1
|
Mulder PPG, Hooijmans CR, Vlig M, Middelkoop E, Joosten I, Koenen HJPM, Boekema BKHL. Kinetics of Inflammatory Mediators in the Immune Response to Burn Injury: Systematic Review and Meta-Analysis of Animal Studies. J Invest Dermatol 2024; 144:669-696.e10. [PMID: 37806443 DOI: 10.1016/j.jid.2023.09.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023]
Abstract
Burns are often accompanied by a dysfunctional immune response, which can lead to systemic inflammation, shock, and excessive scarring. The objective of this study was to provide insight into inflammatory pathways associated with burn-related complications. Because detailed information on the various inflammatory mediators is scattered over individual studies, we systematically reviewed animal experimental data for all reported inflammatory mediators. Meta-analyses of 352 studies revealed a strong increase in cytokines, chemokines, and growth factors, particularly 19 mediators in blood and 12 in burn tissue. Temporal kinetics showed long-lasting surges of proinflammatory cytokines in blood and burn tissue. Significant time-dependent effects were seen for IL-1β, IL-6, TGF-β1, and CCL2. The response of anti-inflammatory mediators was limited. Burn technique had a profound impact on systemic response levels. Large burn size and scalds further increased systemic, but not local inflammation. Animal characteristics greatly affected inflammation, for example, IL-1β, IL-6, and TNF-α levels were highest in young, male rats. Time-dependent effects and dissimilarities in response demonstrate the importance of appropriate study design. Collectively, this review presents a general overview of the burn-induced immune response exposing inflammatory pathways that could be targeted through immunotherapy for burn patients and provides guidance for experimental set-ups to advance burn research.
Collapse
Affiliation(s)
- Patrick P G Mulder
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Carlijn R Hooijmans
- Meta-Research Team, Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel Vlig
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands
| | - Esther Middelkoop
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Tissue Function and Regeneration, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Irma Joosten
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hans J P M Koenen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bouke K H L Boekema
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Tapking C, Houschyar KS, Rontoyanni VG, Hundeshagen G, Kowalewski KF, Hirche C, Popp D, Wolf SE, Herndon DN, Branski LK. The Influence of Obesity on Treatment and Outcome of Severely Burned Patients. J Burn Care Res 2020; 40:996-1008. [PMID: 31294797 DOI: 10.1093/jbcr/irz115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Obesity and the related medical, social, and economic impacts are relevant multifactorial and chronic conditions that also have a meaningful impact on outcomes following a severe injury, including burns. In addition to burn-specific difficulties, such as adequate hypermetabolic response, fluid resuscitation, and early wound coverage, obese patients also present with common comorbidities, such as arterial hypertension, diabetes mellitus, or nonalcoholic fatty liver disease. In addition, the pathophysiologic response to severe burns can be enhanced. Besides the increased morbidity and mortality compared to burn patients with normal weight, obese patients present a challenge in fluid resuscitation, perioperative management, and difficulties in wound healing. The present work is an in-depth review of the current understanding of the influence of obesity on the management and outcome of severe burns.
Collapse
Affiliation(s)
- Christian Tapking
- Department of Surgery, University of Texas Medical Branch, Galveston.,Shriners Hospitals for Children, Galveston, Texas.,Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Germany
| | - Khosrow S Houschyar
- Department of Plastic Surgery, Hand Surgery, Sarcoma Center, BG University Hospital, Ruhr University, Bochum, Germany
| | - Victoria G Rontoyanni
- Department of Surgery, University of Texas Medical Branch, Galveston.,Metabolism Unit, Shriners Hospitals for Children, Galveston, Texas
| | - Gabriel Hundeshagen
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Germany
| | | | - Christoph Hirche
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Germany
| | - Daniel Popp
- Department of Surgery, University of Texas Medical Branch, Galveston.,Shriners Hospitals for Children, Galveston, Texas.,Department of Urology, University Medical Center Mannheim, University of Heidelberg, Germany
| | - Steven E Wolf
- Department of Surgery, University of Texas Medical Branch, Galveston.,Shriners Hospitals for Children, Galveston, Texas
| | - David N Herndon
- Department of Surgery, University of Texas Medical Branch, Galveston
| | - Ludwik K Branski
- Department of Surgery, University of Texas Medical Branch, Galveston.,Shriners Hospitals for Children, Galveston, Texas.,Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Austria
| |
Collapse
|
3
|
Qu Q, Liu J, Zhou HH, Klaassen CD. Nrf2 protects against furosemide-induced hepatotoxicity. Toxicology 2014; 324:35-42. [PMID: 24813929 DOI: 10.1016/j.tox.2014.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/17/2014] [Accepted: 02/17/2014] [Indexed: 10/25/2022]
Abstract
Furosemide is a diuretic drug, but its reactive intermediates lead to acute liver injury in mice. Given the essential role of Nrf2 as a cellular defense regulator, we investigated whether Nrf2 would protect against furosemide-induced liver injury using the Nrf2 "gene-dose response" mouse model (Nrf2-null with Nrf2 knock-out, wild-type with normal expression of Nrf2, Keap1-KD with enhanced Nrf2 activation and Keap1-HKO mice with maximum Nrf2 activation). Twenty-four hours after furosemide administration (250mg/kg, i.p.), serum ALT activities and histopathological analysis indicated severe hepatotoxicity in Nrf2-null and WT mice, but significantly less in the Nrf2-overexpressing Keap1-KD and Keap1-HKO mice. Furosemide increased the mRNA of genes involved in the acute phase response (hemeoxygenase-1 and metallothionein-1), ER stress (C/Ebp-homologous protein and Growth arrest and DNA-damage-inducible protein), inflammatory cytokine (interleukin 1 beta), chemokines (macrophage inflammatory protein 2 and mouse keratinocyte-derived chemokine), as well as apoptosis (early growth response factor and BCL2-associated X protein) in livers of Nrf2-null and wild-type mice, but these genes increased less in mice with more Nrf2. The two genotypes of over-expressed Nrf2 mice had increased expression of the Nrf2 target genes Gclm, Gclc and Nqo1 prior to furosemide administration, and the expressions of these genes were increased further after furosemide administration. Thus, our findings provide strong evidence that over-expression of Nrf2 in Keap1-KD and Keap1-HKO mice and the increases in mRNA of a number of genes involved in anti-oxidative stress, anti-inflammation, anti-ER stress and anti-apoptosis protect against furosemide-induced hepatotoxicity.
