement were performed with subsequent resolution of hypertension. On follow up, growth and development are appropriate for age. His father has similar but less severe features of BPES. Sequencing of the FOXL2 gene revealed a heterozygous FOXL2 mutation c.672_701dup, which is a recurrent 30-bp duplication leading to expansion of the polyalanine tract (p.Ala225_Ala234dup), in both father and son. Additional atypical clinical features have been reported previously in BPES patients with this mutation. However, this is the first report of a renal congenital anomaly in a BPES patient with this or other mutations. Although a pleiotropic effect of the FOXL2 mutation cannot be excluded, the co-occurrence of congenital hydronephrosis and BPES may represent two different entities.
Collapse
Affiliation(s)
- Reena Gulati
- Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India.
| | - Hannah Verdin
- Center for Medical Genetics, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Dhanapathi Halanaik
- Department of Nuclear Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| | - B Vishnu Bhat
- Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| | - Elfride De Baere
- Center for Medical Genetics, Ghent University, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
41
|
Rosario R, Cohen PA, Shelling AN. The role of FOXL2 in the pathogenesis of adult ovarian granulosa cell tumours. Gynecol Oncol 2014; 133:382-7. [DOI: 10.1016/j.ygyno.2013.12.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/05/2013] [Accepted: 12/09/2013] [Indexed: 12/12/2022]
|
42
|
Georges A, Auguste A, Bessière L, Vanet A, Todeschini AL, Veitia RA. FOXL2: a central transcription factor of the ovary. J Mol Endocrinol 2014; 52:R17-33. [PMID: 24049064 DOI: 10.1530/jme-13-0159] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Forkhead box L2 (FOXL2) is a gene encoding a forkhead transcription factor preferentially expressed in the ovary, the eyelids and the pituitary gland. Its germline mutations are responsible for the blepharophimosis ptosis epicanthus inversus syndrome, which includes eyelid and mild craniofacial defects associated with primary ovarian insufficiency. Recent studies have shown the involvement of FOXL2 in virtually all stages of ovarian development and function, as well as in granulosa cell (GC)-related pathologies. A central role of FOXL2 is the lifetime maintenance of GC identity through the repression of testis-specific genes. Recently, a highly recurrent somatic FOXL2 mutation leading to the p.C134W subtitution has been linked to the development of GC tumours in the adult, which account for up to 5% of ovarian malignancies. In this review, we summarise data on FOXL2 modulators, targets, partners and post-translational modifications. Despite the progresses made thus far, a better understanding of the impact of FOXL2 mutations and of the molecular aspects of its function is required to rationalise its implication in various pathophysiological processes.
Collapse
Affiliation(s)
- Adrien Georges
- CNRS UMR 7592, Institut Jacques Monod, 15 Rue Hélène Brion, 75013 Paris, France Université Paris Diderot, Paris VII, Paris, France
| | | | | | | | | | | |
Collapse
|
43
|
Dai A, Sun H, Fang T, Zhang Q, Wu S, Jiang Y, Ding L, Yan G, Hu Y. MicroRNA-133b stimulates ovarian estradiol synthesis by targeting Foxl2. FEBS Lett 2013; 587:2474-82. [PMID: 23810756 DOI: 10.1016/j.febslet.2013.06.023] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/10/2013] [Accepted: 06/18/2013] [Indexed: 10/26/2022]
Abstract
Forkhead L2 (Foxl2) is expressed in ovarian granulosa cells and participates in steroidogenesis by transcriptionally regulating target genes such as steroidogenic acute regulatory protein (StAR) and CYP19A1. In this study, a direct link between microRNA-133b (miR-133b) and Foxl2-mediated estradiol release in granulosa cells was established. miR-133b was involved in follicle-stimulating hormone (FSH)-induced estrogen production. Luciferase assays confirmed that miR-133b was bound to the 3' untranslated region (3'UTR) of Foxl2 mRNA. Consistent with this finding, miR-133b overexpression reduced the Foxl2 levels. Furthermore, miR-133b inhibited Foxl2 binding to the StAR and CYP19A1 promoter sequences. These results demonstrate that miR-133b down-regulates Foxl2 expression in granulosa cells by directly targeting the 3'UTR, thus inhibiting the Foxl2-mediated transcriptional repression of StAR and CYP19A1to promote estradiol production.
Collapse
Affiliation(s)
- Anyi Dai
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
McTavish KJ, Nonis D, Hoang YD, Shimasaki S. Granulosa cell tumor mutant FOXL2C134W suppresses GDF-9 and activin A-induced follistatin transcription in primary granulosa cells. Mol Cell Endocrinol 2013; 372:57-64. [PMID: 23567549 PMCID: PMC3669547 DOI: 10.1016/j.mce.2013.03.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 02/27/2013] [Accepted: 03/22/2013] [Indexed: 01/05/2023]
Abstract
A single somatic FOXL2 mutation (FOXL2(C134W)) was identified in almost all granulosa cell tumor (GCT) patients. In the pituitary, FOXL2 and Smad3 coordinately regulate activin stimulation of follistatin transcription. We explored whether a similar regulation occurs in the ovary, and whether FOXL2(C134W) has altered activity. We show that in primary granulosa cells, GDF-9 and activin increase Smad3-mediated follistatin transcription. In contrast to findings in the pituitary, FOXL2 negatively regulates GDF-9 and activin-stimulated follistatin transcription in the ovary. Knockdown of endogenous FOXL2 confirmed this inhibitory role. FOXL2(C134W) displayed enhanced inhibitory activity, completely ablating GDF-9 and activin-induced follistatin transcription. GDF-9 and activin activity was lost when either the smad binding element or the forkhead binding element were mutated, indicating that both sites are required for Smad3 actions. This study highlights that FOXL2 negatively regulates follistatin expression within the ovary, and that the pathogenesis of FOXL2(C134W) may involve an altered interaction with Smad3.
