1
|
Aslebagh R, Whitham D, Channaveerappa D, Lowe J, Pentecost BT, Arcaro KF, Darie CC. Proteomics analysis of human breast milk by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) coupled with mass spectrometry to assess breast cancer risk. Electrophoresis 2023; 44:1097-1113. [PMID: 36971330 PMCID: PMC10522790 DOI: 10.1002/elps.202300040] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Breast cancer (BC) is one of the most common cancers and one of the most common causes for cancer-related mortality. Discovery of protein biomarkers associated with cancer is considered important for early diagnosis and prediction of the cancer risk. Protein biomarkers could be investigated by large-scale protein investigation or proteomics, using mass spectrometry (MS)-based techniques. Our group applies MS-based proteomics to study the protein pattern in human breast milk from women with BC and controls and investigates the alterations and dysregulations of breast milk proteins in comparison pairs of BC versus control. These dysregulated proteins might be considered potential future biomarkers of BC. Identification of potential biomarkers in breast milk may benefit young women without BC, but who could collect the milk for future assessment of BC risk. Previously we identified several dysregulated proteins in different sets of human breast milk samples from BC patients and controls using gel-based protein separation coupled with MS. Here, we performed 2D-PAGE coupled with nano-liquid chromatography-tandem MS (nanoLC-MS/MS) in a small-scale study on a set of six human breast milk pairs (three BC samples vs. three controls) and we identified several dysregulated proteins that have potential roles in cancer progression and might be considered potential BC biomarkers in the future.
Collapse
Affiliation(s)
- Roshanak Aslebagh
- Biochemistry and Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA
| | - Danielle Whitham
- Biochemistry and Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA
| | - Devika Channaveerappa
- Biochemistry and Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA
| | - James Lowe
- Biochemistry and Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA
| | - Brian T. Pentecost
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Kathleen F. Arcaro
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Costel C. Darie
- Biochemistry and Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA
| |
Collapse
|
2
|
Fan Y, Wang J, Wang Y, Li Y, Wang S, Weng Y, Yang Q, Chen C, Lin L, Qiu Y, Wang J, Chen F, He B, Liu F. Development and Clinical Validation of a Novel 5 Gene Signature Based on Fatty Acid Metabolism-Related Genes in Oral Squamous Cell Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3285393. [PMID: 36478991 PMCID: PMC9722305 DOI: 10.1155/2022/3285393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND/AIM Lipid metabolism disorders play a crucial role in tumor development and progression. The aim of the study focused on constructing a novel prognostic model of oral squamous cell carcinoma (OSCC) patients using fatty acid metabolism-related genes. METHODS Microarray test and data from The Cancer Genome Atlas (TCGA) were used to identify differentially expressed genes related to fatty acid metabolism. The quantitative real-time polymerase chain reaction (qRT-PCR) was then used to validate the expression of targeted fatty acid metabolism genes. A risk predictive scoring model of fatty acid metabolism-related genes was generated using a multivariate Cox model. The efficacy of this model was assessed by time-dependent receiver operating characteristic curve (ROC). RESULTS 14 fatty acid metabolism-related genes were identified by microarray test and TCGA database analysis and then confirmed by PCR. Finally, a 5 gene signature (ACACB, FABP3, PDK4, PPARG, and PLIN5) was constructed and a RiskScore was calculated for each patient. Compared to the high RiskScore group, the low RiskScore group had better overall survival (OS) (p = 0.02). The RiskScore derived from a 5 gene signature was a prognostic factor (HR: 3.73, 95% CI: 1.38, 10.09) for OSCC patients. The predictive classification efficiencies of RiskScore were evaluated and the area under the curve (AUC) values for 1, 3, and 5 years were 0.613, 0.652, and 0.681, respectively. Then we compared the predictive performance of the prognostic model with or without the RiskScore. The 5 gene-derived RiskScore can improve the predictive performance with AUC values of 0.760, 0.803, and 0.830 for 1, 3, and 5 years OS in prognostic model including the RiskScore. While the predicted AUC values of the model without RiskScore for 1, 3, and 5 years OS were 0.699, 0.715, and 0.714, respectively. CONCLUSION We developed a predictive score model using 5 fatty acid metabolism-related genes, which could be a potential prognostic indicator in OSCC.
Collapse
Affiliation(s)
- Yi Fan
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fujian, China
| | - Jing Wang
- Central Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, China
| | - Yaping Wang
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fujian, China
| | - Yanni Li
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fujian, China
| | - Sijie Wang
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fujian, China
| | - Yanfeng Weng
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fujian, China
| | - Qiujiao Yang
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fujian, China
| | - Chen Chen
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fujian, China
| | - Lisong Lin
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Yu Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Jing Wang
- Laboratory Center, The Major Subject of Environment and Health of Fujian Key Universities, School of Public Health, Fujian Medical University, Fujian, China
| | - Fa Chen
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fujian, China
| | - Baochang He
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fujian, China
| | - Fengqiong Liu
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fujian, China
| |
Collapse
|
3
|
Basak S, Mallick R, Banerjee A, Pathak S, Duttaroy AK. Cytoplasmic fatty acid-binding proteins in metabolic diseases and cancers. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 132:143-174. [PMID: 36088074 DOI: 10.1016/bs.apcsb.2022.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytoplasmic fatty acid-binding proteins (FABPs) are multipurpose proteins that can modulate lipid fluxes, trafficking, signaling, and metabolism. FABPs regulate metabolic and inflammatory pathways, its inhibition can improve type 2 diabetes mellitus and atherosclerosis. In addition, FABPs are involved in obesity, metabolic disease, cardiac dysfunction, and cancers. FABPs are promising tissue biomarkers in solid tumors for diagnostic and/or prognostic targets for novel therapeutic strategies. The signaling responsive elements of FABPs and determinants of FABP-mediated functions may be exploited in preventing or treating these diseases.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
4
|
Key Molecules of Fatty Acid Metabolism in Gastric Cancer. Biomolecules 2022; 12:biom12050706. [PMID: 35625633 PMCID: PMC9138239 DOI: 10.3390/biom12050706] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 02/05/2023] Open
Abstract
Fatty acid metabolism is closely linked to the progression of gastric cancer (GC), a very aggressive and life-threatening tumor. This study examines linked molecules, such as Sterol Regulatory Element-Binding Protein 1 (SREBP1), ATP Citrate Lyase (ACLY), Acetyl-CoA Synthases (ACSs), Acetyl-CoA Carboxylase (ACC), Fatty Acid Synthase (FASN), Stearoyl-CoA Desaturase 1 (SCD1), CD36, Fatty Acid Binding Proteins (FABPs), and Carnitine palmitoyltransferase 1 (CPT1), as well as their latest studies and findings in gastric cancer to unveil its core mechanism. The major enzymes of fatty acid de novo synthesis are ACLY, ACSs, ACC, FASN, and SCD1, while SREBP1 is the upstream molecule of fatty acid anabolism. Fatty acid absorption is mediated by CD36 and FABPs, and fatty acid catabolism is mediated by CPT1. If at all possible, we will discover novel links between fatty acid metabolism and a prospective gastric cancer target.
Collapse
|
5
|
Chen X, Hu SL, Feng Y, Li P, Mao QS, Xue WJ. Expression of Fatty Acid-Binding Protein-3 in Gastrointestinal Stromal Tumors and Its Significance for Prognosis. J Surg Res 2020; 260:462-466. [PMID: 33272594 DOI: 10.1016/j.jss.2020.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 10/01/2020] [Accepted: 11/01/2020] [Indexed: 01/24/2023]
Abstract
BACKGROUND FABP3 is a member of the fatty acid-binding protein (FABP) family, whose role in various cancers has been reported in the past. However, little is known about the role that FABP3 plays in gastrointestinal stromal tumors (GISTs). METHODS FABP3 expression was analyzed in 119 patients with GISTs using immunohistochemistry and tissue microarrays to interrogate the relationship between expression and prognosis. Kaplan-Meier analysis was used to calculate patient survival rates using complete follow-up data and to evaluate the potential prognostic value of FABP3 using Cox regression analysis. RESULTS FABP3-positive signals were detected as brown particles located in the cytoplasm using immunohistochemistry. Among the 119 tissue samples, we observed high FABP3 expression in 64 and low or negative expression in 55. Immunohistochemical analyses suggested that FABP3 expression was significantly correlated with tumor size (P = 0.006), mitotic index (P = 0.016), gross classification (P = 0.048), and AFIP-Miettinen risk classification (P = 0.007). Multiple logistic regression analysis showed that the expression of FABP3 was significantly associated with tumor size (P = 0.021). Kaplan-Meier survival curves showed that patients with GISTs with low expression of FABP3 and classified with a very low to moderate AFIP-Miettinen risk had better prognosis. Multivariate analysis further showed that high expression of FABP3 (P = 0.017) was significantly associated with poor 5-year overall survival. CONCLUSIONS High FABP3 expression has a prognostic value for patients with GISTs.
Collapse
Affiliation(s)
- Xi Chen
- Department of Gastrointestinal Surgery, Affliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Shi-Liu Hu
- Department of Gastrointestinal Surgery, Affliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Ying Feng
- Department of Gastrointestinal Surgery, Affliated Hospital of Nantong University, Nantong, Jiangsu, China; Research Center of Clinical Medicine, Affliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Peng Li
- Department of Gastrointestinal Surgery, Affliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Qin-Sheng Mao
- Department of Gastrointestinal Surgery, Affliated Hospital of Nantong University, Nantong, Jiangsu, China.
| | - Wan-Jiang Xue
- Department of Gastrointestinal Surgery, Affliated Hospital of Nantong University, Nantong, Jiangsu, China; Research Center of Clinical Medicine, Affliated Hospital of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
6
|
Kobayashi PE, Lainetti PF, Leis-Filho AF, Delella FK, Carvalho M, Cury SS, Carvalho RF, Fonseca-Alves CE, Laufer-Amorim R. Transcriptome of Two Canine Prostate Cancer Cells Treated With Toceranib Phosphate Reveals Distinct Antitumor Profiles Associated With the PDGFR Pathway. Front Vet Sci 2020; 7:561212. [PMID: 33324695 PMCID: PMC7726326 DOI: 10.3389/fvets.2020.561212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/30/2020] [Indexed: 01/17/2023] Open
Abstract
Canine prostate cancer (PC) presents a poor antitumor response, usually late diagnosis and prognosis. Toceranib phosphate (TP) is a nonspecific inhibitor of receptor tyrosine kinases (RTKs), including vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), and c-KIT. This study aimed to evaluate VEGFR2, PDGFR-β, and c-KIT protein expression in two established canine PC cell lines (PC1 and PC2) and the transcriptome profile of the cells after treatment with TP. Immunofluorescence (IF) analysis revealed VEGFR2 and PDGFR-β protein expression and the absence of c-KIT protein expression in both cell lines. After TP treatment, only the viability of PC1 cells decreased in a dose-dependent manner. Transcriptome and enrichment analyses of treated PC1 cells revealed 181 upregulated genes, which were related to decreased angiogenesis and cell proliferation. In addition, we found upregulated PDGFR-A, PDGFR-β, and PDGF-D expression in PC1 cells, and the upregulation of PDGFR-β was also observed in treated PC1 cells by qPCR. PC2 cells had fewer protein-protein interactions (PPIs), with 18 upregulated and 22 downregulated genes; the upregulated genes were involved in the regulation of parallel pathways and mechanisms related to proliferation, which could be associated with the resistance observed after treatment. The canine PC1 cell line but not the PC2 cell line showed decreased viability after treatment with TP, although both cell lines expressed PDGFR and VEGFR receptors. Further studies could explain the mechanism of resistance in PC2 cells and provide a basis for personalized treatment for dogs with PC.
