1
|
Non-Mendelian segregation and transmission drive of B chromosomes. Chromosome Res 2022; 30:217-228. [DOI: 10.1007/s10577-022-09692-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/11/2022] [Accepted: 04/11/2022] [Indexed: 11/03/2022]
|
2
|
Manrique-Poyato MI, Cabrero J, López-León MD, Perfectti F, Gómez R, Camacho JPM. Interpopulation spread of a parasitic B chromosome is unlikely through males in the grasshopper Eyprepocnemis plorans. Heredity (Edinb) 2020; 124:197-206. [PMID: 31285567 PMCID: PMC6906446 DOI: 10.1038/s41437-019-0248-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/11/2019] [Accepted: 06/25/2019] [Indexed: 11/09/2022] Open
Abstract
The near-neutral model of B chromosome evolution predicts that population invasion is quite fast. To test this prediction, in 1994, we introduced males of the grasshopper Eyprepocnemis plorans from a B-carrying population into a B-lacking population and monitored the evolution of B-chromosome frequency up to 2013. We observed fluctuating very low B frequency across years but, remarkably, the B chromosome introduced (the B2 variant) was found up to 1996 only, whereas the B1 variant was present from 1996 onwards, presumably introduced by fishermen using E. plorans males as bait. Effective introgression of genetic material from the donor population was evidenced by the presence of a satellite DNA on autosome 9 (up to 1999) and the presence of one individual in 2006 showing an ISSR marker profile being highly similar to that found in the donor population. This indicated that the males introduced by us effectively mated with resident females, but donor genes rapidly decreased in frequency after this non-recurrent migration event. Taken together, our results indicated: (i) that the non-recurrent migration event had a slight, transient genetic effect on the recipient population, which was diluted in only a few generations; and (ii) that even with recurrent migration (forced by fishermen) the B chromosome failed to increase in frequency. Bearing in mind that B chromosomes in this species drive through females only, we hypothesize that B chromosomes most likely failed invasion in both migration events because the migrating sex shows no B-drive.
Collapse
Affiliation(s)
| | - Josefa Cabrero
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain
| | - María Dolores López-León
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain
| | - Francisco Perfectti
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain
| | - Ricardo Gómez
- Departamento de Ciencia y Tecnología Agroforestal, E.T.S. de Ingenieros Agrónomos, Universidad de Castilla La Mancha, 02071, Albacete, Spain
| | - Juan Pedro M Camacho
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain.
| |
Collapse
|
3
|
Navarro-Domínguez B, Ruiz-Ruano FJ, Cabrero J, Corral JM, López-León MD, Sharbel TF, Camacho JPM. Protein-coding genes in B chromosomes of the grasshopper Eyprepocnemis plorans. Sci Rep 2017; 7:45200. [PMID: 28367986 PMCID: PMC5377258 DOI: 10.1038/srep45200] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/22/2017] [Indexed: 01/20/2023] Open
Abstract
For many years, parasitic B chromosomes have been considered genetically inert elements. Here we show the presence of ten protein-coding genes in the B chromosome of the grasshopper Eyprepocnemis plorans. Four of these genes (CIP2A, GTPB6, KIF20A, and MTG1) were complete in the B chromosome whereas the six remaining (CKAP2, CAP-G, HYI, MYCB2, SLIT and TOP2A) were truncated. Five of these genes (CIP2A, CKAP2, CAP-G, KIF20A, and MYCB2) were significantly up-regulated in B-carrying individuals, as expected if they were actively transcribed from the B chromosome. This conclusion is supported by three truncated genes (CKAP2, CAP-G and MYCB2) which showed up-regulation only in the regions being present in the B chromosome. Our results indicate that B chromosomes are not so silenced as was hitherto believed. Interestingly, the five active genes in the B chromosome code for functions related with cell division, which is the main arena where B chromosome destiny is played. This suggests that B chromosome evolutionary success can lie on its gene content.
