1
|
Jeon WY, Jin SE, Sohn E, Jo K, Ha H, Shin HK, Lee MY. Anti-inflammatory and anti-allergic effects of Cheonwangbosim-dan water extract: An in vitro and in vivo study. Heliyon 2023; 9:e16172. [PMID: 37215857 PMCID: PMC10199208 DOI: 10.1016/j.heliyon.2023.e16172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/23/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
Ethnopharmacological relevance Cheonwangbosim-dan is a traditional herbal prescription that is widely used to improve or treat physical and mental illnesses in East Asian countries.Aim of the study: The aim of the present study was to investigate the preventive and protective effects of a Cheonwangbosim-dan water extract (CBDW) against allergic inflammation using in vitro and in vivo models. Materials and methods BEAS-2B and MC/9 cells were treated with various concentrations of CBDW and stimulated with different inducers of inflammatory mediators. The production of various inflammatory mediators was subsequently evaluated. BALB/c mice were sensitized and challenged by repeated application of ovalbumin (OVA). CBDW was administered by oral gavage once daily for 10 consecutive days. We assessed the number of inflammatory cells and production of Th2 cytokines in bronchoalveolar lavage fluid (BALF), the plasma levels of total and OVA-specific immunoglobulin E (IgE), and histological changes in lung tissue. Results Our findings showed that CBDW significantly decreased the levels of various inflammatory mediators (eotaxin-1, eotaxin-3, RANTES, LTC4, TNF-α, MMP-9, 5-LO, ICAM-1, and VCAM-1) in vitro, significantly reduced the accumulation of total inflammatory cells, the production of Th2 cytokines (IL-5 and IL-13), the levels of IgE (total and OVA-specific) in vivo, and remarkably inhibited histological changes (infiltration of inflammatory cells and goblet cell hyperplasia) in vivo. Conclusions These results suggest that CBDW possesses anti-inflammatory and anti-allergic properties by lowering allergic inflammation.
Collapse
Affiliation(s)
- Woo-Young Jeon
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Seong Eun Jin
- KM Science Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Eunjin Sohn
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Kyuhyung Jo
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Hyekyung Ha
- KM Science Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Hyeun-Kyoo Shin
- KM Science Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Mee-Young Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| |
Collapse
|
2
|
Liu Y, Huo SG, Xu L, Che YY, Jiang SY, Zhu L, Zhao M, Teng YC. MiR-135b Alleviates Airway Inflammation in Asthmatic Children and Experimental Mice with Asthma via Regulating CXCL12. Immunol Invest 2020; 51:496-510. [PMID: 33203292 DOI: 10.1080/08820139.2020.1841221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To clarify the possible influence of miR-135b on CXCL12 and airway inflammation in children and experimental mice with asthma. METHODS The expressions of miR-135b and CXCL12 were detected using quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) in the serum of asthmatic children. Besides, the experimental asthmatic mice were established by aerosol inhalation of ovalbumin (OVA) followed by the treatment with agomiR-135b and antagomir-135b. Pathological changes of lung tissues were observed via HE staining and PAS staining. Besides, the airway hyperresponsiveness of mice was elevated and bronchoalveolar lavage fluid (BALF) was isolated for cell categorization and counting. The inflammatory cytokines in BALF were determined by enzyme-linked immunosorbent assay (ELISA), and the infiltration of Th17 cells in lung tissues was measured using flow cytometry. RESULTS MiR-135b was downregulated and CXCL12 was upregulated in asthmatic children and mice. Overexpression of miR-135b may down-regulate CXCL12 expression in the lung of OVA mice, resulting in significant decreases in inflammatory infiltration, hyperplasia of goblet cell, airway hyperresponsiveness, cell quantity, as well as the quantity of eosinophilic granulocytes, neutrophils and lymphocytes in BALF. Also, the levels of inflammatory cytokines (IL-4, IL-5, IL-13 and IL-17) and the ratio of Th17 cells and IL-17 levels in lung tissues were decreased. However, miR-135b downregulation reversed these changes in OVA mice. CONCLUSION MiR-135b may inhibit immune responses of Th17 cells to alleviate airway inflammation and hyperresponsiveness in asthma possibly by targeting CXCL12, showing the potential value in asthma treatment.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pediatrics, Caoxian people's Hospital, Heze City, Shandong Province, China
| | - Shi-Guang Huo
- Department of Pediatric, Liaocheng Second People's Hospital, Linqing, China
| | - Ling Xu
- Shandong Rizhao Port Hospital
| | - Yuan-Yuan Che
- Department of Pediatrics, Caoxian people's Hospital, Heze City, Shandong Province, China
| | | | - Li Zhu
- Department of Pediatrics, Caoxian people's Hospital, Heze City, Shandong Province, China
| | - Min Zhao
- Department of Pediatrics, Shanxian Central Hospital, Heze City, Shandong Province, China
| | - Yue-Chun Teng
- Department of Pediatrics, Liaocheng People's Hospital
| |
Collapse
|
3
|
Pfavayi LT, Sibanda EN, Mutapi F. The Pathogenesis of Fungal-Related Diseases and Allergies in the African Population: The State of the Evidence and Knowledge Gaps. Int Arch Allergy Immunol 2020; 181:257-269. [PMID: 32069461 DOI: 10.1159/000506009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/20/2020] [Indexed: 11/19/2022] Open
Abstract
The prevalence of allergic diseases in the African continent has received limited attention with the allergic diseases due to fungal allergens being among the least studied. This lead to the opinion being that the prevalence of allergic disease is low in Africa. Recent reports from different African countries indicate that this is not the case as allergic conditions are common and some; particularly those due to fungal allergens are increasing in prevalence. Thus, there is need to understand both the aetiology and pathogenies of these diseases, particularly the neglected fungal allergic diseases. This review addresses currently available knowledge of fungal-induced allergy, disease pathogenesis comparing findings from human versus experimental mouse studies of fungal allergy. The review discusses the potential role of the gut mycobiome and the extent to which this is relevant to fungal allergy, diagnosis and human health.