Collapse
Affiliation(s)
- Kirsten J McTavish
- Department of Reproductive Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093-0633, USA
| | | | | | | |
Collapse
|
45
|
Molecular cloning, characterization, and sexually dimorphic expression of five major sex differentiation-related genes in a Scorpaeniform fish, sablefish (Anoplopoma fimbria). Comp Biochem Physiol B Biochem Mol Biol 2013; 165:125-37. [DOI: 10.1016/j.cbpb.2013.03.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/07/2013] [Accepted: 03/11/2013] [Indexed: 01/28/2023]
|
46
|
Xia X. DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Mol Biol Evol 2013; 30:1720-8. [PMID: 23564938 PMCID: PMC3684854 DOI: 10.1093/molbev/mst064] [Citation(s) in RCA: 757] [Impact Index Per Article: 63.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Since its first release in 2001 as mainly a software package for phylogenetic analysis, data analysis for molecular biology and evolution (DAMBE) has gained many new functions that may be classified into six categories: 1) sequence retrieval, editing, manipulation, and conversion among more than 20 standard sequence formats including MEGA, NEXUS, PHYLIP, GenBank, and the new NeXML format for interoperability, 2) motif characterization and discovery functions such as position weight matrix and Gibbs sampler, 3) descriptive genomic analysis tools with improved versions of codon adaptation index, effective number of codons, protein isoelectric point profiling, RNA and protein secondary structure prediction and calculation of minimum folding energy, and genomic skew plots with optimized window size, 4) molecular phylogenetics including sequence alignment, testing substitution saturation, distance-based, maximum parsimony, and maximum-likelihood methods for tree reconstructions, testing the molecular clock hypothesis with either a phylogeny or with relative-rate tests, dating gene duplication and speciation events, choosing the best-fit substitution models, and estimating rate heterogeneity over sites, 5) phylogeny-based comparative methods for continuous and discrete variables, and 6) graphic functions including secondary structure display, optimized skew plot, hydrophobicity plot, and many other plots of amino acid properties along a protein sequence, tree display and drawing by dragging nodes to each other, and visual searching of the maximum parsimony tree. DAMBE features a graphic, user-friendly, and intuitive interface and is freely available from http://dambe.bio.uottawa.ca (last accessed April 16, 2013).
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology and Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
47
|
The discovery of Foxl2 paralogs in chondrichthyan, coelacanth and tetrapod genomes reveals an ancient duplication in vertebrates. Heredity (Edinb) 2013; 111:57-65. [PMID: 23549337 DOI: 10.1038/hdy.2013.19] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Foxl2 (forkhead box L2) gene is an important member of the forkhead domain family, primarily responsible for the development of ovaries during female sex differentiation. The evolutionary studies conducted previously considered the presence of paralog Foxl2 copies only in teleosts. However, to search for possible paralog copies in other groups of vertebrates and ensure that all predicted copies were homolog to the Foxl2 gene, a broad evolutionary analysis was performed, based on the forkhead domain family. A total of 2464 sequences for the forkhead domain were recovered, and subsequently, 64 representative sequences for Foxl2 were used in the evolutionary analysis of this gene. The most important contribution of this study was the discovery of a new subgroup of Foxl2 copies (ortholog to Foxl2B) present in the chondrichthyan Callorhinchus milii, in the coelacanth Latimeria chalumnae, in the avian Taeniopygia guttata and in the marsupial Monodelphis domestica. This new scenario indicates a gene duplication event in an ancestor of gnathostomes. Furthermore, based on the analysis of the syntenic regions of both Foxl2 copies, the duplication event was not exclusive to Foxl2. Moreover, the duplicated copy distribution was shown to be complex across vertebrates, especially in tetrapods, and the results strongly support a loss of this copy in eutherian species. Finally, the scenario observed in this study suggests an update for Foxl2 gene nomenclature, extending the actual suggested teleost naming of Foxl2A and Foxl2B to all vertebrate sequences and contributing to the establishment of a new evolutionary context for the Foxl2 gene.