Collapse
Affiliation(s)
- Priscila E Kobayashi
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University-UNESP, Botucatu, Brazil
| | - Patrícia F Lainetti
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, São Paulo State University-UNESP, Botucatu, Brazil
| | - Antonio F Leis-Filho
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University-UNESP, Botucatu, Brazil
| | - Flávia K Delella
- Department of Morphology, Institute of Biosciences, São Paulo State University-UNESP, Botucatu, Brazil
| | - Marcio Carvalho
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University-UNESP, Botucatu, Brazil
| | - Sarah Santiloni Cury
- Department of Morphology, Institute of Biosciences, São Paulo State University-UNESP, Botucatu, Brazil
| | - Robson Francisco Carvalho
- Department of Morphology, Institute of Biosciences, São Paulo State University-UNESP, Botucatu, Brazil
| | - Carlos E Fonseca-Alves
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, São Paulo State University-UNESP, Botucatu, Brazil.,Institute of Health Sciences, Paulista University-UNIP, Bauru, Brazil
| | - Renée Laufer-Amorim
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University-UNESP, Botucatu, Brazil
| |
Collapse
|
7
|
Bowden M, Nadal R, Zhou CW, Werner L, Barletta J, Juanpere N, Lloreta J, Hernandez-Llodrà S, Morote J, de Torres I, Orsola A, Cejas P, Long H, Bellmunt J. Transcriptomic analysis of micropapillary high grade T1 urothelial bladder cancer. Sci Rep 2020; 10:20135. [PMID: 33208770 PMCID: PMC7675970 DOI: 10.1038/s41598-020-76904-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 10/20/2020] [Indexed: 11/30/2022] Open
Abstract
No consensus currently exist on the optimal treatment of patients with high-risk nonmuscle invasive (HGT1) micropapillary variant of bladder cancer (MPBC). Transcripsome analysis may allow stratification of MPBC-HGT1 enabling prediction of recurrence and guide therapeutic management for individual patients. Whole transcriptome RNA-Sequencing of tumors from 23 patients with MPBC-HGT1 and 64 conventional urothelial carcinomas (cUC) (reference set) was performed. Differentially expressed genes between MPBC-HGT1 and cUC-HGT1 were explored. Cox proportional hazard models and Kapplan–Meier methods were used to assess the relation between time to progression (TTP) and individual gene expression adjusting for clinical covariates. Over 3000 genes were differentially expressed in MPBC-HGT1 as compared with cUC-HGT1 and a 26-gene signature is characteristic of MPBC within HGT1. A set of three genes; CD36, FAPB3 and RAETE1; were significantly associated with TTP. High expression of FABP3 and CD36 were associated with shorter TTP (p = 0.045 and p = 0.08) as was low expression of RAET1E (p = 0.01). Our study suggest that a 26-gene signature can define MPBC-HGT1 within conventional urothelial carcinomas. A prognostic risk index of three genes (FABP3, CD36 and RAET1E) was found to be associated with shorter TTP and may help classify a group of patients with MPBC-HGT1 with high-risk of early progression. These observations might have implications in terms of radical cystectomy recommendation in MPBC patients.
Collapse
Affiliation(s)
- Michaela Bowden
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, USA.
| | - Rosa Nadal
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institutes, National Institutes of Health, Bethesda, MD, USA
| | - Chensheng W Zhou
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, USA
| | - Lillian Werner
- Department of Biostatistics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Justine Barletta
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Nuria Juanpere
- Department of Pathology, PSMAR-IMIM Research Institute, Barcelona, Spain.,Department of Health and Experimental Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Josep Lloreta
- Department of Pathology, PSMAR-IMIM Research Institute, Barcelona, Spain.,Department of Health and Experimental Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Juan Morote
- Department of Urology, Hospital Vall D'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Ines de Torres
- Department of Pathology, Hospital Vall D'Hebron, Barcelona, Spain
| | - Anna Orsola
- PSMAR-IMIM Research Institute, Barcelona, Spain
| | - Paloma Cejas
- Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA, USA
| | - Henry Long
- Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA, USA
| | - Joaquim Bellmunt
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, USA. .,PSMAR-IMIM Research Institute, Barcelona, Spain. .,Department of Medical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Av, Boston, 02215, USA.
| |
Collapse
|
8
|
de Castro GS, Correia-Lima J, Simoes E, Orsso CE, Xiao J, Gama LR, Gomes SP, Gonçalves DC, Costa RGF, Radloff K, Lenz U, Taranko AE, Bin FC, Formiga FB, de Godoy LGL, de Souza RP, Nucci LHA, Feitoza M, de Castro CC, Tokeshi F, Alcantara PSM, Otoch JP, Ramos AF, Laviano A, Coletti D, Mazurak VC, Prado CM, Seelaender M. Myokines in treatment-naïve patients with cancer-associated cachexia. Clin Nutr 2020; 40:2443-2455. [PMID: 33190987 DOI: 10.1016/j.clnu.2020.10.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/10/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
Cancer-associated cachexia is a complex metabolic syndrome characterized by weight loss and systemic inflammation. Muscle loss and fatty infiltration into muscle are associated with poor prognosis in cancer patients. Skeletal muscle secretes myokines, factors with autocrine, paracrine and/or endocrine action, which may be modified by or play a role in cachexia. This study examined myokine content in the plasma, skeletal muscle and tumor homogenates from treatment-naïve patients with gastric or colorectal stages I-IV cancer with cachexia (CC, N = 62), or not (weight stable cancer, WSC, N = 32). Myostatin, interleukin (IL) 15, follistatin-like protein 1 (FSTL-1), fatty acid binding protein 3 (FABP3), irisin and brain-derived neurotrophic factor (BDNF) protein content in samples was measured with Multiplex technology; body composition and muscle lipid infiltration were evaluated in computed tomography, and quantification of triacylglycerol (TAG) in the skeletal muscle. Cachectic patients presented lower muscle FSTL-1 expression (p = 0.047), higher FABP3 plasma content (p = 0.0301) and higher tumor tissue expression of FABP3 (p = 0.0182), IL-15 (p = 0.007) and irisin (p = 0.0110), compared to WSC. Neither muscle TAG content, nor muscle attenuation were different between weight stable and cachectic patients. Lumbar adipose tissue (AT) index, visceral AT index and subcutaneous AT index were lower in CC (p = 0.0149, p = 0.0455 and p = 0.0087, respectively), who also presented lower muscularity in the cohort (69.2% of patients; p = 0.0301), compared to WSC. The results indicate the myokine profile in skeletal muscle, plasma and tumor is impacted by cachexia. These findings show that myokines eventually affecting muscle wasting may not solely derive from the muscle itself (as the tumor also may contribute to the systemic scenario), and put forward new perspectives on cachexia treatment targeting myokines and associated receptors and pathways.
Collapse
Affiliation(s)
- Gabriela S de Castro
- Cancer Metabolism Research Group, Universidade de Sao Paulo Instituto de Ciencias Biomedicas, Departamento de Biologia Celular e do Desenvolvimento and Faculdade de Medicina da Universidade de Sao Paulo, Departamento de Cirurgia, LIM 26-HC, São Paulo, Brazil.
