1
|
|
2
|
Abstract
Despite the widening interest in the possible association between bacteria and different stages of cancer development, our knowledge in its relation to oral cancers remains inadequate. The aim of this review article is to derive a better understanding on the role of various micro-organisms in the etiogenesis of oral cancers through all the available data on the pubmed. Different bacteria have been proposed to induce carcinogenesis either through induction of chronic inflammation or by interference, either directly or indirectly, with eukaryotic cell cycle and signaling pathways, or by metabolism of potentially carcinogenic substances like acetaldehyde causing mutagenesis. Studies have shown diversity of isolated bacterial taxa between the oral cancer tissue specimens and the control, with Exiguobacterium oxidotolerans, Prevotella melaninogenica, Staphylococcus aureus and Veillonella parvula being specific for tumorogenic tissues. Most isolates are saccharolytic and acid tolerant. Streptococcus anginosus, commonly linked with esophageal and pharyngeal cancers, is not of significance in oral cancers. Similarly, significant salivary specificity is noted for three bacteria, namely, Capnocytophaga gingivalis, P. melaninogenica, and Streptococcus mitis in oral cancer patients, making these species salivary markers for the early detection of oral cancers and thus improving the survival rate significantly. Also, such high degree of bacterial specificity in oral cancers has also provoked the designing of new treatment options for cancer prevention by way of vaccine delivery. However, for the success of these steps, a deeper exploration into this subject with a greater understanding is warranted.
Collapse
Affiliation(s)
- Noureen Chocolatewala
- Department of Oral and Maxillofacial Surgery, M. A. Rangoonwala College of Dental Science and Research Center, Pune, India
| | | | - Rushikesh Desale
- Department of Oral and Maxillofacial Surgery, M. A. Rangoonwala College of Dental Science and Research Center, Pune, India
| |
Collapse
|
3
|
Abstract
One major advance in T-cell-based immunotherapy in the last 20 years has been the molecular definition of numerous viral and tumor antigens. Adoptive T-cell transfer has shown definite clinical benefit in the prophylaxis and treatment of viral infections that develop in pediatric patients after allogeneic transplant and in posttransplant lymphoproliferative disease associated with the Epstein-Barr virus. Developing adoptive T-cell therapies for other malignancies presents additional challenges. This article describes the recent advances in T-cell-based therapies for malignancy and infection in childhood and strategies to enhance the effector functions of T cells and optimize the cellular product, including gene modification and modulation of the host environment.
Collapse
Affiliation(s)
- Nabil Ahmed
- Department of Pediatrics, Center for Cell and Gene Therapy, Baylor College of Medicine, 1102 Bates Street, Suite 1770, MC3-3320, Houston, TX 77030, USA.
| | - Helen E. Heslop
- Professor of Pediatrics and Medicine, Center for Cell and Gene Therapy, Baylor College of Medicine and The Methodist Hospital, Houston, TX
| | - Crystal L. Mackall
- Chief, Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD
| |
Collapse
|
4
|
Berinstein NL, Spaner D. Therapeutic cancer vaccines. Vaccines (Basel) 2008. [DOI: 10.1016/b978-1-4160-3611-1.50045-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
5
|
Abstract
Proteomics is a new scientific field aimed at the large-scale characterization of the protein constituents of biologic systems. It facilitates comparisons between different protein preparations by searching for minute differences in their protein expression repertoires and the patterns of their post-translational modifications. These attributes make proteomics perfectly suited for searching for proteins and peptides expressed exclusively or preferentially in cancer cells as candidates for cancer vaccines. The main proteomics technologies include 2D polyacrylamide gel electrophoresis, multidimensional high-performance liquid chromatography, mass spectrometry and protein arrays. Proteomics technologies used to analyze cancer culture cells, fresh tumor specimens, human leukocyte antigen peptides, serum and serum antibodies (serologic proteomics) have successfully identified tumor markers. Turning the potential vaccine candidates identified by proteomics technologies into clinical treatments awaits demonstration.