Collapse
Affiliation(s)
- Lorraine Tsitsi Pfavayi
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Old Road Campus, Oxford, United Kingdom, .,Institute of Immunology and Infection Research, University of Edinburgh, Ashworth Laboratories, King's Buildings, Edinburgh, United Kingdom,
| | - Elopy Nimele Sibanda
- Asthma Allergy and Immunology Clinic, Twin Palms Medical Centre, Harare, Zimbabwe.,Department of Pathology, National University of Science and Technology Medical School, Bulawayo, Zimbabwe.,NIHR Global Health Research Unit Tackling Infections to Benefit Africa, University of Edinburgh, Ashworth Laboratories, King's Buildings, Edinburgh, United Kingdom
| | - Francisca Mutapi
- Institute of Immunology and Infection Research, University of Edinburgh, Ashworth Laboratories, King's Buildings, Edinburgh, United Kingdom.,NIHR Global Health Research Unit Tackling Infections to Benefit Africa, University of Edinburgh, Ashworth Laboratories, King's Buildings, Edinburgh, United Kingdom
| |
Collapse
|
4
|
Reuter S, Lemmermann NAW, Maxeiner J, Podlech J, Beckert H, Freitag K, Teschner D, Ries F, Taube C, Buhl R, Reddehase MJ, Holtappels R. Coincident airway exposure to low-potency allergen and cytomegalovirus sensitizes for allergic airway disease by viral activation of migratory dendritic cells. PLoS Pathog 2019; 15:e1007595. [PMID: 30845208 PMCID: PMC6405056 DOI: 10.1371/journal.ppat.1007595] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/24/2019] [Indexed: 01/08/2023] Open
Abstract
Despite a broad cell-type tropism, cytomegalovirus (CMV) is an evidentially pulmonary pathogen. Predilection for the lungs is of medical relevance in immunocompromised recipients of hematopoietic cell transplantation, in whom interstitial CMV pneumonia is a frequent and, if left untreated, fatal clinical manifestation of human CMV infection. A conceivable contribution of CMV to airway diseases of other etiology is an issue that so far attracted little medical attention. As the route of primary CMV infection upon host-to-host transmission in early childhood involves airway mucosa, coincidence of CMV airway infection and exposure to airborne environmental antigens is almost unavoidable. For investigating possible consequences of such a coincidence, we established a mouse model of airway co-exposure to CMV and ovalbumin (OVA) representing a protein antigen of an inherently low allergenic potential. Accordingly, intratracheal OVA exposure alone failed to sensitize for allergic airway disease (AAD) upon OVA aerosol challenge. In contrast, airway infection at the time of OVA sensitization predisposed for AAD that was characterized by airway inflammation, IgE secretion, thickening of airway epithelia, and goblet cell hyperplasia. This AAD histopathology was associated with a T helper type 2 (Th2) transcription profile in the lungs, including IL-4, IL-5, IL-9, and IL-25, known inducers of Th2-driven AAD. These symptoms were all prevented by a pre-challenge depletion of CD4+ T cells, but not of CD8+ T cells. As to the underlying mechanism, murine CMV activated migratory CD11b+ as well as CD103+ conventional dendritic cells (cDCs), which have been associated with Th2 cytokine-driven AAD and with antigen cross-presentation, respectively. This resulted in an enhanced OVA uptake and recruitment of the OVA-laden cDCs selectively to the draining tracheal lymph nodes for antigen presentation. We thus propose that CMV, through activation of migratory cDCs in the airway mucosa, can enhance the allergenic potential of otherwise poorly allergenic environmental protein antigens.
Collapse
Affiliation(s)
- Sebastian Reuter
- Department of Pulmonary Medicine, University Medical Center Essen-Ruhrlandklinik, Essen, Germany
| | - Niels A. W. Lemmermann
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Joachim Maxeiner
- Asthma Core Facility and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jürgen Podlech
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hendrik Beckert
- Department of Pulmonary Medicine, University Medical Center Essen-Ruhrlandklinik, Essen, Germany
- Department of Hematology, Medical Oncology and Pneumonology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kirsten Freitag
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Daniel Teschner
- Department of Hematology, Medical Oncology and Pneumonology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Frederic Ries
- Department of Hematology, Medical Oncology and Pneumonology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Christian Taube
- Department of Pulmonary Medicine, University Medical Center Essen-Ruhrlandklinik, Essen, Germany
| | - Roland Buhl
- Department of Hematology, Medical Oncology and Pneumonology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Matthias J. Reddehase
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Rafaela Holtappels
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- * E-mail:
| |
Collapse
|
5
|
Sondhi D, Stiles KM, De BP, Crystal RG. Genetic Modification of the Lung Directed Toward Treatment of Human Disease. Hum Gene Ther 2017; 28:3-84. [PMID: 27927014 DOI: 10.1089/hum.2016.152] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genetic modification therapy is a promising therapeutic strategy for many diseases of the lung intractable to other treatments. Lung gene therapy has been the subject of numerous preclinical animal experiments and human clinical trials, for targets including genetic diseases such as cystic fibrosis and α1-antitrypsin deficiency, complex disorders such as asthma, allergy, and lung cancer, infections such as respiratory syncytial virus (RSV) and Pseudomonas, as well as pulmonary arterial hypertension, transplant rejection, and lung injury. A variety of viral and non-viral vectors have been employed to overcome the many physical barriers to gene transfer imposed by lung anatomy and natural defenses. Beyond the treatment of lung diseases, the lung has the potential to be used as a metabolic factory for generating proteins for delivery to the circulation for treatment of systemic diseases. Although much has been learned through a myriad of experiments about the development of genetic modification of the lung, more work is still needed to improve the delivery vehicles and to overcome challenges such as entry barriers, persistent expression, specific cell targeting, and circumventing host anti-vector responses.