| | - Joanna Correia-Lima
- Cancer Metabolism Research Group, Universidade de Sao Paulo Instituto de Ciencias Biomedicas, Departamento de Biologia Celular e do Desenvolvimento and Faculdade de Medicina da Universidade de Sao Paulo, Departamento de Cirurgia, LIM 26-HC, São Paulo, Brazil
| | - Estefania Simoes
- Cancer Metabolism Research Group, Universidade de Sao Paulo Instituto de Ciencias Biomedicas, Departamento de Biologia Celular e do Desenvolvimento and Faculdade de Medicina da Universidade de Sao Paulo, Departamento de Cirurgia, LIM 26-HC, São Paulo, Brazil
| | - Camila E Orsso
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Canada
| | - Jingjie Xiao
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Canada; Covenant Health Palliative Institute, Edmonton, Alberta, Canada
| | - Leonardo R Gama
- Departamento de Radiologia e Oncologia & Instituto do Câncer do Estado de São Paulo, Universidade de Sao Paulo, São Paulo, Brazil
| | - Silvio P Gomes
- Cancer Metabolism Research Group, Universidade de Sao Paulo Instituto de Ciencias Biomedicas, Departamento de Biologia Celular e do Desenvolvimento and Faculdade de Medicina da Universidade de Sao Paulo, Departamento de Cirurgia, LIM 26-HC, São Paulo, Brazil; Universidade de Sao Paulo Faculdade de Medicina Veterinaria, Departamento de Cirurgia, Brazil
| | - Daniela Caetano Gonçalves
- Cancer Metabolism Research Group, Universidade de Sao Paulo Instituto de Ciencias Biomedicas, Departamento de Biologia Celular e do Desenvolvimento and Faculdade de Medicina da Universidade de Sao Paulo, Departamento de Cirurgia, LIM 26-HC, São Paulo, Brazil; Universidade Federal de Sao Paulo, Instituto de Biociencias, Santos, Brazil
| | - Raquel G F Costa
- Cancer Metabolism Research Group, Universidade de Sao Paulo Instituto de Ciencias Biomedicas, Departamento de Biologia Celular e do Desenvolvimento and Faculdade de Medicina da Universidade de Sao Paulo, Departamento de Cirurgia, LIM 26-HC, São Paulo, Brazil
| | - Katrin Radloff
- Cancer Metabolism Research Group, Universidade de Sao Paulo Instituto de Ciencias Biomedicas, Departamento de Biologia Celular e do Desenvolvimento and Faculdade de Medicina da Universidade de Sao Paulo, Departamento de Cirurgia, LIM 26-HC, São Paulo, Brazil
| | - Ulrike Lenz
- Cancer Metabolism Research Group, Universidade de Sao Paulo Instituto de Ciencias Biomedicas, Departamento de Biologia Celular e do Desenvolvimento and Faculdade de Medicina da Universidade de Sao Paulo, Departamento de Cirurgia, LIM 26-HC, São Paulo, Brazil
| | - Anna E Taranko
- Cancer Metabolism Research Group, Universidade de Sao Paulo Instituto de Ciencias Biomedicas, Departamento de Biologia Celular e do Desenvolvimento and Faculdade de Medicina da Universidade de Sao Paulo, Departamento de Cirurgia, LIM 26-HC, São Paulo, Brazil
| | - Fang Chia Bin
- Santa Casa de Misericoria de Sao Paulo, São Paulo, Brazil
| | | | | | | | - Luis H A Nucci
- Instituto do Cancer Arnaldo Vieira de Carvalho, São Paulo, Brazil
| | - Mario Feitoza
- Instituto do Cancer Arnaldo Vieira de Carvalho, São Paulo, Brazil
| | - Claudio C de Castro
- Universidade de Sao Paulo Faculdade de Medicina, Departamento de Radiologia, São Paulo, Brazil; Universidade de Sao Paulo Hospital Universitario, São Paulo, Brazil
| | - Flavio Tokeshi
- Universidade de Sao Paulo Hospital Universitario, São Paulo, Brazil
| | | | - Jose P Otoch
- Universidade de Sao Paulo Hospital Universitario, São Paulo, Brazil
| | - Alexandre F Ramos
- Departamento de Radiologia e Oncologia & Instituto do Câncer do Estado de São Paulo, Universidade de Sao Paulo, São Paulo, Brazil; Escola de Artes, Ciencias e Humanidades, Universidade de Sao Paulo, São Paulo, Brazil
| | - Alessandro Laviano
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Dario Coletti
- Sorbonne Université, Department of Biological Adaptation and Aging, B2A, Paris, France; Department of AHFMO - Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Vera C Mazurak
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Canada
| | - Carla M Prado
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Canada
| | - Marilia Seelaender
- Cancer Metabolism Research Group, Universidade de Sao Paulo Instituto de Ciencias Biomedicas, Departamento de Biologia Celular e do Desenvolvimento and Faculdade de Medicina da Universidade de Sao Paulo, Departamento de Cirurgia, LIM 26-HC, São Paulo, Brazil
| |
Collapse
|
9
|
D’Anneo A, Bavisotto CC, Gammazza AM, Paladino L, Carlisi D, Cappello F, de Macario EC, Macario AJL, Lauricella M. Lipid chaperones and associated diseases: a group of chaperonopathies defining a new nosological entity with implications for medical research and practice. Cell Stress Chaperones 2020; 25:805-820. [PMID: 32856199 PMCID: PMC7591661 DOI: 10.1007/s12192-020-01153-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/16/2020] [Accepted: 08/10/2020] [Indexed: 02/08/2023] Open
Abstract
Fatty acid-binding proteins (FABPs) are lipid chaperones assisting in the trafficking of long-chain fatty acids with functions in various cell compartments, including oxidation, signaling, gene-transcription regulation, and storage. The various known FABP isoforms display distinctive tissue distribution, but some are active in more than one tissue. Quantitative and/or qualitative changes of FABPs are associated with pathological conditions. Increased circulating levels of FABPs are biomarkers of disorders such as obesity, insulin resistance, cardiovascular disease, and cancer. Deregulated expression and malfunction of FABPs can result from genetic alterations or posttranslational modifications and can be pathogenic. We have assembled the disorders with abnormal FABPs as chaperonopathies in a distinct nosological entity. This entity is similar but separate from that encompassing the chaperonopathies pertaining to protein chaperones. In this review, we discuss the role of FABPs in the pathogenesis of metabolic syndrome, cancer, and neurological diseases. We highlight the opportunities for improving diagnosis and treatment that open by encompassing all these pathological conditions within of a coherent nosological group, focusing on abnormal lipid chaperones as biomarkers of disease and etiological-pathogenic factors.
Collapse
Affiliation(s)
- Antonella D’Anneo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Anatomy, University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Anatomy, University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Letizia Paladino
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Anatomy, University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Daniela Carlisi
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, 90127 Palermo, Italy
| | - Francesco Cappello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Anatomy, University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Everly Conway de Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202 USA
| | - Alberto J. L. Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202 USA
| | - Marianna Lauricella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
10
|
Zhang Y, Yuan Z, Shen R, Jiang Y, Xu W, Gu M, Gu X. Identification of biomarkers predicting the chemotherapeutic outcomes of capecitabine and oxaliplatin in patients with gastric cancer. Oncol Lett 2020; 20:290. [PMID: 33029206 PMCID: PMC7530885 DOI: 10.3892/ol.2020.12153] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/20/2020] [Indexed: 12/18/2022] Open
Abstract
The capecitabine and oxaliplatin (CapeOX) regimen is a commonly used adjuvant chemotherapeutic regimen for gastric cancer (GC). However, some patients exhibit a poor chemotherapy response due to genetic differences among individuals. Therefore, finding an effective sensitization strategy for CapeOX is important in the treatment of GC. The present study aimed to investigate the predictive biomarkers of the CapeOX chemotherapeutic outcomes for patients with GC. A total of 30 differentially expressed genes (DEGs) were identified using the gene expression profiles from The Cancer Genome Atlas capecitabine and oxaliplatin treatment GC cases and seven key DEGs [uroplakin-1b (UPK1B), fatty acid-binding protein, heart (FABP3), cystatin-M, caspase-5 (CASP5), corticosteroid 11-β-dehydrogenase isozyme 2, cytochrome P450 4X1 (CYP4X1) and epidermal growth factor receptor kinase substrate 8-like protein 3] were associated with survival. Gene validation was performed in clinical samples divided into recurrence and nonrecurrence groups. Patients with high or low expression of UPK1B, FABP3, CASP5 and CYP4X1 had markedly different overall survival rates. A model was established and the area under the curve of the receiver operating characteristic reached 0.875 (0.793–0.957), indicating that the model had good sensitivity and specificity.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Gusu, Suzhou, Jiangsu 215000, P.R. China
| | - Zhen Yuan
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Gusu, Suzhou, Jiangsu 215000, P.R. China
| | - Renbin Shen
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Gusu, Suzhou, Jiangsu 215000, P.R. China
| | - Yannan Jiang
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Gusu, Suzhou, Jiangsu 215000, P.R. China
| | - Wei Xu
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Gusu, Suzhou, Jiangsu 215000, P.R. China
| | - Menghui Gu
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Gusu, Suzhou, Jiangsu 215000, P.R. China
| | - Xinhua Gu
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Gusu, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
11
|
Hermanowicz JM, Kwiatkowska I, Pawlak D. Important players in carcinogenesis as potential targets in cancer therapy: an update. Oncotarget 2020; 11:3078-3101. [PMID: 32850012 PMCID: PMC7429179 DOI: 10.18632/oncotarget.27689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
The development of cancer is a problem that has accompanied mankind for years. The growing number of cases, emerging drug resistance, and the need to reduce the serious side effects of pharmacotherapy are forcing scientists to better understand the complex mechanisms responsible for the initiation, promotion, and progression of the disease. This paper discusses the modulation of the particular stages of carcinogenesis by selected physiological factors, including: acetylcholine (ACh), peroxisome proliferator-activated receptors (PPAR), fatty acid-binding proteins (FABPs), Bruton's tyrosine kinase (Btk), aquaporins (AQPs), insulin-like growth factor-2 (IGF-2), and exosomes. Understanding their role may contribute to the development of more effective and safer therapies based on new binding sites.
Collapse
Affiliation(s)
- Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza, Bialystok, Poland
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicza, Bialystok, Poland
| | - Iwona Kwiatkowska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza, Bialystok, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza, Bialystok, Poland
| |
Collapse
|
12
|
Liñares-Blanco J, Munteanu CR, Pazos A, Fernandez-Lozano C. Molecular docking and machine learning analysis of Abemaciclib in colon cancer. BMC Mol Cell Biol 2020; 21:52. [PMID: 32640984 PMCID: PMC7346626 DOI: 10.1186/s12860-020-00295-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The main challenge in cancer research is the identification of different omic variables that present a prognostic value and personalised diagnosis for each tumour. The fact that the diagnosis is personalised opens the doors to the design and discovery of new specific treatments for each patient. In this context, this work offers new ways to reuse existing databases and work to create added value in research. Three published signatures with significante prognostic value in Colon Adenocarcinoma (COAD) were indentified. These signatures were combined in a new meta-signature and validated with main Machine Learning (ML) and conventional statistical techniques. In addition, a drug repurposing experiment was carried out through Molecular Docking (MD) methodology in order to identify new potential treatments in COAD. RESULTS The prognostic potential of the signature was validated by means of ML algorithms and differential gene expression analysis. The results obtained supported the possibility that this meta-signature could harbor genes of interest for the prognosis and treatment of COAD. We studied drug repurposing following a molecular docking (MD) analysis, where the different protein data bank (PDB) structures of the genes of the meta-signature (in total 155) were confronted with 81 anti-cancer drugs approved by the FDA. We observed four interactions of interest: GLTP - Nilotinib, PTPRN - Venetoclax, VEGFA - Venetoclax and FABP6 - Abemaciclib. The FABP6 gene and its role within different metabolic pathways were studied in tumour and normal tissue and we observed the capability of the FABP6 gene to be a therapeutic target. Our in silico results showed a significant specificity of the union of the protein products of the FABP6 gene as well as the known action of Abemaciclib as an inhibitor of the CDK4/6 protein and therefore, of the cell cycle. CONCLUSIONS The results of our ML and differential expression experiments have first shown the FABP6 gene as a possible new cancer biomarker due to its specificity in colonic tumour tissue and no expression in healthy adjacent tissue. Next, the MD analysis showed that the drug Abemaciclib characteristic affinity for the different protein structures of the FABP6 gene. Therefore, in silico experiments have shown a new opportunity that should be validated experimentally, thus helping to reduce the cost and speed of drug screening. For these reasons, we propose the validation of the drug Abemaciclib for the treatment of colon cancer.