Collapse
Affiliation(s)
- Stacy H Shoshan
- Technion-Israel Institute of Technology, Department of Biology, Haifa 32000, Israel.
| | | |
Collapse
|
6
|
Mager DL. Bacteria and cancer: cause, coincidence or cure? A review. J Transl Med 2006; 4:14. [PMID: 16566840 PMCID: PMC1479838 DOI: 10.1186/1479-5876-4-14] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Accepted: 03/28/2006] [Indexed: 01/28/2023] Open
Abstract
Research has found that certain bacteria are associated with human cancers. Their role, however, is still unclear. Convincing evidence links some species to carcinogenesis while others appear promising in the diagnosis, prevention or treatment of cancers. The complex relationship between bacteria and humans is demonstrated by Helicobacter pylori and Salmonella typhi infections. Research has shown that H. pylori can cause gastric cancer or MALT lymphoma in some individuals. In contrast, exposure to H. pylori appears to reduce the risk of esophageal cancer in others. Salmonella typhi infection has been associated with the development of gallbladder cancer; however S. typhi is a promising carrier of therapeutic agents for melanoma, colon and bladder cancers. Thus bacterial species and their roles in particular cancers appear to differ among different individuals. Many species, however, share an important characteristic: highly site-specific colonization. This critical factor may lead to the development of non-invasive diagnostic tests, innovative treatments and cancer vaccines.
Collapse
Affiliation(s)
- D L Mager
- The Forsyth Institute, 140 The Fenway, Boston, MA, USA.
| |
Collapse
|
7
|
Wang B, He J, Liu C, Chang LJ. An effective cancer vaccine modality: lentiviral modification of dendritic cells expressing multiple cancer-specific antigens. Vaccine 2006; 24:3477-89. [PMID: 16530303 PMCID: PMC1850619 DOI: 10.1016/j.vaccine.2006.02.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2005] [Revised: 01/25/2006] [Accepted: 02/06/2006] [Indexed: 11/29/2022]
Abstract
Viral modification of dendritic cells (DCs) may deliver a "danger signal" critical to the hypo-reactive DCs in cancer patients. Using three highly differentially expressed hepatoma tumor-associated antigens (TAAs): stem cell antigen-2 (Sca-2), glycoprotein 38 (GP38) and cellular retinoic acid binding protein 1 (RABP1), we explored the therapeutic potential of the DCs modified with lentiviral vectors (LVs). Preventive and therapeutic injection of the LV-TAA-DC vaccine into tumor-bearing mice elicited a strong anti-tumor response and extended survival, which was associated with tumor-specific interferon-gamma and cytotoxic T cell responses. In vivo elimination of the LV-TAA-DCs by a co-expressed thymidine kinase suicide gene abrogated the therapeutic effect. The modification of DCs with LVs encoding multiple TAAs offers a great opportunity in cancer immunotherapy.
Collapse
Affiliation(s)
- Bei Wang
- Department of Molecular Genetics and Microbiology Powell Gene Therapy Center and McKnight Brain Institute, University of Florida, College of Medicine, Gainesville, FL 32610-0266, USA
| | - Jin He
- Department of Molecular Genetics and Microbiology Powell Gene Therapy Center and McKnight Brain Institute, University of Florida, College of Medicine, Gainesville, FL 32610-0266, USA
| | - Chen Liu
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, College of Medicine, Gainesville, FL 32610-0266, USA
| | - Lung-Ji Chang
- Department of Molecular Genetics and Microbiology Powell Gene Therapy Center and McKnight Brain Institute, University of Florida, College of Medicine, Gainesville, FL 32610-0266, USA
- * Corresponding author. Tel.: +1 352 392 3315; fax: +1 352 392 3133. E-mail address: (L.-J. Chang)
| |
Collapse
|
8
|
Guo H, Hao J, Wu C, Fang DC. Construction of virus-like particle peptide-nucleic acid vaccine of human telomerase reverse transcriptase and identification of its immunogenicity. Shijie Huaren Xiaohua Zazhi 2005; 13:2645-2649. [DOI: 10.11569/wcjd.v13.i22.2645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To construct a novel virus-like particle peptide-nucleic acid vaccine (VPNV) of human telomerase reverse transcriptase (hTERT), and to identify its imm-unogenicity and transfection activity.