Collapse
Affiliation(s)
- Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Katie M Stiles
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Bishnu P De
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| |
Collapse
|
6
|
Epstein MM, Tilp C, Erb KJ. The Use of Mouse Asthma Models to Successfully Discover and Develop Novel Drugs. Int Arch Allergy Immunol 2017; 173:61-70. [PMID: 28586774 DOI: 10.1159/000473699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The past 20 years have seen a proliferation of scientific data on the pathophysiology of asthma. Most of these data were generated in mice using tool reagents, gene-deficient or transgenic animals. In contrast, studies on disease pathogenesis in patients are scarce. Previously, a good novel antiasthma target for drug development was one that abrogated asthma in mice when it was knocked out, neutralized or induced asthma when it was overexpressed. This type of approach led to many drug candidates that worked in mice but unfortunately failed in patients, thereby demonstrating that the results of experiments in mice are not always predictive of clinical efficacy. Currently, there is active debate about the use of mouse models in drug discovery. In this review, we summarize the obstacles and challenges faced when using experimental mouse models of asthma in drug discovery. We propose that the initial selection of a novel drug target begins with defining the unmet medical need and specific patient population, followed by a thorough evaluation of available human data, and, only then, well-planned and executed mouse asthma experiments. Using this approach, we argue that mouse models lend support for the target when the models are tailored for the specific asthma patient population, and that targeted, reliable, and predictive mouse models can indeed improve and accelerate the drug discovery process.
Collapse
|
7
|
Jeon WY, Shin IS, Shin HK, Jin SE, Lee MY. Aqueous Extract of Gumiganghwal-tang, a Traditional Herbal Medicine, Reduces Pulmonary Fibrosis by Transforming Growth Factor-β1/Smad Signaling Pathway in Murine Model of Chronic Asthma. PLoS One 2016; 11:e0164833. [PMID: 27741312 PMCID: PMC5065144 DOI: 10.1371/journal.pone.0164833] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 10/01/2016] [Indexed: 12/14/2022] Open
Abstract
Gumiganghwal-tang is a traditional herbal prescription that is used widely for the treatment of the common cold and inflammatory diseases in Korea and other Asian countries. In this study, we investigated the protective effects of a Gumiganghwal-tang aqueous extract (GGTA) against airway inflammation and pulmonary fibrosis using a mouse model of chronic asthma. Chronic asthma was modeled in BALB/c mice via sensitization/challenge with an intraperitoneal injection of 1% ovalbumin (OVA) and inhalation of nebulized 1% OVA for 4 weeks. GGTA (100 mg/kg or 200 mg/kg) was also administered by oral gavage once a day for 4 weeks. We investigated the number of inflammatory cells, production of T-helper type 2 (Th2) cytokines, chemokine and the total transforming growth factor-β1 (TGF-β1) in bronchoalveolar lavage fluid (BALF); the levels of immunoglobulin E (IgE) in the plasma; the infiltration of inflammatory cells in lung tissue; and the expression of TGF-β1, Smad-3, and collagen in lung tissue. Our results revealed that GGTA lowered the recruitment of inflammatory cells (particularly, lymphocyte); and decreased the production of Th2 cytokines, chemokine and total TGF-β1; and attenuated the levels of total and OVA-specific IgE; and decreased the infiltration of inflammatory cells. Moreover, GGTA significantly reduced the expression of TGF-β1 and Smad-3, and lowered collagen deposition. These results indicate that GGTA reduces airway inflammation and pulmonary fibrosis by regulating Th2 cytokines production and the TGF-β1/Smad-3 pathway, thus providing a potential treatment for chronic asthma.
Collapse
Affiliation(s)
- Woo-Young Jeon
- K-herb Research Center, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - In-Sik Shin
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Hyeun-Kyoo Shin
- K-herb Research Center, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Seong Eun Jin
- K-herb Research Center, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Mee-Young Lee
- K-herb Research Center, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
- * E-mail:
| |
Collapse
|
8
|
In Vivo Assessment of Airway Function in the Mouse Model. Methods Mol Biol 2016. [PMID: 27464698 DOI: 10.1007/978-1-4939-3687-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
This chapter describes two procedures commonly used to examine airway function in mice. Airway function can be assessed in vivo using noninvasive or invasive methods. Noninvasive methods can be used to monitor respiratory function in mice without the involvement of restraint, anesthesia, or surgery. The methods allow for multiple animals to be monitored simultaneously and can be used in longitudinal studies requiring repeated measurements on the same animals. Invasive methods are used to assess airway function under anesthesia, in mechanically ventilated mice. Although used as terminal procedure, the invasive methods are most appropriate for direct assessment of lower airway dysfunction.
Collapse
|
9
|
Froidure A, Shen C, Pilette C. Dendritic cells revisited in human allergic rhinitis and asthma. Allergy 2016; 71:137-48. [PMID: 26427032 DOI: 10.1111/all.12770] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2015] [Indexed: 12/27/2022]
Abstract
The role of dendritic cells (DCs) in airway allergy has been studied for 15 years; recent data has highlighted the cross talk with airway epithelial cells and environmental factors (allergens, virus) during the inception and exacerbation of allergic asthma. Although murine models have provided key information, it remains uncertain to what extent these basic mechanisms take place in human allergic disease, notably with regard to different clinical phenotypes. In the present review, we discuss new evidence regarding mechanisms of DC regulation in the mouse which could be important in human asthma. Finally, after discussing the effects of current therapies on DC biology, we focus on pathways that could represent targets for future therapies.