Collapse
Affiliation(s)
- Jose Liñares-Blanco
- Department of Computer Science and Information Technologies, Faculty of Computer Science, University of A Coruña, CITIC, Campus Elviña s/n, A Coruña, 15071, Spain
| | - Cristian R Munteanu
- Department of Computer Science and Information Technologies, Faculty of Computer Science, University of A Coruña, CITIC, Campus Elviña s/n, A Coruña, 15071, Spain.,Grupo de Redes de Neuronas Artificiales y Sistemas Adaptativos. Imagen Médica y Diagnóstico Radiológico (RNASA-IMEDIR). Instituto de Investigación Biomédica de A Coruña (INIBIC). Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas. Universidade da Coruña (UDC), Xubias de arriba, 84, A Coruña, 15006, Spain
| | - Alejandro Pazos
- Department of Computer Science and Information Technologies, Faculty of Computer Science, University of A Coruña, CITIC, Campus Elviña s/n, A Coruña, 15071, Spain.,Grupo de Redes de Neuronas Artificiales y Sistemas Adaptativos. Imagen Médica y Diagnóstico Radiológico (RNASA-IMEDIR). Instituto de Investigación Biomédica de A Coruña (INIBIC). Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas. Universidade da Coruña (UDC), Xubias de arriba, 84, A Coruña, 15006, Spain
| | - Carlos Fernandez-Lozano
- Department of Computer Science and Information Technologies, Faculty of Computer Science, University of A Coruña, CITIC, Campus Elviña s/n, A Coruña, 15071, Spain. .,Grupo de Redes de Neuronas Artificiales y Sistemas Adaptativos. Imagen Médica y Diagnóstico Radiológico (RNASA-IMEDIR). Instituto de Investigación Biomédica de A Coruña (INIBIC). Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas. Universidade da Coruña (UDC), Xubias de arriba, 84, A Coruña, 15006, Spain.
| |
Collapse
|
13
|
Le Joncour V, Filppu P, Hyvönen M, Holopainen M, Turunen SP, Sihto H, Burghardt I, Joensuu H, Tynninen O, Jääskeläinen J, Weller M, Lehti K, Käkelä R, Laakkonen P. Vulnerability of invasive glioblastoma cells to lysosomal membrane destabilization. EMBO Mol Med 2020; 11:emmm.201809034. [PMID: 31068339 PMCID: PMC6554674 DOI: 10.15252/emmm.201809034] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The current clinical care of glioblastomas leaves behind invasive, radio‐ and chemo‐resistant cells. We recently identified mammary‐derived growth inhibitor (MDGI/FABP3) as a biomarker for invasive gliomas. Here, we demonstrate a novel function for MDGI in the maintenance of lysosomal membrane integrity, thus rendering invasive glioma cells unexpectedly vulnerable to lysosomal membrane destabilization. MDGI silencing impaired trafficking of polyunsaturated fatty acids into cells resulting in significant alterations in the lipid composition of lysosomal membranes, and subsequent death of the patient‐derived glioma cells via lysosomal membrane permeabilization (LMP). In a preclinical model, treatment of glioma‐bearing mice with an antihistaminergic LMP‐inducing drug efficiently eradicated invasive glioma cells and secondary tumours within the brain. This unexpected fragility of the aggressive infiltrating cells to LMP provides new opportunities for clinical interventions, such as re‐positioning of an established antihistamine drug, to eradicate the inoperable, invasive, and chemo‐resistant glioma cells from sustaining disease progression and recurrence.
Collapse
Affiliation(s)
- Vadim Le Joncour
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pauliina Filppu
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Maija Hyvönen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Minna Holopainen
- Helsinki University Lipidomics Unit, Helsinki Institute of Life Science (HiLIFE) and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - S Pauliina Turunen
- Research Programs Unit, Genome-Scale Biology, University of Helsinki, Helsinki, Finland.,Department of Microbiology, Tumour and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Harri Sihto
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Isabel Burghardt
- Department of Neurology and Brain Tumour Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Heikki Joensuu
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Oncology, Helsinki University Hospital, Helsinki, Finland
| | - Olli Tynninen
- Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, Helsinki, Finland
| | | | - Michael Weller
- Department of Neurology and Brain Tumour Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Kaisa Lehti
- Research Programs Unit, Genome-Scale Biology, University of Helsinki, Helsinki, Finland.,Department of Microbiology, Tumour and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Reijo Käkelä
- Helsinki University Lipidomics Unit, Helsinki Institute of Life Science (HiLIFE) and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Pirjo Laakkonen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland .,Laboratory Animal Centre, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Zhang Y, Zhao X, Deng L, Li X, Wang G, Li Y, Chen M. High expression of FABP4 and FABP6 in patients with colorectal cancer. World J Surg Oncol 2019; 17:171. [PMID: 31651326 PMCID: PMC6814121 DOI: 10.1186/s12957-019-1714-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/24/2019] [Indexed: 12/26/2022] Open
Abstract
Objective To explore the relationship between FABP4 and FABP6 expression and the pathogenesis of colorectal cancer (CRC) and their potential as biomarkers in the diagnosis of CRC. Methods In total, 100 CRC patients and 100 controls were enrolled. The serum levels of FABP4 and FABP6 were detected by enzyme-linked immunosorbent assay (ELISA) before and 2 weeks after radical resection of CRC. The protein expressions of FABP4 and FABP6 were observed in colorectal tumor tissues and adjacent tissues by immunohistochemistry and western blot, respectively. The diagnostic performance of FABP4 and FABP6 in patients with CRC was evaluated by receiver operating characteristic (ROC) curve analysis. Results The serum levels of FABP4 and FABP6 in patients with CRC were higher than the levels in the controls before surgery (P < 0.001), and significantly decreased at 2 weeks after operation (P < 0.001). Immunohistochemistry showed that FABP4 and FABP6 were mainly distributed in the cytoplasm of human colorectal tumor tissues, and only a small amount distributed in adjacent tissues. Western blot revealed that the protein expressions of FABP4 and FABP6 were significantly higher in tumor tissues than in adjacent tissues (P < 0.001, P = 0.002, respectively). Tumors with high and low FABP4 and FABP6 expression have no significant correlation in tumor size, tumor site, distant organ and lymph node metastasis, histologic grade, lymphatic permeation, neurological invasion, vascular invasion, and Duke’s and TNM classification. Multivariate logistic regression analysis showed that FABP4 and FABP6 were independent risk factors for CRC (adjusted odds ratio 1.916; 95%CI 1.340–2.492; P < 0.001; adjusted odds ratio 2.162; 95%CI 1.046, 1.078); P < 0.001, respectively). In discriminating CRC from the normal control, the optimal sensitivity of FABP4 and FABP6 were 93.20% (95%CI 87.8–96.7) and 83.70% (95%CI 76.7–89.3), respectively, while the optimal specificity of FABP4 and FABP6 were 48.8% (95%CI 39.8–57.9) and 58.4% (95%CI 49.2–67.1), respectively. When combined detection of serum carcinoembryonic (CEA) and FABP4 and FABP6, the optimal sensitivity and specificity were 61.33% (95%CI 53.0–69.2) and 79.82% (95%CI 71.3–86.8), respectively. Conclusion Increased expression of FABP4 and FABP6 not only were strong risk factors for the development of CRC but could also represent a potential biomarker for CRC diagnosis in Chinese patients. Combined detection of CEA with FABP4 and FABP6 could improve the diagnostic efficacy of CRC.
Collapse
Affiliation(s)
- Yaqin Zhang
- Department of Endocrinology, the First Affiliated Hospital of Anhui Medical University, 210 JiXi Road, Hefei, 230032, People's Republic of China
| | - Xiaotong Zhao
- Department of Endocrinology, the First Affiliated Hospital of Anhui Medical University, 210 JiXi Road, Hefei, 230032, People's Republic of China
| | - Lili Deng
- Department of Endocrinology, the First Affiliated Hospital of Anhui Medical University, 210 JiXi Road, Hefei, 230032, People's Republic of China
| | - Xueting Li
- Department of Endocrinology, the First Affiliated Hospital of Anhui Medical University, 210 JiXi Road, Hefei, 230032, People's Republic of China
| | - Ganbiao Wang
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Yongxing Li
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Mingwei Chen
- Department of Endocrinology, the First Affiliated Hospital of Anhui Medical University, 210 JiXi Road, Hefei, 230032, People's Republic of China. .,Institute of Diabetes Prevention and Control, Academy of Traditional Chinese Medicine, Hefei, 230032, People's Republic of China.
| |
Collapse
|
15
|
Wu G, Zhang Z, Tang Q, Liu L, Liu W, Li Q, Wang Q. Study of FABP's interactome and detecting new molecular targets in clear cell renal cell carcinoma. J Cell Physiol 2019; 235:3776-3789. [PMID: 31602654 DOI: 10.1002/jcp.29272] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/27/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Guangzhen Wu
- Department of Urology The First Affiliated Hospital of Dalian Medical University Dalian China
| | - Zhiwei Zhang
- Department of Urology The First Affiliated Hospital of Dalian Medical University Dalian China
| | - Qizhen Tang
- Department of Urology The First Affiliated Hospital of Dalian Medical University Dalian China
| | - Lei Liu
- Department of Urology The First Affiliated Hospital of Dalian Medical University Dalian China
| | - Wei Liu
- Department of Nursing The First Affiliated Hospital of Dalian Medical University Dalian China
| | - Quanlin Li
- Department of Urology The First Affiliated Hospital of Dalian Medical University Dalian China
| | - Qifei Wang
- Department of Urology The First Affiliated Hospital of Dalian Medical University Dalian China
| |
Collapse
|
16
|
Wang K, Yu XH, Tang YJ, Tang YL, Liang XH. Obesity: An emerging driver of head and neck cancer. Life Sci 2019; 233:116687. [PMID: 31348948 DOI: 10.1016/j.lfs.2019.116687] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 02/05/2023]
Abstract
Obesity has become pandemic and emerged as one of the most critical global health care problems worldwide since last century. Recent studies have demonstrated that there may be a causal link between obesity and higher risks and mortality of cancers, including prostate, breast, colon, and thyroid cancers, head and neck cancer (HNC). This review focuses on the relationship between obesity and HNC, and the molecular mechanism of abnormal lipid metabolism in HNC. Elucidating the mechanism may open up new possibilities for strategies to reduce risk and mortality of HNC in an increasingly obese population.
Collapse
Affiliation(s)
- Ke Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral And Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiang-Hua Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral And Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China.
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral And Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
17
|
McKillop IH, Girardi CA, Thompson KJ. Role of fatty acid binding proteins (FABPs) in cancer development and progression. Cell Signal 2019; 62:109336. [PMID: 31170472 DOI: 10.1016/j.cellsig.2019.06.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/31/2019] [Accepted: 06/01/2019] [Indexed: 01/06/2023]
Abstract
Fatty acid binding proteins (FABPs) are small, water soluble proteins that bind long chain fatty acids and other biologically active ligands to facilitate intracellular localization. Twelve FABP family members have been identified to date, with 10 isoforms expressed in humans. Functionally, FABPs are important in fatty acid metabolism and transport, with distinct family members having the capacity to influence gene transcription. Expression of FABPs is usually cell/tissue specific to one predominant FABP family member. Dysregulation of FABP expression can occur through genetic mutation and/or environmental-lifestyle influences. In addition to intracellular function, exogenous, circulating FABP expression can occur and is associated with specific disease states such as insulin resistance. A role for FABPs is increasingly being reported in tumor biology with elevated exogenous FABP expression being associated with tumor progression and invasiveness. However, a less clear role has been appreciated for dysregulated FABP expression during cell transformation and early expansion.