Collapse
Affiliation(s)
| | - Francisco J. Ruiz-Ruano
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Josefa Cabrero
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - José María Corral
- Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), D-06466 Gatersleben, Germany
- Department of Bioanalytics, Coburg University of Applied Sciences and Arts, Coburg, Germany
| | | | - Timothy F. Sharbel
- Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), D-06466 Gatersleben, Germany
- Global Institute for Food Security, 110 Gymnasium Place, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 4J8, Canada
| | - Juan Pedro M. Camacho
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
4
|
B-chromosome effects on Hsp70 gene expression does not occur at transcriptional level in the grasshopper Eyprepocnemis plorans. Mol Genet Genomics 2016; 291:1909-17. [PMID: 27334602 DOI: 10.1007/s00438-016-1228-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/17/2016] [Indexed: 01/01/2023]
Abstract
As intragenomic parasites, B chromosomes can elicit stress in the host genome, thus inducing a response for host adaptation to this kind of continuous parasitism. In the grasshopper Eyprepocnemis plorans, B-chromosome presence has been previously associated with a decrease in the amount of the heat-shock protein 70 (HSP70). To investigate whether this effect is already apparent at transcriptional level, we analyze the expression levels of the Hsp70 gene in gonads and somatic tissues of males and females with and without B chromosomes from two populations, where the predominant B chromosome variants (B2 and B24) exhibit different levels of parasitism, by means of quantitative real-time PCR (qPCR) on complementary DNA (cDNA). The results revealed the absence of significant differences for Hsp70 transcripts associated with B-chromosome presence in virtually all samples. This indicates that the decrease in HSP70 protein levels, formerly reported in this species, may not be a consequence of transcriptional down-regulation of Hsp70 genes, but the result of post-transcriptional regulation. These results will help to design future studies oriented to identifying factors modulating Hsp70 expression, and will also contribute to uncover the biological role of B chromosomes in eukaryotic genomes.
Collapse
|
5
|
Montiel EE, Cabrero J, Ruiz-Estévez M, Burke WD, Eickbush TH, Camacho JPM, López-León MD. Preferential occupancy of R2 retroelements on the B chromosomes of the grasshopper Eyprepocnemis plorans. PLoS One 2014; 9:e91820. [PMID: 24632855 PMCID: PMC3954772 DOI: 10.1371/journal.pone.0091820] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 02/14/2014] [Indexed: 02/02/2023] Open
Abstract
R2 non-LTR retrotransposons exclusively insert into the 28S rRNA genes of their host, and are expressed by co-transcription with the rDNA unit. The grasshopper Eyprepocnemis plorans contains transcribed rDNA clusters on most of its A chromosomes, as well as non-transcribed rDNA clusters on the parasitic B chromosomes found in many populations. Here the structure of the E. plorans R2 element, its abundance relative to the number of rDNA units and its retrotransposition activity were determined. Animals screened from five populations contained on average over 12,000 rDNA units on their A chromosomes, but surprisingly only about 100 R2 elements. Monitoring the patterns of R2 insertions in individuals from these populations revealed only low levels of retrotransposition. The low rates of R2 insertion observed in E. plorans differ from the high levels of R2 insertion previously observed in insect species that have many fewer rDNA units. It is proposed that high levels of R2 are strongly selected against in E. plorans, because the rDNA transcription machinery in this species is unable to differentiate between R2-inserted and uninserted units. The B chromosomes of E. plorans contain an additional 7,000 to 15,000 rDNA units, but in contrast to the A chromosomes, from 150 to over 1,500 R2 elements. The higher concentration of R2 in the inactive B chromosomes rDNA clusters suggests these chromosomes can act as a sink for R2 insertions thus further reducing the level of insertions on the A chromosomes. These studies suggest an interesting evolutionary relationship between the parasitic B chromosomes and R2 elements.
Collapse
Affiliation(s)
- Eugenia E. Montiel
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Josefa Cabrero
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Mercedes Ruiz-Estévez
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - William D. Burke
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Thomas H. Eickbush
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Juan Pedro M. Camacho
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | | |
Collapse
|
6
|
Manrique-Poyato MI, López-León MD, Cabrero J, Perfectti F, Camacho JPM. Spread of a new parasitic B chromosome variant is facilitated by high gene flow. PLoS One 2014; 8:e83712. [PMID: 24386259 PMCID: PMC3873393 DOI: 10.1371/journal.pone.0083712] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/13/2013] [Indexed: 11/19/2022] Open
Abstract
The B24 chromosome variant emerged several decades ago in a Spanish population of the grasshopper Eyprepocnemis plorans and is currently reaching adjacent populations. Here we report, for the first time, how a parasitic B chromosome (a strictly vertically transmitted parasite) expands its geographical range aided by high gene flow in the host species. For six years we analyzed B frequency in several populations to the east and west of the original population and found extensive spatial variation, but only a slight temporal trend. The highest B24 frequency was found in its original population (Torrox) and it decreased closer to both the eastern and the western populations. The analysis of Inter Simple Sequence Repeat (ISSR) markers showed the existence of a low but significant degree of population subdivision, as well as significant isolation by distance (IBD). Pairwise Nem estimates suggested the existence of high gene flow between the four populations located in the Torrox area, with higher values towards the east. No significant barriers to gene flow were found among these four populations, and we conclude that high gene flow is facilitating B24 diffusion both eastward and westward, with minor role for B24 drive due to the arrival of drive suppressor genes which are also frequent in the donor population.