Collapse
Affiliation(s)
- A. Froidure
- Institut de Recherche Expérimentale et Clinique; Université Catholique de Louvain and Walloon Institute for Excellence in Lifesciences and Biotechnology; Brussels Belgium
- Cliniques Universitaires Saint-Luc, service de pneumologie; Brussels Belgium
| | - C. Shen
- Institut de Recherche Expérimentale et Clinique; Université Catholique de Louvain and Walloon Institute for Excellence in Lifesciences and Biotechnology; Brussels Belgium
| | - C. Pilette
- Institut de Recherche Expérimentale et Clinique; Université Catholique de Louvain and Walloon Institute for Excellence in Lifesciences and Biotechnology; Brussels Belgium
- Cliniques Universitaires Saint-Luc, service de pneumologie; Brussels Belgium
| |
Collapse
|
10
|
Jeon WY, Shin HK, Shin IS, Kim SK, Lee MY. Soshiho-tang water extract inhibits ovalbumin-induced airway inflammation via the regulation of heme oxygenase-1. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:329. [PMID: 26385707 PMCID: PMC4575434 DOI: 10.1186/s12906-015-0857-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/11/2015] [Indexed: 12/17/2022]
Abstract
Background Soshiho-tang, known as Xio-hai-Hu-Tang in Chinese and Sho-Saiko-to in Japanese, has been widely used as a therapeutic agent. Its pharmacological effects include anti-inflammatory, antioxidant, antihepatic fibrosis, antitumor and immunomodulating activities. However, little is known regarding its effects on allergic asthma. Therefore, the aim of the present study was to investigate whether the Soshiho-tang water extract (SSTW) has antiasthmatic effects on airway inflammation in an ovalbumin (OVA)-induced mouse model. Methods BALB/c mice were used as a model of asthma after induction by sensitization and challenge with OVA. We measured change in eosinophils, other inflammatory cells, and T helper 2 (Th2)-type cytokines, such as interleukin (IL)-4, IL-5, IL-13, IL-17, IL-33, and chemokine (eotaxin) in bronchoalveolar lavage fluid (BALF), presence of total and OVA-specific immunoglobulin (Ig)E in plasma, and expression of mucus production and heme oxygenase (HO)-1 protein in lung tissue. Results Our results show that SSTW had a suppressive effect on eosinophil influx into BALF and decreased the levels of Th2-type cytokines. Moreover, SSTW exhibited a marked decrease in mucus hypersecretion, total and OVA-specific IgE levels, and significantly induced HO-1 protein expression. Conclusions These results suggest that SSTW may be used as a valuable therapeutic agent for treating various inflammatory diseases including allergic asthma.
Collapse
|
11
|
|
12
|
Ji P, Hu H, Yang X, Wei X, Zhu C, Liu J, Feng Y, Yang F, Okanurak K, Li N, Zeng X, Zheng H, Wu Z, Lv Z. AcCystatin, an immunoregulatory molecule from Angiostrongylus cantonensis, ameliorates the asthmatic response in an aluminium hydroxide/ovalbumin-induced rat model of asthma. Parasitol Res 2014; 114:613-24. [PMID: 25399816 DOI: 10.1007/s00436-014-4223-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 11/06/2014] [Indexed: 12/19/2022]
Abstract
Epidemiological surveys have demonstrated that helminth infections are negatively related to atopic diseases, including asthma. Defining and characterising specific helminth molecules that have excellent immunomodulatory capacities as potential therapeutics for the treatment or prophylaxis of allergic manifestations are of great interest. AcCystatin, a cystatin protease inhibitor of Angiostrongylus cantonensis, is a homologue of other nematode cystatins with immunoregulatory properties. Here, we aim to determine the effects of AcCystatin on an ovalbumin/aluminium hydroxide (OVA/Al[OH]3)-induced rat model of asthma. Wistar rats were randomly divided into four groups, including a control group, an OVA/Al[OH]3-induced asthma group, a group receiving AcCystatin immunisation prior to OVA/Al[OH]3-induced asthma and a group receiving AcCystatin treatment after OVA/Al[OH]3-induced asthma. The numbers of eosinophils, basophils, neutrophils, lymphocytes and monocytes in the peripheral blood and of eosinophils in the bronchoalveolar lavage fluid (BALF) were counted for each animal. The expression levels of the cytokines interferon-γ, interleukin (IL) 4, IL-5, IL-6, IL-10, IL17A and tumour necrosis factor receptor-α in BALF, of OVA-specific immunoglobulin E in BALF and serum and of the chemokines eotaxin-1, eotaxin-2, eotaxin-3, MCP-1 and MCP-3 in lung tissue were measured. In addition, the degree of peribronchial and perivascular inflammation and the intensity of goblet cell metaplasia were qualitatively evaluated. The sensitised/challenged rats developed an extensive cell inflammatory response of the airways. AcCystatin administration significantly reduced the cellular infiltrate in the perivascular and peribronchial lung tissues and reduced both goblet mucous production and eosinophil infiltration. The rats that were treated with AcCystatin before or after sensitisation with OVA showed significant decreases in eotaxin-1, eotaxin-3 and MCP-1 expression in the lung tissue. The production of IL-4, IL-5, IL-6 and IL-17A and of OVA-specific IgE antibodies was also significantly reduced in AcCystatin-treated rats compared with untreated asthmatic rats. The AcCystatin treatment was associated with a significant increase in IL-10 levels. Our present findings provide the first demonstration that AcCystatin is an effective agent in the prevention and treatment of the airway inflammation associated with asthma.
Collapse
Affiliation(s)
- Pengyu Ji
- Zhongshan School of Medicine, Sun Yat-sen University, 74 2nd Zhongshan Road, Guangzhou, 510080, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Taube C. Bronchial asthma: is personalized therapy on the horizon? ACTA ACUST UNITED AC 2014; 23:246-251. [PMID: 26120534 PMCID: PMC4479476 DOI: 10.1007/s40629-014-0028-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 08/27/2014] [Indexed: 12/22/2022]
Abstract
In the last years there is an increasing trend towards personalized medicine for patients with asthma. This is due to the availability of novel specific therapies. These new compounds are supposed to be used in well-defined patient groups, which are likely to respond to these interventions. In addition to already used anti-IgE, novel monoclonal antibodies such as anti-IL-5 and anti-IL-13 are becoming available. Currently clinical trials are ongoing to identify which patient population will respond to these novel therapies.