Collapse
Affiliation(s)
- Iain H McKillop
- Department of Surgery, Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA
| | - Cara A Girardi
- Department of Surgery, Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA
| | - Kyle J Thompson
- Department of Surgery, Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA.
| |
Collapse
|
18
|
Tang Z, Shen Q, Xie H, Zhou X, Li J, Feng J, Liu H, Wang W, Zhang S, Ni S. Elevated expression of FABP3 and FABP4 cooperatively correlates with poor prognosis in non-small cell lung cancer (NSCLC). Oncotarget 2018; 7:46253-46262. [PMID: 27323829 PMCID: PMC5216795 DOI: 10.18632/oncotarget.10086] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 05/29/2016] [Indexed: 12/20/2022] Open
Abstract
Fatty acid binding proteins (FABPs) are intracellular lipid-binding proteins that are involved in a variety of biological cellular processes, including tumorigenesis. In this study, we explored the expression pattern of FABP3 and FABP4 in non-small cell lung cancer (NSCLC) as well as their roles in prognosis. We determined mRNA expression of FABP3 and FABP4 in matched pairs of cancerous and non-cancerous fresh frozen tissues from 30 NSCLC patients. Tissue microarray immunohistochemical analysis (TMA-IHC) was applied to determine the protein expression of FABP3 and FABP4 in 281 cancerous and 121 matched adjacent non-cancerous tissue samples. Our results showed that both mRNA and protein expression of FABP3 and FABP4 were significantly higher in cancerous tissues when compared to non-cancerous tissues. Furthermore, high expression of FABP3 or FABP4 in NSCLC was significantly associated with advanced tumor node metastasis (TNM) stage and had a negative impact on the overall survival of NSCLC patients. Concurrent high expression of FABP3 and FABP4 was significantly related to TNM stage. In conclusion, our research demonstrated that high FABP3 or FABP4 expression had strong prognostic value for overall survival in NSCLC. Detection of FABP3 and FABP4 cooperatively was helpful to predict the prognosis of NSCLC.
Collapse
Affiliation(s)
- Zhiyuan Tang
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Qin Shen
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Hao Xie
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Xiaoyu Zhou
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Jun Li
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Jian Feng
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Hua Liu
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Wei Wang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Shu Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Songshi Ni
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| |
Collapse
|
19
|
Hirani A, Grover A, Lee YW, Pathak Y, Sutariya V. Nanotechnology for Omics-Based Ocular Drug Delivery. Ophthalmology 2018. [DOI: 10.4018/978-1-5225-5195-9.ch017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Millions of people suffer from ocular diseases that impair vision and can lead to blindness. Advances in genomics and proteomics have revealed a number of different molecular markers specific for different ocular diseases, thereby optimizing the processes of drug development and discovery. Nanotechnology can increase the throughput of data obtained in omics-based studies and allows for more sensitive diagnostic techniques as more efficient drug delivery systems. Biocompatible and biodegradable nanomaterials developed through omics-based research are able to target reported molecular markers for different ocular diseases and offer novel alternatives to conventional drug therapy. In this chapter, the authors review the pathophysiology, current genomic and proteomic information, and current nanomaterial-based therapies of four ocular diseases: glaucoma, uveal melanoma, age-related macular degeneration, and diabetic retinopathy. Omics-based research can be used to elucidate specific genes and proteins and develop novel nanomedicine formulations to prevent, halt, or cure ocular diseases at the transcriptional or translational level.
Collapse
Affiliation(s)
- Anjali Hirani
- University of South Florida, USA & Virginia Tech-Wake Forest University, USA
| | | | | | | | | |
Collapse
|
20
|
Ludovini V, Bianconi F, Siggillino A, Piobbico D, Vannucci J, Metro G, Chiari R, Bellezza G, Puma F, Della Fazia MA, Servillo G, Crinò L. Gene identification for risk of relapse in stage I lung adenocarcinoma patients: a combined methodology of gene expression profiling and computational gene network analysis. Oncotarget 2017; 7:30561-74. [PMID: 27081700 PMCID: PMC5058701 DOI: 10.18632/oncotarget.8723] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/28/2016] [Indexed: 12/30/2022] Open
Abstract
Risk assessment and treatment choice remains a challenge in early non-small-cell lung cancer (NSCLC). The aim of this study was to identify novel genes involved in the risk of early relapse (ER) compared to no relapse (NR) in resected lung adenocarcinoma (AD) patients using a combination of high throughput technology and computational analysis. We identified 18 patients (n.13 NR and n.5 ER) with stage I AD. Frozen samples of patients in ER, NR and corresponding normal lung (NL) were subjected to Microarray technology and quantitative-PCR (Q-PCR). A gene network computational analysis was performed to select predictive genes. An independent set of 79 ADs stage I samples was used to validate selected genes by Q-PCR.From microarray analysis we selected 50 genes, using the fold change ratio of ER versus NR. They were validated both in pool and individually in patient samples (ER and NR) by Q-PCR. Fourteen increased and 25 decreased genes showed a concordance between two methods. They were used to perform a computational gene network analysis that identified 4 increased (HOXA10, CLCA2, AKR1B10, FABP3) and 6 decreased (SCGB1A1, PGC, TFF1, PSCA, SPRR1B and PRSS1) genes. Moreover, in an independent dataset of ADs samples, we showed that both high FABP3 expression and low SCGB1A1 expression was associated with a worse disease-free survival (DFS).Our results indicate that it is possible to define, through gene expression and computational analysis, a characteristic gene profiling of patients with an increased risk of relapse that may become a tool for patient selection for adjuvant therapy.
Collapse
Affiliation(s)
- Vienna Ludovini
- Medical Oncology, S. Maria Della Misericordia Hospital, Perugia, Italy
| | - Fortunato Bianconi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Danilo Piobbico
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Jacopo Vannucci
- Department of Surgical and Biomedical Science, University of Perugia, Perugia, Italy
| | - Giulio Metro
- Medical Oncology, S. Maria Della Misericordia Hospital, Perugia, Italy
| | - Rita Chiari
- Medical Oncology, S. Maria Della Misericordia Hospital, Perugia, Italy
| | - Guido Bellezza
- Department of Experimental Medicine, Section of Anatomic Pathology and Histology, Perugia, Italy
| | - Francesco Puma
- Department of Surgical and Biomedical Science, University of Perugia, Perugia, Italy
| | | | - Giuseppe Servillo
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Lucio Crinò
- Medical Oncology, S. Maria Della Misericordia Hospital, Perugia, Italy
| |
Collapse
|
21
|
Duan J, Chen L, Zhou M, Zhang J, Sun L, Huang N, Bin J, Liao Y, Liao W. MACC1 decreases the chemosensitivity of gastric cancer cells to oxaliplatin by regulating FASN expression. Oncol Rep 2017; 37:2583-2592. [PMID: 28339092 PMCID: PMC5428767 DOI: 10.3892/or.2017.5519] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/24/2016] [Indexed: 12/13/2022] Open
Abstract
The effect of chemotherapeutic agents is limited as a result of drug resistance, which demands prompt solutions provided by clinical studies. To date, the underlying mechanisms of chemotherapy resistance are relatively unknown. Metastasis-associated in colon cancer 1 (MACC1) is an oncogene associated with the progression and prognosis of gastric cancer (GC). Bioinformatic analysis revealed that MACC1 is positively associated with fatty acid synthase (FASN), a major enzyme of lipogenesis, and drives chemoresistance to oxaliplatin in GC. Similar findings were demonstrated in two GC cell lines (BGC-823 and MKN-28) with MACC1 ectopic expression. We next employed FASN inhibitor C75 or siFASN (small interfering RNA targeted to FASN) to block endogenous fatty acid metabolism and it was revealed that cell proliferation and chemoresistance to oxaliplatin induced by MACC1 upregulation were attenuated by FASN blockade to various extents. Conclusively, these outcomes highlight a novel role of MACC1 in GC cell lipogenesis, and suggest that MACC1 may be an attractive target to decrease oxaliplatin resistance in GC.
Collapse
Affiliation(s)
- Jiangman Duan
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P.R. China
| | - Lishan Chen
- Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P.R. China
| | - Minyu Zhou
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P.R. China
| | - Jingwen Zhang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P.R. China
| | - Li Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P.R. China
| | - Na Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P.R. China
| | - Jianping Bin
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P.R. China
| | - Yulin Liao
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P.R. China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P.R. China
| |
Collapse
|
22
|
Hirani A, Grover A, Lee YW, Pathak Y, Sutariya V. Nanotechnology for Omics-Based Ocular Drug Delivery. Oncology 2017. [DOI: 10.4018/978-1-5225-0549-5.ch013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Millions of people suffer from ocular diseases that impair vision and can lead to blindness. Advances in genomics and proteomics have revealed a number of different molecular markers specific for different ocular diseases, thereby optimizing the processes of drug development and discovery. Nanotechnology can increase the throughput of data obtained in omics-based studies and allows for more sensitive diagnostic techniques as more efficient drug delivery systems. Biocompatible and biodegradable nanomaterials developed through omics-based research are able to target reported molecular markers for different ocular diseases and offer novel alternatives to conventional drug therapy. In this chapter, the authors review the pathophysiology, current genomic and proteomic information, and current nanomaterial-based therapies of four ocular diseases: glaucoma, uveal melanoma, age-related macular degeneration, and diabetic retinopathy. Omics-based research can be used to elucidate specific genes and proteins and develop novel nanomedicine formulations to prevent, halt, or cure ocular diseases at the transcriptional or translational level.
Collapse
Affiliation(s)
- Anjali Hirani
- University of South Florida, USA & Virginia Tech-Wake Forest University, USA
| | | | | | | | | |
Collapse
|
23
|
Nagano K, Imai S, Zhao X, Yamashita T, Yoshioka Y, Abe Y, Mukai Y, Kamada H, Nakagawa S, Tsutsumi Y, Tsunoda SI. Identification and evaluation of metastasis-related proteins, oxysterol binding protein-like 5 and calumenin, in lung tumors. Int J Oncol 2015; 47:195-203. [PMID: 25963840 DOI: 10.3892/ijo.2015.3000] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/18/2015] [Indexed: 12/12/2022] Open
Abstract
Metastasis is an important prognosis factor in lung cancer, therefore, it is imperative to identify target molecules and elucidate molecular mechanism of metastasis for developing new therapeutics and diagnosis methods. We searched for metastasis-related proteins by utilizing a novel antibody proteome technology developed in our laboratory that facilitated efficient screening of useful target proteins. Two-dimensional differential in-gel electrophoresis (2D-DIGE) analysis identified sixteen proteins, which were highly expressed in metastatic lung cancer cells, as protein candidates. Monoclonal single-chain variable fragments (scFvs) binding to candidates were isolated from a scFv-displaying phage library by affinity selection. Tissue microarray analysis of scFvs binding to candidates revealed that oxysterol binding protein-like 5 (OSBPL5) and calumenin (CALU) were expressed at a significantly higher levels in the lung tissues of metastasis-positive cases than that in the metastasis-negative cases (OSBPL5; p=0.0156, CALU; p=0.0055). Furthermore, 80% of OSBPL5 and CALU double-positive cases were positive for lymph node metastasis. Consistent with these observations, overexpression of OSBPL5 and CALU promoted invasiveness of lung cancer cells. Conversely, knockdown of these proteins using respective siRNAs reversed the invasiveness of the lung cancer cells. Moreover, these proteins were expressed in lung tumor tissues, but not in normal lung tissues. In conclusion, OSBPL5 and CALU are related to metastatic potential of lung cancer cells, and they could be useful targets for cancer diagnosis and also for development of drugs against metastasis.