Collapse
|
48
|
Liu XL, Zhang ZF, Shao MY, Liu JG, Muhammad F. Sexually dimorphic expression of foxl2 during gametogenesis in scallop Chlamys farreri, conserved with vertebrates. Dev Genes Evol 2012; 222:279-86. [PMID: 22752442 DOI: 10.1007/s00427-012-0410-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 06/15/2012] [Indexed: 02/05/2023]
Abstract
FOXL2 is a member of the forkhead box family, a transcription factor essential for the early regulation of ovarian development that is expressed in a sexually dimorphic manner in vertebrates. However, data on this gene in invertebrates are rare. In this study, we cloned a full-length cDNA sequence of foxl2 from the scallop Chlamys farreri, an important commercial mollusk in China. The cDNA sequence of Cf-foxl2 (C. farreri foxl2) has 1,824 bp with an open reading frame of 1,107 bp encoding 369 amino acid residues containing the conserved domain forkhead box. Semiquantitative RT-PCR showed that Cf-foxl2 was expressed mainly in the ovary. Using quantitative real-time PCR, we found that the highest expression was in the ovary of proliferative stage animals, about 62-fold higher than that in the testis and about twofold higher than that in the ovary of growing and mature stages. In situ hybridization revealed that Cf-foxl2 mRNA was located in the cytoplasm of follicle cells and germ cells in the ovary and testis except in the spermatozoa. Our data imply that Cf-foxl2 is expressed in a sexually dimorphic pattern at the RNA level, which is conserved with vertebrates.
Collapse
Affiliation(s)
- Xiao-Ling Liu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, People's Republic of China
| | | | | | | | | |
Collapse
|
49
|
Schlade-Bartusiak K, Brown L, Lomax B, Bruyère H, Gillan T, Hamilton S, McGillivray B, Eydoux P. BPES with atypical premature ovarian insufficiency, and evidence of mitotic recombination, in a woman with trisomy X and a translocation t(3;11)(q22.3;q14.1). Am J Med Genet A 2012; 158A:2322-7. [PMID: 22887799 DOI: 10.1002/ajmg.a.35516] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/09/2012] [Indexed: 02/03/2023]
Abstract
Blepharophimosis-ptosis-epicanthus inversus syndrome (BPES) is a rare autosomal dominant disorder characterized by a complex dysgenesis of the eyelids and premature ovarian insufficiency. FOXL2 located at 3q22.3, encoding a forkhead transcription factor, is the only gene known to be responsible for BPES. We describe a patient diagnosed with BPES with atypical ovarian failure, characterized by normal levels of gonadotropins, who was found to have trisomy X as well as a translocation (3;11)(q22.3;q14.1). The translocation breakpoint at 3q22.3 is located upstream of the FOXL2 gene and most likely causes BPES by separating the FOXL2 transcription unit from its cis-regulatory sequences. By array analysis we detected mosaicism for the balanced and an unbalanced form of the translocation in blood cells. We propose mitotic recombination as the likely mechanism of the mosaicism formation. Mitotic recombination is a common phenomenon in human cells. Thus, we hypothesize that it may be one of the mechanisms responsible for cryptic imbalances and possible abnormal phenotypes in some carriers of balanced rearrangements.
Collapse
Affiliation(s)
- Kamilla Schlade-Bartusiak
- Department of Pathology and Laboratory Medicine, University of British Columbia, Children's & Women's Hospital, Vancouver, BC, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Sridevi P, Senthilkumaran B. Cloning and differential expression of FOXL2 during ovarian development and recrudescence of the catfish, Clarias gariepinus. Gen Comp Endocrinol 2011; 174:259-68. [PMID: 21906596 DOI: 10.1016/j.ygcen.2011.08.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 08/12/2011] [Accepted: 08/23/2011] [Indexed: 10/17/2022]
Abstract
FOXL2 is a member of the forkhead/HNF-3-related family of transcription factors which provides tissue-specific gene regulation. It is known to regulate ovarian aromatase, (cyp19a1a) which plays a crucial role in ovarian differentiation. To understand the role of FOXL2 in gonads and brain during ovarian development and recrudescence, we cloned the full-length cDNA of FOXL2 and analyzed its spatio-temporal expression both at transcript and protein levels in the air-breathing catfish, Clarias gariepinus. Based on its deduced amino acid sequence, an antigenic peptide conjugated with a carrier protein was synthesized which was then used for raising antibody that reacted specifically with FOXL2. Tissue distribution pattern of FOXL2 revealed its presence prominently in ovary and female brain with sexual dimorphism. Highest expression of FOXL2 was observed in ovary and brain during prespawning phase indicating an important role for this correlate in ovarian recrudescence. Human chorionic gonadotropin (hCG) treatment, in vitro and in vivo, induced FOXL2 expression in the ovary during preparatory and prespawning phases. Similar type of enhanced expression was evident in brain after hCG-induction during the prespawning phase. The ontogeny of FOXL2 showed sexual dimorphic expression pattern both in gonads and brain. Based on our previous studies, the expression pattern of FOXL2 was found to be synchronous not only with that of ovarian cyp19a1a but also with brain cyp19a1b. Present study substantiates the role of FOXL2 in the regulation of aromatase in teleosts and also designates FOXL2 as a potential ovary and brain marker during female sex development in catfish.
Collapse
Affiliation(s)
- P Sridevi
- Department of Animal Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, Andhra Pradesh, India
| | | |
Collapse
|