Collapse
Affiliation(s)
- Christian Taube
- Department of Pulmonology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
14
|
Taube C. Asthma bronchiale — personalisierte Therapie am Horizont? ALLERGO JOURNAL 2014. [DOI: 10.1007/s15007-014-0679-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Bibi H, Vinokur V, Waisman D, Elenberg Y, Landesberg A, Faingersh A, Yadid M, Brod V, Pesin J, Berenshtein E, Eliashar R, Chevion M. Zn/Ga-DFO iron-chelating complex attenuates the inflammatory process in a mouse model of asthma. Redox Biol 2014; 2:814-9. [PMID: 25009783 PMCID: PMC4085351 DOI: 10.1016/j.redox.2014.06.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/12/2014] [Accepted: 06/13/2014] [Indexed: 12/13/2022] Open
Abstract
Background Redox-active iron, a catalyst in the production of hydroxyl radicals via the Fenton reaction, is one of the key participants in ROS-induced tissue injury and general inflammation. According to our recent findings, an excess of tissue iron is involved in several airway-related pathologies such as nasal polyposis and asthma. Objective To examine the anti-inflammatory properties of a newly developed specific iron–chelating complex, Zn/Ga−DFO, in a mouse model of asthma. Materials and methods Asthma was induced in BALBc mice by ovalbumin, using aluminum hydroxide as an adjuvant. Mice were divided into four groups: (i) control, (ii) asthmatic and sham-treated, (iii) asthmatic treated with Zn/Ga−DFO [intra-peritoneally (i/p) and intra-nasally (i/n)], and (iv) asthmatic treated with Zn/Ga−DFO, i/n only. Lung histology and cytology were examined. Biochemical analysis of pulmonary levels of ferritin and iron-saturated ferritin was conducted. Results The amount of neutrophils and eosinophils in bronchoalveolar lavage fluid, goblet cell hyperplasia, mucus secretion, and peri-bronchial edema, showed markedly better values in both asthmatic-treated groups compared to the asthmatic non-treated group. The non-treated asthmatic group showed elevated ferritin levels, while in the two treated groups it returned to baseline levels. Interestingly, i/n-treatment demonstrated a more profound effect alone than in a combination with i/p injections. Conclusion In this mouse model of allergic asthma, Zn/Ga−DFO attenuated allergic airway inflammation. The beneficial effects of treatment were in accord with iron overload abatement in asthmatic lungs by Zn/Ga−DFO. The findings in both cellular and tissue levels supported the existence of a significant anti-inflammatory effect of Zn/Ga−DFO. Asthma pathophysiology was shown to be associated with iron overload. A therapeutic effect of the novel iron–chelating complexes was demonstrated. Histological and cytological markers of inflammation were studied. The complexes could be administered intranasally or by intraperitonneal injections.
Collapse
Affiliation(s)
- Haim Bibi
- Pediatric Department, Barzilai Medical Center, Ben Gurion University School of Medicine, Ashkelon, Be'er Sheva, Israel
| | - Vladimir Vinokur
- Department of Biochemistry and Molecular Biology, Institute of Medical Research Israel-Canada, The Hebrew University, Jerusalem, Israel
| | - Dan Waisman
- Department of Neonatology, Carmel Medical Center, Haifa, Israel
| | - Yigal Elenberg
- Pediatric Department, Barzilai Medical Center, Ben Gurion University School of Medicine, Ashkelon, Be'er Sheva, Israel
| | | | - Anna Faingersh
- Faculty of Biomedical Engineering, Technion, Haifa, Israel
| | - Moran Yadid
- Faculty of Biomedical Engineering, Technion, Haifa, Israel
| | - Vera Brod
- Ischemia-Shock Research Laboratory, Department of Medicine, Carmel Medical Center, Faculty of Medicine, Technion, Haifa, Israel
| | - Jimy Pesin
- Faculty of Biomedical Engineering, Technion, Haifa, Israel
| | - Eduard Berenshtein
- Department of Biochemistry and Molecular Biology, Institute of Medical Research Israel-Canada, The Hebrew University, Jerusalem, Israel
| | - Ron Eliashar
- Department of Otolaryngology/Head & Neck Surgery, Hebrew University School of Medicine, - Hadassah Medical Center, Jerusalem, Israel
| | - Mordechai Chevion
- Department of Biochemistry and Molecular Biology, Institute of Medical Research Israel-Canada, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
16
|
Abstract
Mouse models of allergic airway inflammation have proven essential in understanding the mechanisms and pathophysiology underling human asthma. There is a diverse range of mouse models described in the literature that typically vary slightly by allergen, duration of exposure, and route of sensitization. In general, each of these models has proven to be acceptable surrogates for studying specific aspects of the human disease, including airway inflammation, airway hyperresponsiveness (AHR), and airway remodeling. Here, we describe a highly versatile model based on nasal sensitization with house dust mite antigen (DMA). Mice receive multiple intranasal inoculations with DMA each week for a period of 4-16 weeks, which results in increased Th2-mediated airway inflammation and AHR. However, an added feature of the long--term exposures described here is the ability to more accurately evaluate the impact of chronic inflammation on airway remodeling and lung pathophysiology in response to a clinically relevant allergen.