Collapse
Affiliation(s)
- Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; University of Kansas Medical Center, Kansas City, KS 66101, USA; Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jie Liu
- University of Kansas Medical Center, Kansas City, KS 66101, USA
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
| | | |
Collapse
|
4
|
Pankhurst MW, Gell DA, Butler CW, Kirkcaldie MTK, West AK, Chung RS. Metallothionein (MT) -I and MT-II expression are induced and cause zinc sequestration in the liver after brain injury. PLoS One 2012; 7:e31185. [PMID: 22363575 PMCID: PMC3281953 DOI: 10.1371/journal.pone.0031185] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 01/04/2012] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED Experiments with transgenic over-expressing, and null mutant mice have determined that metallothionein-I and -II (MT-I/II) are protective after brain injury. MT-I/II is primarily a zinc-binding protein and it is not known how it provides neuroprotection to the injured brain or where MT-I/II acts to have its effects. MT-I/II is often expressed in the liver under stressful conditions but to date, measurement of MT-I/II expression after brain injury has focused primarily on the injured brain itself. In the present study we measured MT-I/II expression in the liver of mice after cryolesion brain injury by quantitative reverse-transcriptase PCR (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) with the UC1MT antibody. Displacement curves constructed using MT-I/II knockout (MT-I/II(-/-)) mouse tissues were used to validate the ELISA. Hepatic MT-I and MT-II mRNA levels were significantly increased within 24 hours of brain injury but hepatic MT-I/II protein levels were not significantly increased until 3 days post injury (DPI) and were maximal at the end of the experimental period, 7 DPI. Hepatic zinc content was measured by atomic absorption spectroscopy and was found to decrease at 1 and 3 DPI but returned to normal by 7DPI. Zinc in the livers of MT-I/II(-/-) mice did not show a return to normal at 7 DPI which suggests that after brain injury, MT-I/II is responsible for sequestering elevated levels of zinc to the liver. CONCLUSION MT-I/II is up-regulated in the liver after brain injury and modulates the amount of zinc that is sequestered to the liver.
Collapse
Affiliation(s)
- Michael W Pankhurst
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia.
| | | | | | | | | | | |
Collapse
|
5
|
Morellini NM, Giles NL, Rea S, Adcroft KF, Falder S, King CE, Dunlop SA, Beazley LD, West AK, Wood FM, Fear MW. Exogenous metallothionein-IIA promotes accelerated healing after a burn wound. Wound Repair Regen 2008; 16:682-90. [DOI: 10.1111/j.1524-475x.2008.00418.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Abstract
Zinc, an essential micronutrient, is involved in wound healing. The hypozincemia seen with chronic aldosteronism is associated with enhanced fecal and urinary excretory Zn losses, and its tissue distribution is less certain. This study monitored tissue 65Zn distribution in uninephrectomized rats at weeks 1 and 4 of aldosterone/salt treatment (ALDOST). Plasma and tissue total radionucleotide uptake was determined by calculating its mean radioactivity at 1, 4, 8, 24, and 48 hours after intravenous 65Zn administration and where respective area under the concentration-time curves (AUC) were determined by the linear trapezoidal rule and expressed as a tissue:plasma AUC ratio. Examined tissues included: (1) injured heart and kidney in response to ALDOST and incised skin; (2) noninjured liver, skeletal muscle, and spleen sites of stress-linked Zn uptake; and (3) bone, a major storage and release site when Zn homeostasis is threatened. In comparison with age-matched and gender-matched controls, the following were found with week 1 and 4 ALDOST: (1) reduced plasma 65Zn; (2) an accumulation of 65Zn in heart and kidneys, where a well-known vasculopathy involves intramural vessels, and in incised skin at week 1; (3) an organ-specific increase in tissue 65Zn in liver, in keeping with upregulated metallothionein expression, skeletal muscle, and spleen; and (4) a fall in bone and healed skin Zn at week 4. Thus a wide-ranging disturbance in Zn homeostasis appears during ALDOST to include its translocation from plasma to injured heart, kidneys, and skin and noninjured liver, skeletal muscle, and spleen together with a resorption of stored Zn in bone at week 4. Zinc dyshomeostasis is an integral feature of chronic aldosteronism.
Collapse
|