METHODS: Cationic antigenic peptide K18P9 was syn-thesized and purified, then human GM-CSF and TERT gene were cloned into eukaryotic expression vector pTCAE. The peptide was combined with the nucleic acid vaccine to make VPNV, which were transfected into eukaryotic cells COS-7. The immunogenicity of hGM-CSF and hTERT were detected by enzyme linked imm-unosorbent assay (ELISA) and Western blotting.
RESULTS: Restriction enzyme digestion and sequen-ce analysis confirmed that hGM-CSF and hTERT were cloned into pTCAE and the nucleic acid vaccine of hTERT gene was constructed successfully. Under ele-ctronic microscopy, nucleic acid was packaged by pep-tide, forming into virus-like particle. Furthermore, the transfection activity of VPNV and the immunogenic-ity of hGM-CSF and hTERT could reach 78.5% as co-mpared with the positive controls.
CONCLUSION: The VPNV is successfully constructed, and its immunogenicity is also identified.
Collapse
|
9
|
Abstract
The study of cancer immunology has recently been reinvigorated by the application of new research tools and technologies, as well as by refined bioinformatics methods for interpretation of complex datasets. Recent microarray analyses of lymphomas suggest that the prognosis of cancer patients is related to an interplay between cancer cells and their microenvironment, including the immune response.
Collapse
Affiliation(s)
- Robert L Strausberg
- J, Craig Venter Institute, 9,704 Medical Center Drive, Rockville, MD 20850, USA.
| |
Collapse
|
10
|
Afjehi-Sadat L, Shin JH, Felizardo M, Lee K, Slavc I, Lubec G. Detection of hypothetical proteins in 10 individual human tumor cell lines. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1747:67-80. [PMID: 15680240 DOI: 10.1016/j.bbapap.2004.09.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 09/27/2004] [Accepted: 09/27/2004] [Indexed: 12/20/2022]
Abstract
The search for new structures in tumors by genomics and proteomics methods is a major goal in tumor biology and may lead to the detection of markers or antigens for the generation of tumor vaccines. The aim of this study was to identify proteins that have been predicted so far based upon their nucleic acid sequence only or show poor identity to known proteins in tumor cell lines. Cell lines of neuroblastoma, colorectal, cervix carcinoma, adenocarcinoma of the ovary, lung and breast cancer, promyelocytic leukaemia, rhabdomyosarcoma, osteosarcoma and malignant melanoma were used. Cell lysates were run on 2D gel electrophoresis with subsequent in-gel digestion and MALDI-TOF-TOF analysis. A series of 10 hypothetical proteins (HPs) were observed and three of these proteins, hypothetical protein (Q9BTE6), CGI-83 protein (Q9Y392) and similar to CG11334 (Q9BV20), were so far described in tumors exclusively. The other seven proteins were already detected at the transcriptional level in normal and tumor cell lines or tissues. In conclusion, the three HPs observed in lung cancer and malignant melanoma may be candidates for development of tumor markers and generation of tumor vaccines.
Collapse
Affiliation(s)
- Leila Afjehi-Sadat
- Medical University of Vienna, Division of Basic Science, Department of Pediatrics, Währinger Gürtel 18, A-1090 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
11
|
Schoen C, Stritzker J, Goebel W, Pilgrim S. Bacteria as DNA vaccine carriers for genetic immunization. Int J Med Microbiol 2004; 294:319-35. [PMID: 15532991 DOI: 10.1016/j.ijmm.2004.03.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Genetic immunization with plasmid DNA vaccines has proven to be a promising tool in conferring protective immunity in various experimental animal models of infectious diseases or tumors. Recent research focuses on the use of bacteria, in particular enteroinvasive species, as effective carriers for DNA vaccines. Attenuated strains of Shigella flexneri, Salmonella spp., Yersinia enterocolitica or Listeria monocytogenes have shown to be attractive candidates to target DNA vaccines to immunological inductive sites at mucosal surfaces. This review summarizes recent progress in bacteria-mediated delivery of plasmid DNA vaccines in the field of infectious diseases and cancer.
Collapse
Affiliation(s)
- Christoph Schoen
- Department of Microbiology, Biocenter of the University, D-97074 Würzburg, Germany
| | | | | | | |
Collapse
|