Collapse
|
17
|
Guo YL, Huang H, Zeng DX, Zhao JP, Fang HJ, Lavoie JP. Interleukin (IL)-4 induces production of cytokine-induced neutrophil chemoattractants (CINCs) and intercellular adhesion molecule (ICAM)-1 in lungs of asthmatic rats. ACTA ACUST UNITED AC 2013; 33:470-478. [PMID: 23904363 DOI: 10.1007/s11596-013-1144-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 05/15/2013] [Indexed: 12/31/2022]
Abstract
The present study aimed to examine the effect of interleukin (IL)-4 on neutrophil chemotaxis in airway inflammation in asthmatic rats and the possible mechanism. Male Wistar rats were intranasally instilled with recombinant rat (rr) IL-4 (rrIL-4) at different doses [2, 4 or 8 μg/animal, dissolved in 200 μL normal saline (NS)] or rrIL-4 at 4 μg/animal (dissolved in 200 μL NS). NS (200 μL) and LPS (6 mg/kg/animal, dissolved in 200 μL NS) were intranasally given respectively in the negative and positive control groups. Moreover, the asthmatic lung inflammation was induced in rats which were then intranasally treated with rrIL-4 (4 μg/animal) or LPS (6 mg/kg/animal). The normal rats treated with different doses of rrIL-4 and those asthmatic rats were sacrificed 6 h later. And animals instilled with rrIL-4 at 4 μg were sacrificed 6, 12 or 24 h later. The bronchoalveolar lavage fluid (BALF) and lungs were harvested for detection of leukocyte counts by Wright-Giemsa staining and lung histopathology by haematoxylin-eosin (HE) staining. The levels of cytokine-induced neutrophil chemoattractant (CINC)-1 and intercellular adhesion molecule (ICAM)-1 in BALF were determined by ELISA. Real-time PCR was used to measure the mRNA expression of CINCs (CINC-1, CINC-2α, CINC-2β, CINC-3) and ICAM-1 in lung tissues. The results showed that the intranasal instillation of IL-4 did not induce a recruitment of neutrophils in BALF in rats. However, IL-4 could increase the CINC-1 level in BALF in a dose-dependent manner at 6 h. But the mRNA expression levels of CINC-1, CINC-2α, CINC-2β, CINC-3 were not significantly increased in lungs of IL-4-treated rats relative to NS negative control group. Moreover, IL-4 was found to augment the mRNA expression of ICAM-1 in lungs and the ICAM-1 level in BALF at 6 h. However, the increase in CINC-1 and ICAM-1 levels in BALF of IL-4-treated asthmatic rats was not significantly different from that in untreated asthmatic rats. These findings indicate that IL-4 does not directly recruit neutrophils in the rat lungs, but it may contribute to airway neutrophilia through up-regulation of CINC-1 and ICAM-1.
Collapse
Affiliation(s)
- Ya-Li Guo
- Department of Respiratory Diseases and Critical Care Medicine, Tongji Hospital, Tonji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Respiratory Diseases and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Hong Huang
- Department of Respiratory Diseases and Critical Care Medicine, Tongji Hospital, Tonji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Da-Xiong Zeng
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Jian-Ping Zhao
- Department of Respiratory Diseases and Critical Care Medicine, Tongji Hospital, Tonji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui-Juan Fang
- Department of Respiratory Diseases and Critical Care Medicine, Tongji Hospital, Tonji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jean-Pierre Lavoie
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, J2S 7C6, Canada
| |
Collapse
|
18
|
Krieger SM, Boverhof DR, Woolhiser MR, Hotchkiss JA. Assessment of the respiratory sensitization potential of proteins using an enhanced mouse intranasal test (MINT). Food Chem Toxicol 2013; 59:165-76. [PMID: 23747714 DOI: 10.1016/j.fct.2013.05.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 05/21/2013] [Accepted: 05/23/2013] [Indexed: 10/26/2022]
Abstract
There remains a need for a simple and predictive animal model to identify potential respiratory sensitizers. The mouse intranasal test (MINT) was developed to assess the relative allergic potential of detergent enzymes, however, the experimental endpoints were limited to evaluation of antibody levels. The present study was designed to evaluate additional endpoints (serum and allergic antibody levels, pulmonary inflammation and airway hyperresponsiveness (AHR)) to determine their value in improving the predictive accuracy of the MINT. BDF1 mice were intranasally instilled on days 1, 3, 10, 17 and 24 with subtilisin, ovalbumin, betalactoglobulin, mouse serum albumin or keyhole limpet hemocyanin; challenged with aerosolized methacholine or the sensitizing protein on day 29 to assess AHR, and sacrificed on day 29 or 30. Under the conditions of this study, evaluation of AHR did not improve the predictive power of this experimental model. Allergic antibody responses and IgG isotype characterization proved to be the most sensitive and reliable indicators of the protein allergenic potential with BAL responses providing additional insight. These data highlight that the evaluation of the respiratory sensitization potential of proteins can be best informed when multiple parameters are evaluated and that further improvements and refinements of the assay are necessary.
Collapse
Affiliation(s)
- S M Krieger
- Toxicology & Environmental Research and Consulting, The Dow Chemical Company, Midland, MI 48674, United States
| | | | | | | |
Collapse
|
19
|
Volkov A, Hagner S, Löser S, Alnahas S, Raifer H, Hellhund A, Garn H, Steinhoff U. β5i subunit deficiency of the immunoproteasome leads to reduced Th2 response in OVA induced acute asthma. PLoS One 2013; 8:e60565. [PMID: 23593249 PMCID: PMC3617144 DOI: 10.1371/journal.pone.0060565] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/27/2013] [Indexed: 11/22/2022] Open
Abstract
The immunoproteasome subunit β5i has been shown to play an important role in Th1/Th17 driven models of colitis and arthritis. However, the function of β5i in Th2 dependent diseases remains enigmatic. To study the role of β5i in Th2-driven pathology, β5i knockout (KO) and control mice were tested in different models of experimental allergic asthma. β5i-deficient mice showed reduced OVA/Alum- and subcutaneous/OVA-induced acute asthma with decreased eosinophilia in the bronchoalveolar lavage (BAL), low OVA-specific IgG1 and reduced local and systemic Th2 cytokines. While Th2 cells in the lungs were reduced, Tregs and Th1 cells were not affected. Attenuated asthma in β5i KO mice could not be attributed to defects in OVA uptake or maturation of dendritic cells in the lung. Surprisingly, β5i deficient mice developed HDM asthma which was comparable to control mice. Here, we present novel evidence for the requirement of the β5i immunosubunit to generate a strong Th2 response during OVA- but not HDM-induced acute asthma. The unexpected role of β5i in OVA asthma remains to be clarified.