Collapse
Affiliation(s)
- María Inmaculada Manrique-Poyato
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
- Departamento de Células Troncales, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Sevilla, Spain
| | | | - Josefa Cabrero
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Francisco Perfectti
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Juan Pedro M. Camacho
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
- * E-mail:
| |
Collapse
|
7
|
Ruiz-Estévez M, Cabrero J, Camacho JPM. B-chromosome ribosomal DNA is functional in the grasshopper Eyprepocnemis plorans. PLoS One 2012; 7:e36600. [PMID: 22570730 PMCID: PMC3343036 DOI: 10.1371/journal.pone.0036600] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/09/2012] [Indexed: 11/19/2022] Open
Abstract
B-chromosomes are frequently argued to be genetically inert elements, but activity for some particular genes has been reported, especially for ribosomal RNA (rRNA) genes whose expression can easily be detected at the cytological level by the visualization of their phenotypic expression, i.e., the nucleolus. The B(24) chromosome in the grasshopper Eyprepocnemis plorans frequently shows a nucleolus attached to it during meiotic prophase I. Here we show the presence of rRNA transcripts that unequivocally came from the B(24) chromosome. To detect these transcripts, we designed primers specifically anchoring at the ITS-2 region, so that the reverse primer was complementary to the B chromosome DNA sequence including a differential adenine insertion being absent in the ITS2 of A chromosomes. PCR analysis carried out on genomic DNA showed amplification in B-carrying males but not in B-lacking ones. PCR analyses performed on complementary DNA showed amplification in about half of B-carrying males. Joint cytological and molecular analysis performed on 34 B-carrying males showed a close correspondence between the presence of B-specific transcripts and of nucleoli attached to the B chromosome. In addition, the molecular analysis revealed activity of the B chromosome rDNA in 10 out of the 13 B-carrying females analysed. Our results suggest that the nucleoli attached to B chromosomes are actively formed by expression of the rDNA carried by them, and not by recruitment of nucleolar materials formed in A chromosome nucleolar organizing regions. Therefore, B-chromosome rDNA in E. plorans is functional since it is actively transcribed to form the nucleolus attached to the B chromosome. This demonstrates that some heterochromatic B chromosomes can harbour functional genes.
Collapse
Affiliation(s)
| | | | - Josefa Cabrero
- Departamento de Genética, Universidad de Granada, Granada, Spain
| | | |
Collapse
|
8
|
A single, recent origin of the accessory B chromosome of the grasshopper Eyprepocnemis plorans. Genetics 2011; 187:853-63. [PMID: 21411624 DOI: 10.1534/genetics.110.122713] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
B chromosomes are dispensable chromosomes found in >2000 eukaryotic species, usually behaving as genomic parasites. Most B chromosomes seem to be made up of the same kind of DNA sequences present in the A chromosomes. This sequence similarity makes it difficult to obtain specific molecular probes that may permit B-presence diagnosis without cytogenetic analysis. We have developed a sequence-characterized amplified region (SCAR) marker for B chromosomes in the grasshopper Eyprepocnemis plorans, which specifically amplifies a 1510-bp DNA fragment exclusively in B-carrying individuals. Fluorescent in situ hybridization and fiber FISH analyses showed that this marker is a tandemly repeated DNA sequence closely intermingled with 45S rDNA. PCR reactions showed the presence of SCAR-like sequences in the A chromosomes, but in two separate fragments, supporting the intraspecific origin of B chromosomes in this species. SCAR marker DNA sequence showed to be identical in B chromosome variants from several localities from Spain and Morocco, and it was very similar to those found in B chromosome variants from Greece and Armenia. This strongly suggests that this sequence was already present in the ancestral B chromosome of this species. In addition, the scarce sequence variation observed among several B variants from very distant populations suggests either a functional constraint or, more likely, a recent and unique origin for B chromosomes in this species.
Collapse
|
9
|
Basheva EA, Torgasheva AA, Sakaeva GR, Bidau C, Borodin PM. A- and B-chromosome pairing and recombination in male meiosis of the silver fox (Vulpes vulpes L., 1758, Carnivora, Canidae). Chromosome Res 2010; 18:689-96. [PMID: 20697834 DOI: 10.1007/s10577-010-9149-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 07/22/2010] [Accepted: 07/26/2010] [Indexed: 11/26/2022]
Abstract
We examined A- and B-chromosome pairing and recombination in 12 males from the farm-bred population of the silver fox (2n = 34 + 0-10 Bs) by means of electron and immunofluorescent microscopy. To detect recombination at A and B chromosomes, we used immunolocalisation of MLH1, a mismatch repair protein of mature recombination nodules, at synaptonemal complexes. The mean total number of MLH1 foci at A-autosomes was 29.6 foci per cell. The XY bivalent had one MLH1 focus at the pairing region. Total recombination length of the male fox genome map was estimated as 1,530 centimorgans. We detected single MLH1 foci at 61% of linear synaptic configurations involving B chromosomes. The distribution of the foci along B- and A-bivalents was the same. This may be considered as a first molecular evidence that meiotic recombination does occur in mammalian B chromosomes. There was no correlation between the number of synaptic configurations involving B chromosomes per cell and the recombination rate of the A-genome.