Collapse
Affiliation(s)
- Kazuya Nagano
- Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, Ibaraki, Osaka 567-0085, Japan
| | - Sunao Imai
- Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, Ibaraki, Osaka 567-0085, Japan
| | - Xiluli Zhao
- Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, Ibaraki, Osaka 567-0085, Japan
| | - Takuya Yamashita
- Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, Ibaraki, Osaka 567-0085, Japan
| | - Yasuo Yoshioka
- Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, Ibaraki, Osaka 567-0085, Japan
| | - Yasuhiro Abe
- Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, Ibaraki, Osaka 567-0085, Japan
| | - Yohei Mukai
- Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, Ibaraki, Osaka 567-0085, Japan
| | - Haruhiko Kamada
- Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, Ibaraki, Osaka 567-0085, Japan
| | - Shinsaku Nakagawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasuo Tsutsumi
- Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, Ibaraki, Osaka 567-0085, Japan
| | - Shin-Ichi Tsunoda
- Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
24
|
Greisenegger S, Segal HC, Burgess AI, Poole DL, Mehta Z, Rothwell PM. Biomarkers and mortality after transient ischemic attack and minor ischemic stroke: population-based study. Stroke 2015; 46:659-66. [PMID: 25649803 DOI: 10.1161/strokeaha.114.007624] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND PURPOSE Premature death after transient ischemic attack or stroke is more often because of heart disease or cancer than stroke. Previous studies found blood biomarkers not usefully predictive of nonfatal stroke but possibly of all-cause death. This association might be explained by potentially treatable occult cardiac disease or cancer. We therefore aimed to validate the association of a panel of biomarkers with all-cause death, particularly cardiac death and cancer death, despite the absence of associations with risk of nonfatal vascular events. METHODS Fifteen biomarkers were measured in 929 consecutive patients in a population-based study (Oxford Vascular Study), recruited from 2002 and followed up to 2013. Associations were determined by Cox regression. Model discrimination was assessed by c-statistic and the integrated discrimination improvement. RESULTS During 5560 patient-years of follow-up, none of the biomarkers predicted risk of nonfatal vascular events. However, soluble tumor necrosis factor α receptor-1, von Willebrand factor, heart-type fatty-acid-binding protein, and N-terminal pro-B-type natriuretic peptide were independently predictive of all-cause death (n=361; adjusted hazard ratio per SD, 95% confidence interval: heart-type fatty-acid-binding protein: 1.31, 1.12-1.56, P=0.002; N-terminal pro-B-type natriuretic peptide: 1.34, 1.11-1.62, P=0.002; soluble tumor necrosis factor α receptor-1: 1.45, 1.26-1.66, P=0.02; von Willebrand factor: 1.19, 1.04-1.36, P=0.01). The independent contribution of the four biomarkers taken together added prognostic information and improved model discrimination (integrated discrimination improvement=0.028, P=0.0001). N-terminal pro-B-type natriuretic peptide was most predictive of vascular death (adjusted hazard ratio=1.80, 95% confidence interval, 1.34-2.41, P<0.0001), whereas heart-type fatty-acid-binding protein predicted cancer deaths (1.64, 1.26-2.12, P=0.0002). Associations were strongest in patients without known prior cardiac disease or cancer. CONCLUSIONS Several biomarkers predicted death of any cause after transient ischemic attack and minor stroke. N-terminal pro-B-type natriuretic peptide and heart-type fatty-acid-binding protein might improve patient selection for additional screening for occult cardiac disease or cancer, respectively. However, our results require validation in future studies.
Collapse
Affiliation(s)
- Stefan Greisenegger
- From the Stroke Prevention Research Unit, Nuffield Department of Clinical Neuroscience, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom (S.G., H.C.S., A.I.B., D.L.P., Z.M., P.M.R.); and Department of Neurology, Medical University of Vienna, Vienna, Austria (S.G.)
| | - Helen C Segal
- From the Stroke Prevention Research Unit, Nuffield Department of Clinical Neuroscience, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom (S.G., H.C.S., A.I.B., D.L.P., Z.M., P.M.R.); and Department of Neurology, Medical University of Vienna, Vienna, Austria (S.G.)
| | - Annette I Burgess
- From the Stroke Prevention Research Unit, Nuffield Department of Clinical Neuroscience, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom (S.G., H.C.S., A.I.B., D.L.P., Z.M., P.M.R.); and Department of Neurology, Medical University of Vienna, Vienna, Austria (S.G.)
| | - Debbie L Poole
- From the Stroke Prevention Research Unit, Nuffield Department of Clinical Neuroscience, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom (S.G., H.C.S., A.I.B., D.L.P., Z.M., P.M.R.); and Department of Neurology, Medical University of Vienna, Vienna, Austria (S.G.)
| | - Ziyah Mehta
- From the Stroke Prevention Research Unit, Nuffield Department of Clinical Neuroscience, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom (S.G., H.C.S., A.I.B., D.L.P., Z.M., P.M.R.); and Department of Neurology, Medical University of Vienna, Vienna, Austria (S.G.)
| | - Peter M Rothwell
- From the Stroke Prevention Research Unit, Nuffield Department of Clinical Neuroscience, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom (S.G., H.C.S., A.I.B., D.L.P., Z.M., P.M.R.); and Department of Neurology, Medical University of Vienna, Vienna, Austria (S.G.).
| |
Collapse
|
25
|
Hyvönen M, Enbäck J, Huhtala T, Lammi J, Sihto H, Weisell J, Joensuu H, Rosenthal-Aizman K, El-Andaloussi S, Langel U, Närvänen A, Bergers G, Laakkonen P. Novel target for peptide-based imaging and treatment of brain tumors. Mol Cancer Ther 2014; 13:996-1007. [PMID: 24493698 PMCID: PMC4007056 DOI: 10.1158/1535-7163.mct-13-0684] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Malignant gliomas are associated with high mortality due to infiltrative growth, recurrence, and malignant progression. Even with the most efficient therapy combinations, median survival of the glioblastoma multiforme (grade 4) patients is less than 15 months. Therefore, new treatment approaches are urgently needed. We describe here identification of a novel homing peptide that recognizes tumor vessels and invasive tumor satellites in glioblastomas. We demonstrate successful brain tumor imaging using radiolabeled peptide in whole-body SPECT/CT imaging. Peptide-targeted delivery of chemotherapeutics prolonged the lifespan of mice bearing invasive brain tumors and significantly reduced the number of tumor satellites compared with the free drug. Moreover, we identified mammary-derived growth inhibitor (MDGI/H-FABP/FABP3) as the interacting partner for our peptide on brain tumor tissue. MDGI was expressed in human brain tumor specimens in a grade-dependent manner and its expression positively correlated with the histologic grade of the tumor, suggesting MDGI as a novel marker for malignant gliomas.
Collapse
Affiliation(s)
- Maija Hyvönen
- Research Programs Unit, Translational Cancer Biology and Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Finland
| | - Juulia Enbäck
- Research Programs Unit, Translational Cancer Biology and Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Finland
| | - Tuulia Huhtala
- A.I. Virtanen Institute for Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Johanna Lammi
- Research Programs Unit, Translational Cancer Biology and Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Finland
| | - Harri Sihto
- Laboratory of Molecular Oncology, Biomedicum Helsinki, University of Helsinki, Finland
| | - Janne Weisell
- A.I. Virtanen Institute for Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Heikki Joensuu
- Laboratory of Molecular Oncology, Biomedicum Helsinki, University of Helsinki, Finland
- Department of Oncology, Helsinki University Central Hospital, Finland
| | | | | | - Ulo Langel
- Department of Neurochemistry, Stockholm University, Sweden
| | - Ale Närvänen
- A.I. Virtanen Institute for Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | | | - Pirjo Laakkonen
- Research Programs Unit, Translational Cancer Biology and Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Finland
- K. Albin Johansson Senior Cancer Researcher, Foundation for the Finnish Cancer Institute
| |
Collapse
|
26
|
Kang JU. Chromosome 8q as the most frequent target for amplification in early gastric carcinoma. Oncol Lett 2014; 7:1139-1143. [PMID: 24944681 PMCID: PMC3961457 DOI: 10.3892/ol.2014.1849] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 01/15/2014] [Indexed: 12/12/2022] Open
Abstract
Early gastric carcinoma (GC) is considered to be a curable cancer, as it progresses to the advanced stage following varying durations. Understanding the early stage of GC may provide an insight into its pathogenesis and contribute to reducing the mortality rate of this disease. To investigate the genomic aberrations associated with 22 cases of early GC, high-density microarray comparative genomic hybridization was performed in the present study. The most notable finding was copy number gains (log2 ratio >0.25) on the long arm of chromosome 8, which occurred in 77.3% (17/22) of GC cases, and the delineated minimal common region was 8q22.1-q24.3. More specifically, two amplified (log2 ratio >1) loci in the 8q22.1-q24.3 region were detected in 18.2% (4/22) of GC cases. The first loci covered a region of 102.4–107.9 kb, mapping on 8q22.3-q23.1, and comprised the transcription factor CP2-like 3 gene. The second loci, spanning 128.7–145.7 kb on 8q24.21-q24.3, comprised the representative oncogene of myelocytomatosis. Furthermore, the following possible target genes that were not previously considered to play a pathogenic role in GC were identified: Plasmacytoma variant translocation 1, cysteine/histidine rich 1, kinesin family member C2, forkhead box H1, protein phosphatase 1 regulatory subunit 16A, glutamic-pyruvate transaminase, LOC113655 and RecQ protein-like 4. In the present study, previous findings showing that 8q mutations accumulate early during the multistage pathogenesis of GC were confirmed and expanded upon. The confirmation of previously reported 8q gains and the identification of novel target genes at 8q22.1-q24.3 amplified chromosomal sites should aid in improving our understanding of the molecular mechanisms underlying the tumorigenesis of early GC.
Collapse
Affiliation(s)
- Ji Un Kang
- Department of Biomedical Laboratory Science, Korea Nazarene University, Cheonan 330-718, Republic of Korea
| |
Collapse
|
27
|
Ohyama Y, Kawamoto Y, Chiba T, Kikuchi K, Sakashita H, Imai K. Differential expression of fatty acid-binding proteins and pathological implications in the progression of tongue carcinoma. Mol Clin Oncol 2013; 2:19-25. [PMID: 24649302 DOI: 10.3892/mco.2013.198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/12/2013] [Indexed: 12/16/2022] Open
Abstract
Tongue carcinomas are common malignancies of the oral cavity. Understanding the molecular mechanisms behind the disease progression is a prerequisite for improving patient prognosis. Fatty acid-binding proteins (FABPs) are cytoplasmic lipid chaperones that affect cellular organization and energy production. Although their aberrant expression is involved in carcinoma progression, its role in the pathology of tongue carcinomas remains unclear. In the present study, the immunohistochemical expression of FABP4 and FABP5 in tongue carcinomas (n=58) and its involvement in the clinicopathological parameters were examined. Normal tongue epithelial cells expressed FABP5, an epidermal-type FABP, but not FABP4, an adipocyte-type FABP. The cytoplasmic staining of FABP5 was increased in carcinomas with advanced T-stage (P<0.05) and clinical stage (P<0.05). Ectopic expression of FABP4 was detected in almost all carcinomas, although its role in disease progression remains undetermined. Upregulation of FABP5 in the wounded skin of genetically normal mice indicated that microenvironmental tissue factors induce FABP5 expression. The results of the present study demonstrated the aberrant expression of FABP4 and FABP5 in tongue carcinomas and suggested the involvement of FABP5 in disease progression.