Collapse
Affiliation(s)
- Anton Volkov
- Institute for Medical Microbiology and Hygiene, Philipps University of Marburg, Marburg, Germany
| | - Stefanie Hagner
- Institute for Laboratory Medicine and Pathobiochemistry, Philipps University of Marburg, Marburg, Germany
| | - Stephan Löser
- Institute for Medical Microbiology and Hygiene, Philipps University of Marburg, Marburg, Germany
| | - Safa Alnahas
- Institute for Medical Microbiology and Hygiene, Philipps University of Marburg, Marburg, Germany
| | - Hartmann Raifer
- Institute for Medical Microbiology and Hygiene, Philipps University of Marburg, Marburg, Germany
| | - Anne Hellhund
- Institute for Medical Microbiology and Hygiene, Philipps University of Marburg, Marburg, Germany
| | - Holger Garn
- Institute for Laboratory Medicine and Pathobiochemistry, Philipps University of Marburg, Marburg, Germany
| | - Ulrich Steinhoff
- Institute for Medical Microbiology and Hygiene, Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
20
|
Blume C, Davies DE. In vitro and ex vivo models of human asthma. Eur J Pharm Biopharm 2013; 84:394-400. [PMID: 23313714 DOI: 10.1016/j.ejpb.2012.12.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 11/27/2012] [Accepted: 12/18/2012] [Indexed: 01/11/2023]
Abstract
Asthma is an inflammatory disorder of the conducting airways which undergo distinct structural and functional changes leading to non-specific bronchial hyperresponsiveness (BHR) and airflow obstruction that fluctuate over time. It is a complex disease involving multiple genetic and environmental influences whose multifactorial interactions can result in a range of asthma phenotypes. Since our understanding of these gene-gene and gene-environment interactions is very poor, this poses a major challenge to the logical development of 'models of asthma'. However, use of cells and tissues from asthmatic donors allows genetic and epigenetic influences to be evaluated and can go some way to reflect the complex interplay between genetic and environmental stimuli that occur in vivo. Current alternative approaches to in vivo animal models involve use of a plethora of systems ranging from very simple models using human cells (e.g. bronchial epithelial cells and fibroblasts) in mono- or co-culture, whole tissue explants (biopsies, muscle strips, bronchial rings) through to in vivo studies in human volunteers. Asthma research has been greatly facilitated by the introduction of fibreoptic bronchoscopy which is now a commonly used technique in the field of respiratory disease research, allowing collection of biopsy specimens, bronchial brushing samples, and bronchoalveolar lavage fluid enabling use of disease-derived cells and tissues in some of these models. Here, we will consider the merits and limitations of current models and discuss the potential of tissue engineering approaches through which we aim to advance our understanding of asthma and its treatment.
Collapse
Affiliation(s)
- Cornelia Blume
- Brooke Laboratory, Clinical and Experimental Sciences and the Southampton NIHR, Respiratory Biomedical Research Unit, University of Southampton, University Hospital Southampton, Southampton, United Kingdom.
| | | |
Collapse
|
21
|
Hansen JS, Nielsen GD, Sørli JB, Clausen PA, Wolkoff P, Larsen ST. Adjuvant and inflammatory effects in mice after subchronic inhalation of allergen and ozone-initiated limonene reaction products. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2013; 76:1085-1095. [PMID: 24274150 DOI: 10.1080/15287394.2013.838915] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Inhalation of ozone (O3), a highly toxic environmental pollutant, produces airway inflammation and exacerbates asthma. However, in indoor air, O3 reacts with terpenes (cyclic alkenes), leading to formation of airway irritating pollutants. The aim of the study was to examine whether inhalation of the reaction products of O3 and the terpene, limonene, as well as limonene and low-level O3 by themselves, induced allergic sensitization (formation of specific immunoglobulin [Ig] E) and airway inflammation in a subchronic mouse inhalation model in combination with the model allergen ovalbumin (OVA). BALB/cJ mice were exposed exclusively by inhalation for 5 d/wk for 2 wk and thereafter once weekly for 12 wk. Exposures were low-dose OVA in combination with O3, limonene, or limonene/O3 reaction products. OVA alone and OVA + Al(OH)3 served as control groups. Subsequently, all groups were exposed to a high-dose OVA solution on three consecutive days. Serum and bronchoalveolar lavage fluid were collected 24 h later. Limonene by itself did not promote neither OVA-specific IgE nor leukocyte inflammation. Low-level O3 promoted eosinophilic airway inflammation, but not OVA-specific IgE formation. The reaction products of limonene/O3 promoted allergic (OVA-specific IgE) sensitization, but lung inflammation, which is a characteristic of allergic asthma, was not observed. In conclusion, the study does not support an allergic inflammatory effect attributed to O3-initiated limonene reaction products in the indoor environment.
Collapse
|
22
|
Le-Dong NN, Duong-Quy S, Bei Y, Hua-Huy T, Chen W, Dinh-Xuan AT. Measuring exhaled nitric oxide in animal models: methods and clinical implications. J Breath Res 2012; 6:047001. [PMID: 22990104 DOI: 10.1088/1752-7155/6/4/047001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Animal models such as rats and mice are useful for studying the multiple roles of nitric oxide (NO) in various respiratory disorders. The production of NO is catalyzed by the three isoforms of the enzymes (NO synthases; NOS). Indirect assessment of NOS gene or protein expression only provides partial information on the role of NO in health and lung disease. NO can also be measured in exhaled air by invasive or non-invasive approaches as a direct and quantitative marker of NO production in animal models. Whilst addressing the different methods of exhaled NO analysis in small animals (rats and mice), this review also focuses on the possible clinical implications, and discusses the advantages and limitations of these methods.