Collapse
Affiliation(s)
- Ekaterina A Basheva
- Institute of Cytology and Genetics, Siberian Department, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | | | | | | | | |
Collapse
|
10
|
Quantitative analysis of NOR expression in a B chromosome of the grasshopper Eyprepocnemis plorans. Chromosoma 2008; 118:291-301. [PMID: 19048264 DOI: 10.1007/s00412-008-0197-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 11/06/2008] [Accepted: 11/12/2008] [Indexed: 10/21/2022]
Abstract
The B24 chromosome in the Torrox population of the grasshopper Eyprepocnemis plorans is recurrently attached to a nucleolus in diplotene cells, indicating the activity of its distally located ribosomal DNA (rDNA). The frequency of males expressing the B chromosome nucleolus organizer region (B-NOR) almost doubled in 4 years. The likelihood of expressing the B-NOR increased with the B number and, in males expressing it, about 20% of their cells showed a nucleolus attached to the B. When active, the B-NOR contributed more than 25% of total cell nucleolar area (NA). Within males expressing the B-NOR, total cell NA did not differ between cells showing the active or inactive B-NOR, suggesting that total cell NA is tightly regulated in this species. However, this parameter tended to increase in this population from 1999 to 2004, in parallel to the neutralization process which is taking place in this population. Finally, an analysis of A chromosome NOR interdependence for activity revealed a positive correlation among autosomes but a negative correlation between autosomes and the X chromosome, the manifestation of which depends on B-NOR activity. These results are discussed in the context of the nucleolus as a sensor of the stress caused by parasitic B chromosomes.
Collapse
|
11
|
Manrique-Poyato MI, Muñoz-Pajares AJ, Loreto V, López-León MD, Cabrero J, Camacho JPM. Causes of B chromosome variant substitution in the grasshopper Eyprepocnemis plorans. Chromosome Res 2006; 14:693-700. [PMID: 16964576 DOI: 10.1007/s10577-006-1081-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 06/30/2006] [Accepted: 06/30/2006] [Indexed: 10/24/2022]
Abstract
We have analysed B chromosome frequency for three consecutive years, B transmission rate at population and individual levels, clutch size, egg fertility and embryo-adult viability in a natural population of the grasshopper Eyprepocnemis plorans containing two different B chromosome variants, i.e. B(2) and B(24), the second being derived from the first and having replaced it in nearby populations. From 2002 to 2003 the relative frequency of both variants changed, although the differences did not reach significance. A mother-offspring analysis showed no significant effect of any of the two B variants on clutch size, egg fertility or embryo-adult viability, but B(24) was more efficiently transmitted than B(2) through males from the 2002 season, which explains the observed frequency change. Controlled crosses, at individual level, showed significant drive through some females for B(24) but not for B(2), suggesting that this difference in transmission rate might also be important for the substitution process. The analysis of relative fitness for B(2) and B(24) carriers for all fitness components, as a whole, showed a significantly better performance of B(24)-carrying individuals, suggesting that the cumulative effect of these slight differences might contribute to the replacement of B(2) by B(24).
Collapse
Affiliation(s)
- M I Manrique-Poyato
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Cabrero J, Manrique-Poyato MI, Camacho JPM. Detection of B chromosomes in interphase hemolymph nuclei from living specimens of the grasshopper Eyprepocnemis plorans. Cytogenet Genome Res 2006; 114:66-9. [PMID: 16717452 DOI: 10.1159/000091930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Accepted: 11/15/2005] [Indexed: 11/19/2022] Open
Abstract
The two most important evolutionary properties of B chromosomes are their transmission rate (which suggests their selfishness when significantly higher than 0.5) and their net effects on carrier fitness (usually negative for parasitic Bs). The study of transmission rate unavoidably requires the analysis of many controlled crosses in order to accurately measure population average transmission rate. Therefore, getting a marker closely associated to B presence is of crucial importance to alleviate the load of performing many useless crosses between lacking B individuals. After investigating several cytogenetic techniques on several tissues that may be sampled without drastically damaging live specimens of the grasshopper Eyprepocnemis plorans, we report here the excellent results provided by the CMA3 fluorescence and C-banding techniques applied to hemocyte nuclei. These cells may be easily obtained from both males and females and provide information on B presence even during the interphase stage. The two cytogenetic techniques take advantage of the heterochromatic nature of the B chromosomes, so that Bs made predominantly of ribosomal DNA are revealed by CMA3 as bright bodies in the interphase hemocytes, and Bs mostly made of satellite DNA are visualized by C-banding as intensely stained bodies in these cells.
Collapse
Affiliation(s)
- J Cabrero
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | | | | |
Collapse
|