Collapse
Affiliation(s)
- Yoshito Ohyama
- Division of Oral and Maxillofacial Surgery 2, Department of Diagnostic and Therapeutic Science, School of Dentistry, Meikai University, Sakado, Saitama 3500283
| | - Yukihiro Kawamoto
- Division of Oral and Maxillofacial Surgery 2, Department of Diagnostic and Therapeutic Science, School of Dentistry, Meikai University, Sakado, Saitama 3500283
| | - Tadashige Chiba
- Department of Biochemistry, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo 1028159
| | - Kentaro Kikuchi
- Division of Pathology, Department of Diagnostic and Therapeutic Science, School of Dentistry, Meikai University, Sakado, Saitama 3500283, Japan
| | - Hideaki Sakashita
- Division of Oral and Maxillofacial Surgery 2, Department of Diagnostic and Therapeutic Science, School of Dentistry, Meikai University, Sakado, Saitama 3500283
| | - Kazushi Imai
- Department of Biochemistry, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo 1028159
| |
Collapse
|
28
|
Ramasamy P, Murphy CC, Clynes M, Horgan N, Moriarty P, Tiernan D, Beatty S, Kennedy S, Meleady P. Proteomics in uveal melanoma. Exp Eye Res 2013; 118:1-12. [PMID: 24056206 DOI: 10.1016/j.exer.2013.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 09/06/2013] [Accepted: 09/10/2013] [Indexed: 12/20/2022]
Abstract
Uveal melanoma is the most common primary intraocular malignancy in adults, with an incidence of 5-7 per million per year. It is associated with the development of metastasis in about 50% of cases, and 40% of patients with uveal melanoma die of metastatic disease despite successful treatment of the primary tumour. The survival rates at 5, 10 and 15 years are 65%, 50% and 45% respectively. Unlike progress made in many other areas of cancer, uveal melanoma is still poorly understood and survival rates have remained similar over the past 25 years. Recently, advances made in molecular genetics have improved our understanding of this disease and stratification of patients into low risk and high risk for developing metastasis. However, only a limited number of studies have been performed using proteomic methods. This review will give an overview of various proteomic technologies currently employed in life sciences research, and discuss proteomic studies of uveal melanoma.
Collapse
Affiliation(s)
- Pathma Ramasamy
- Royal College of Surgeons Ireland, Stephen's Green, Dublin 2, Ireland; National Institute for Cellular Biotechnology, Dublin City University, Collins Avenue, Glasnevin, Dublin 9, Ireland.
| | - Conor C Murphy
- Royal College of Surgeons Ireland, Stephen's Green, Dublin 2, Ireland; Royal Victoria Eye and Ear Hospital, Adelaide Road, Dublin 2, Ireland.
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Collins Avenue, Glasnevin, Dublin 9, Ireland.
| | - Noel Horgan
- Royal Victoria Eye and Ear Hospital, Adelaide Road, Dublin 2, Ireland.
| | - Paul Moriarty
- Royal Victoria Eye and Ear Hospital, Adelaide Road, Dublin 2, Ireland.
| | - Damien Tiernan
- Royal Victoria Eye and Ear Hospital, Adelaide Road, Dublin 2, Ireland.
| | - Stephen Beatty
- Macular Pigment Research Group, Waterford Institute of Technology, Waterford, Ireland.
| | - Susan Kennedy
- Royal Victoria Eye and Ear Hospital, Adelaide Road, Dublin 2, Ireland.
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Collins Avenue, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
29
|
Kinnari PJ, Hyvönen MLK, Mäkilä EM, Kaasalainen MH, Rivinoja A, Salonen JJ, Hirvonen JT, Laakkonen PM, Santos HA. Tumour homing peptide-functionalized porous silicon nanovectors for cancer therapy. Biomaterials 2013; 34:9134-41. [PMID: 24008034 DOI: 10.1016/j.biomaterials.2013.08.034] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 08/10/2013] [Indexed: 01/01/2023]
Abstract
Tumour targeting nanoparticles (NPs) have demonstrated great potential for enhancing anticancer drug delivery to tumour sites and for reducing the side effects of chemotherapy. However, many nanoparticulate delivery systems still lack efficient tumour accumulation. In this work, we present a porous silicon (PSi) nanovector functionalized with a tumour-homing peptide, which targets the mammary-derived growth inhibitor (MDGI) expressing cancer cells both in vitro and in vivo, thereby enhancing the accumulation of the NPs in the tumours. We demonstrated that the tumour homing peptide (herein designated as CooP) functionalized thermally hydrocarbonized PSi (THCPSi) NPs homed specifically to the subcutaneous MDGI-expressing xenograft tumours. The THCPSi-CooP NPs were stable in human plasma and their uptake by MDGI-expressing cancer cells measured by confocal microscopy and flow cytometry was significantly increased compared to the non-functionalized THCPSi NPs. After intravenous injections into nude mice bearing MDGI-expressing tumours, effective targeting was detected and THCPSi-CooP NPs showed ~9-fold higher accumulation in the tumour site compared to the control THCPSi NPs. Accumulation of both NPs in the vital organs was negligible.
Collapse
Affiliation(s)
- Päivi J Kinnari
- Division of Pharmaceutical Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hou W, Fei M, Qin X, Zhu X, Greshock J, Liu P, Zhou Y, Wang H, Ye BC, Qin CY. High overexpression of fatty acid synthase is associated with poor survival in Chinese patients with gastric carcinoma. Exp Ther Med 2012; 4:999-1004. [PMID: 23226763 PMCID: PMC3494127 DOI: 10.3892/etm.2012.727] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 09/19/2012] [Indexed: 12/26/2022] Open
Abstract
Fatty acid synthase (FAS) is the key enzyme regulating de novo biosynthesis of fatty acids. FAS overexpression has been found in many types of tumors and is associated with poor survival. However, the expression of FAS and its relationship with prognosis in Chinese patients with gastric carcinoma are still unknown. Therefore, in this study, we examined the expression of FAS using tissue microarrays and determined its correlation with clinicopathological characteristics and prognosis of gastric carcinoma in Chinese patients. FAS overexpression was graded as S (T/A) <1, ≥1 to <2, ≥2 to <3 or ≥3 in 35 (38.9%), 20 (22.2%), 9 (10%) and 26 (28.9%) patients, respectively. High FAS overexpression [S (T/A) ≥3] was significantly correlated with poor prognosis (log-rank test, P= 0.0078) and with decreased 3-year survival rate (χ2 test, P=0.0023). FAS overexpression was not significantly associated with other clinicopathological characteristics. In conclusion, our results suggest that FAS expression might be a potential prognostic marker for gastric carcinoma in Chinese patients.
Collapse
Affiliation(s)
- Wenmin Hou
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology; ; Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Barbhuiya MA, Sahasrabuddhe NA, Pinto SM, Muthusamy B, Singh TD, Nanjappa V, Keerthikumar S, Delanghe B, Harsha HC, Chaerkady R, Jalaj V, Gupta S, Shrivastav BR, Tiwari PK, Pandey A. Comprehensive proteomic analysis of human bile. Proteomics 2011; 11:4443-53. [PMID: 22114102 DOI: 10.1002/pmic.201100197] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 07/27/2011] [Accepted: 08/24/2011] [Indexed: 01/21/2023]
Abstract
Bile serves diverse functions from metabolism to transport. In addition to acids and salts, bile is composed of proteins secreted or shed by the hepatobiliary system. Although there have been previous efforts to catalog biliary proteins, an in-depth analysis of the bile proteome has not yet been reported. We carried out fractionation of non-cancerous bile samples using a multipronged approach (SDS-PAGE, SCX and OFFGEL) followed by MS analysis on an LTQ-Orbitrap Velos mass spectrometer using high resolution at both MS and MS/MS levels. We identified 2552 proteins - the largest number of proteins reported in human bile till date. To our knowledge, there are no previous studies employing high-resolution MS reporting a more detailed catalog of any body fluid proteome in a single study. We propose that extensive fractionation coupled to high-resolution MS can be used as a standard methodology for in-depth characterization of any body fluid. This catalog should serve as a baseline for the future studies aimed at discovering biomarkers from bile in gallbladder, hepatic, and biliary cancers.
Collapse
Affiliation(s)
- Mustafa A Barbhuiya
- Centre for Genomics, Molecular and Human Genetics, Jiwaji University, Gwalior, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tölle A, Suhail S, Jung M, Jung K, Stephan C. Fatty acid binding proteins (FABPs) in prostate, bladder and kidney cancer cell lines and the use of IL-FABP as survival predictor in patients with renal cell carcinoma. BMC Cancer 2011; 11:302. [PMID: 21767383 PMCID: PMC3199863 DOI: 10.1186/1471-2407-11-302] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 07/18/2011] [Indexed: 11/17/2022] Open
Abstract
Background Fatty acid binding proteins (FABP) play an important role in carcinogenesis. Modified FABP expression patterns were described for prostate, bladder and for renal cell carcinoma. Studies on metabolic relationships and interactions in permanent cell lines allow a deeper insight into molecular processes. The aim of this study is therefore a systematic overview on mRNA and protein expressions of seven FABPs in frequently used urological cell lines. Methods Nine cell lines of renal carcinomas, seven of urinary bladder carcinomas, and five of prostate carcinomas were investigated. Quantitative RT-qPCR and western blotting were used to determine different FABPs. In addition, 46 paired cancerous and noncancerous tissue samples from nephrectomy specimen with renal cell carcinomas were investigated regarding the ileum FABP mRNA expression level and associated with survival outcome. Results General characteristics of all urological carcinoma cell lines were the expression of E-and IL-FABP on mRNA and protein level, while the expressions differed between the cell lines. The protein expression was not always congruent with the mRNA expression. Renal cell carcinoma cell lines showed expressions of L-, H- and B-FABP mRNA in addition to the general FABP expression in five out of the eight investigated cell lines. In bladder cancer cell lines, we additionally found the expression of A-FABP mRNA in six cell lines, while H-FABP was present only in three cell lines. In prostate cancer cell lines, a strong reduction of A- and E- FABP mRNA was observed. The expression of B-FABP mRNA and protein was observed only in the 22 RV-1 cells. IL-FABP mRNA was over-expressed in renal tumour tissue. The IL-FABP ratio was identified as an independent indicator of survival outcome. Conclusions Distinctly different FABP expression patterns were observed not only between the cell lines derived from the three cancer types, but also between the cell lines from the same cancer. The FABP patterns in the cell lines do not always reflect the real situation in the tumours. These facts have to be considered in functional studies concerning the different FABPs.
Collapse
Affiliation(s)
- Angelika Tölle
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | |
Collapse
|
33
|
Lichtenfels R, Dressler SP, Zobawa M, Recktenwald CV, Ackermann A, Atkins D, Kersten M, Hesse A, Puttkammer M, Lottspeich F, Seliger B. Systematic comparative protein expression profiling of clear cell renal cell carcinoma: a pilot study based on the separation of tissue specimens by two-dimensional gel electrophoresis. Mol Cell Proteomics 2009; 8:2827-42. [PMID: 19752005 DOI: 10.1074/mcp.m900168-mcp200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Proteome-based technologies represent powerful tools for the analysis of protein expression profiles, including the identification of potential cancer candidate biomarkers. Thus, here we provide a comprehensive protein expression map for clear cell renal cell carcinoma established by systematic comparative two-dimensional gel electrophoresis-based protein expression profiling of 16 paired tissue systems comprising clear cell renal cell carcinoma lesions and corresponding tumor-adjacent renal epithelium using overlapping narrow pH gradients. This approach led to the mapping of 348 distinct spots corresponding to 248 different protein identities. By implementing restriction criteria concerning their detection frequency and overall regulation mode, 28 up- and 56 down-regulated single target spots were considered as potential candidate biomarkers. Based on their gene ontology information, these differentially expressed proteins were classified into distinct functional groups and according to their cellular distribution. Moreover, three representative members of this group, namely calbindin, gelsolin, and heart fatty acid-binding protein, were selected, and their expression pattern was analyzed by immunohistochemistry using tissue microarrays. Thus, this pilot study provides a significant update of the current renal cell carcinoma map and defines a number of differentially expressed proteins, but both their potential as candidate biomarkers and clinical relevance has to be further explored in tissues and for body fluids like serum and urine.
Collapse
Affiliation(s)
- Rudolf Lichtenfels
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle/Saale, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Boiteux G, Lascombe I, Roche E, Plissonnier ML, Clairotte A, Bittard H, Fauconnet S. A-FABP, a candidate progression marker of human transitional cell carcinoma of the bladder, is differentially regulated by PPAR in urothelial cancer cells. Int J Cancer 2009; 124:1820-8. [PMID: 19115207 DOI: 10.1002/ijc.24112] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Superficial pT1 bladder tumors are characterized by a high risk of recurrence and progression in grade and stage. Few studies provided evidence that loss of adipocyte-fatty acid binding protein (A-FABP) expression was associated with bladder cancer progression. A-FABP is a lipid binding protein playing a role in intracellular lipid transport and metabolism, as well as in signal transduction. We reported from bladder tumors that decrease of A-FABP transcript level significantly correlated to tumor stage and to histologic grade (p < 0.05). Namely, in poor prognosis high grade pT1 tumors there was a loss of A-FABP expression compared to good prognosis tumors suggesting that re-expression of A-FABP could be a therapeutic approach in early stage bladder cancer to prevent disease progression. We demonstrated for the first time that this marker is upregulated by Peroxisome Proliferator-Activated Receptor (PPAR) alpha, beta and gamma in T24 cells (derived from an undifferentiated grade III carcinoma) and only by PPARbeta in RT4 cells (derived from a well differentiated grade I papillary tumor). This effect occurred through a PPAR-dependent transcriptional mechanism without modifying mRNA stability and interestingly required de novo protein synthesis. Data as a whole suggest a prognostic significance of A-FABP in bladder cancer outcome and the potential utility of overexpression of this protein by PPAR agonists open up new perspectives in the treatment of bladder cancer. (c) 2008 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Guillaume Boiteux
- Laboratoire de Biologie Cellulaire et Moléculaire, EA 3181-IBCT-IFR No. 133, Université de Franche-Comté, UFR des Sciences Médicales et Pharmaceutiques, Besançon Cedex 3, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Melnikov AA, Scholtens DM, Wiley EL, Khan SA, Levenson VV. Array-based multiplex analysis of DNA methylation in breast cancer tissues. J Mol Diagn 2007; 10:93-101. [PMID: 18165279 DOI: 10.2353/jmoldx.2008.070077] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Abnormal DNA methylation is well established for cancer cells, but a methylation-based diagnostic test is yet to be developed. One of the problems is insufficient accuracy of cancer detection in heterogeneous clinical specimens when only a single gene is analyzed. A new technique was developed to produce a multigene methylation signature in each sample, and its potential for selection of informative genes was tested using DNA from formalin-fixed, paraffin-embedded breast cancer tissues. Fifty-six promoters were analyzed in each of 138 clinical specimens by a microarray-based modification of the previously developed technique. Specific methylation signatures were identified for atypical ductal hyperplasia, ductal carcinoma in situ, and invasive ductal carcinoma. Informative promoters selected by Fisher's exact test were used for composite biomarker design using naïve Bayes algorithm. All informative promoters were unmethylated in disease compared with normal tissue. Cross-validation showed 72.4% sensitivity and 74.7% specificity for detection of ductal carcinoma in situ and invasive ductal carcinoma, and 87.5% sensitivity and 95% specificity for detection of atypical ductal hyperplasia. These results indicate that informative cancer-specific methylation signatures can be detected in heterogeneous tissue specimens, suggesting that a diagnostic assay can then be developed.
Collapse
Affiliation(s)
- Anatoliy A Melnikov
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago Illinois, USA
| | | | | | | | | |
Collapse
|
36
|
Ohmachi T, Inoue H, Mimori K, Tanaka F, Sasaki A, Kanda T, Fujii H, Yanaga K, Mori M. Fatty acid binding protein 6 is overexpressed in colorectal cancer. Clin Cancer Res 2007; 12:5090-5. [PMID: 16951225 DOI: 10.1158/1078-0432.ccr-05-2045] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Fatty acid binding protein 6 (FABP6) is a cancer-related protein that acts as an intracellular transporter of bile acid in the ileal epithelium. Because bile acids are implicated in the carcinogenesis of colorectal cancer, we evaluated FABP6 expression in colorectal cancer. EXPERIMENTAL DESIGN The expression of FABP6 mRNA was evaluated in 78 paired samples of cancer/normal tissue representing colorectal cancer cases, plus 16 adenomas, and 16 metastatic lymph nodes. An immunohistochemical study was conducted with paraffin sections. In vitro transfection was done to determine FABP6's biological roles. RESULTS The expression of FABP6 mRNA was significantly higher in cancer (75 of 78, 96.2%) than in normal tissue (P<0.001). The expression of mRNA was increased in cancer compared with adenoma, but was dramatically decreased in node metastases. Tumors with high FABP6 expression were smaller in size (P<0.01), more often in the left colon (P<0.05), and had shallower invasion into the bowel wall (P<0.05) compared with those with low expression. There was no significant difference between high- and low-expression tumors regarding clinicopathologic variables such as histologic type, lymph node, or liver metastasis, Dukes' classification, and prognosis. Immunohistochemical study revealed that FABP6 expression was primarily observed in cancer cells. In vitro transfection revealed that transfectants showed weaker invasiveness (P<0.05), more dominant proliferation (P<0.001), and less apoptosis than mock cells. CONCLUSIONS The expression of FABP6 was higher in primary colorectal cancers and adenomas than in normal epithelium, but was dramatically decreased in lymph node metastases, suggesting that FABP6 may play an important role in early carcinogenesis.
Collapse
Affiliation(s)
- Takahiro Ohmachi
- Department of Surgery and Molecular Oncology, Medical Institute of Bioregulation, Kyushu University, Beppu, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Okano T, Kondo T, Fujii K, Nishimura T, Takano T, Ohe Y, Tsuta K, Matsuno Y, Gemma A, Kato H, Kudoh S, Hirohashi S. Proteomic signature corresponding to the response to gefitinib (Iressa, ZD1839), an epidermal growth factor receptor tyrosine kinase inhibitor in lung adenocarcinoma. Clin Cancer Res 2007; 13:799-805. [PMID: 17289870 DOI: 10.1158/1078-0432.ccr-06-1654] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We aimed to identify candidate proteins for tumor markers to predict the response to gefitinib treatment. EXPERIMENTAL DESIGN We did two-dimensional difference gel electrophoresis to create the protein expression profile of lung adenocarcinoma tissues from patients who showed a different response to gefitinib treatment. We used a support vector machine algorithm to select the proteins that best distinguished 31 responders from 16 nonresponders. The prediction performance of the selected spots was validated by an external sample set, including six responders and eight nonresponders. The results were validated using specific antibodies. RESULTS We selected nine proteins that distinguish responders from nonresponders. The predictive performance of the nine proteins was validated examining an additional six responders and eight nonresponders, resulting in positive and negative predictive values of 100% (six of six) and 87.5% (seven of eight), respectively. The differential expression of one of the nine proteins, heart-type fatty acid-binding protein, was successfully validated by ELISA. We also identified 12 proteins as a signature to distinguish tumors based on their epidermal growth factor receptor gene mutation status. CONCLUSIONS Study of these proteins may contribute to the development of personalized therapy for lung cancer patients.
Collapse
Affiliation(s)
- Tetsuya Okano
- Proteome Bioinformatics Project, National Cancer Center Research Institute, Department of Surgery, Tokyo Medical University, and Clinical Laboratory Division, National Cancer Center Hospital, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Seliger B, Lichtenfels R, Atkins D, Bukur J, Halder T, Kersten M, Harder A, Ackermann A, Malenica B, Brenner W, Zobawa M, Lottspeich F. Identification of fatty acid binding proteins as markers associated with the initiation and/or progression of renal cell carcinoma. Proteomics 2005; 5:2631-40. [PMID: 15892167 DOI: 10.1002/pmic.200401264] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Renal cell carcinoma (RCC) representing the most common neoplasia of the kidney in Western countries is a histologic diverse disease with an often unpredictable course. The prognosis of RCC is worsened with the onset of metastasis, and the therapies currently available are of limited success for the treatment of metastatic RCC. Although gene expression analyses and other methods are promising tools clarifying and standardizing the pathological classification of RCC, novel innovative molecular markers for the diagnosis, prognosis, and for the monitoring of this disease during therapy as well as potential therapeutic targets are urgently needed. Using proteome-based strategies, a number of RCC-associated markers either over-expressed or down-regulated in tumor lesions in comparison to the normal epithelium have been identified which have been implicated in tumorigenesis, but never linked to the initiation and/or progression of RCC. These include members of the fatty acid binding protein family, which have the potential to serve as diagnostic or prognostic markers for the screening of RCC patients.
Collapse
Affiliation(s)
- Barbara Seliger
- Johannes Gutenberg University Mainz, 3rd Department of Internal Medicine, Mainz, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|