Collapse
Affiliation(s)
- Nhât-Nam Le-Dong
- Paris Descartes University, Medical School, Assistance Publique Hôpitaux de Paris, Service de Physiologie-Explorations Fonctionnelles. Hôpital Cochin, 27 rue du faubourg Saint-Jacques, 75014 Paris, France
| | | | | | | | | | | |
Collapse
|
23
|
Cruz EA, Reuter S, Martin H, Dehzad N, Muzitano MF, Costa SS, Rossi-Bergmann B, Buhl R, Stassen M, Taube C. Kalanchoe pinnata inhibits mast cell activation and prevents allergic airway disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2012; 19:115-121. [PMID: 21802918 DOI: 10.1016/j.phymed.2011.06.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Revised: 05/27/2011] [Accepted: 06/25/2011] [Indexed: 05/31/2023]
Abstract
Aqueous extract of Kalanchoe pinnata (Kp) have been found effective in models to reduce acute anaphylactic reactions. In the present study, we investigate the effect of Kp and the flavonoid quercetin (QE) and quercitrin (QI) on mast cell activation in vitro and in a model of allergic airway disease in vivo. Treatment with Kp and QE in vitro inhibited degranulation and cytokine production of bone marrow-derived mast cells following IgE/FcɛRI crosslinking, whereas treatment with QI had no effect. Similarly, in vivo treatment with Kp and QE decreased development of airway hyperresponsiveness, airway inflammation, goblet cell metaplasia and production of IL-5, IL-13 and TNF. In contrast, treatment with QI had no effect on these parameters. These findings demonstrate that treatment with Kp or QE is effective in treatment of allergic airway disease, providing new insights to the immunomodulatory functions of this plant.
Collapse
Affiliation(s)
- E A Cruz
- III. Medical Clinic, Department of Pulmonary Medicine, University of Mainz, Maniz, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Buckland GL. Harnessing opportunities in non-animal asthma research for a 21st-century science. Drug Discov Today 2011; 16:914-27. [PMID: 21875684 DOI: 10.1016/j.drudis.2011.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 06/29/2011] [Accepted: 08/02/2011] [Indexed: 10/17/2022]
Abstract
The incidence of asthma is on the increase and calls for research are growing, yet asthma is a disease that scientists are still trying to come to grips with. Asthma research has relied heavily on animal use; however, in light of increasingly robust in vitro and computational models and the need to more fully incorporate the 'Three Rs' principles of Replacement, Reduction and Refinement, is it time to reassess the asthma research paradigm? Progress in non-animal research techniques is reaching a level where commitment and integration are necessary. Many scientists believe that progress in this field rests on linking disciplines to make research directly translatable from the bench to the clinic; a '21st-century' scientific approach to address age-old questions.
Collapse
|
25
|
Abbas AR, Jackman JK, Bullens SL, Davis SM, Choy DF, Fedorowicz G, Tan M, Truong BT, Gloria Meng Y, Diehl L, Miller LA, Schelegle ES, Hyde DM, Clark HF, Modrusan Z, Arron JR, Wu LC. Lung gene expression in a rhesus allergic asthma model correlates with physiologic parameters of disease and exhibits common and distinct pathways with human asthma and a mouse asthma model. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1667-80. [PMID: 21819959 DOI: 10.1016/j.ajpath.2011.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 06/10/2011] [Accepted: 06/27/2011] [Indexed: 01/22/2023]
Abstract
Experimental nonhuman primate models of asthma exhibit multiple features that are characteristic of an eosinophilic/T helper 2 (Th2)-high asthma subtype, characterized by the increased expression of Th2 cytokines and responsive genes, in humans. Here, we determine the molecular pathways that are present in a house dust mite-induced rhesus asthma model by analyzing the genomewide lung gene expression profile of the rhesus model and comparing it with that of human Th2-high asthma. We find that a prespecified human Th2 inflammation gene set from human Th2-high asthma is also present in rhesus asthma and that the expression of the genes comprising this gene set is positively correlated in human and rhesus asthma. In addition, as in human Th2-high asthma, the Th2 gene set correlates with physiologic markers of allergic inflammation and disease in rhesus asthma. Comparison of lung gene expression profiles from human Th2-high asthma, the rhesus asthma model, and a common mouse asthma model indicates that genes associated with Th2 inflammation are shared by all three species. However, some pathophysiologic aspects of human asthma (ie, subepithelial fibrosis, angiogenesis, neural biology, and immune host defense biology) are better represented in the gene expression profile of the rhesus model than in the mouse model. Further study of the rhesus asthma model may yield novel insights into the pathogenesis of human Th2-high asthma.
Collapse
Affiliation(s)
- Alexander R Abbas
- Department of Bioinformatics, Genentech Inc., South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Taube C, Tertilt C, Gyülveszi G, Dehzad N, Kreymborg K, Schneeweiss K, Michel E, Reuter S, Renauld JC, Arnold-Schild D, Schild H, Buhl R, Becher B. IL-22 is produced by innate lymphoid cells and limits inflammation in allergic airway disease. PLoS One 2011; 6:e21799. [PMID: 21789181 PMCID: PMC3138740 DOI: 10.1371/journal.pone.0021799] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 06/07/2011] [Indexed: 01/11/2023] Open
Abstract
Interleukin (IL)-22 is an effector cytokine, which acts primarily on epithelial cells in the skin, gut, liver and lung. Both pro- and anti-inflammatory properties have been reported for IL-22 depending on the tissue and disease model. In a murine model of allergic airway inflammation, we found that IL-22 is predominantly produced by innate lymphoid cells in the inflamed lungs, rather than TH cells. To determine the impact of IL-22 on airway inflammation, we used allergen-sensitized IL-22-deficient mice and found that they suffer from significantly higher airway hyperreactivity upon airway challenge. IL-22-deficiency led to increased eosinophil infiltration lymphocyte invasion and production of CCL17 (TARC), IL-5 and IL-13 in the lung. Mice treated with IL-22 before antigen challenge displayed reduced expression of CCL17 and IL-13 and significant amelioration of airway constriction and inflammation. We conclude that innate IL-22 limits airway inflammation, tissue damage and clinical decline in allergic lung disease.
Collapse
Affiliation(s)
- Christian Taube
- III. Medical Clinic, Johannes Gutenberg-University, Mainz, Germany
| | - Christine Tertilt
- Institute of Immunology, Johannes Gutenberg-University, Mainz, Germany
- Department of Pediatrics, Johannes Gutenberg-University, Mainz, Germany
| | - Gabor Gyülveszi
- Institute of Experimental Immunology, Department of Pathology, Neuroimmunology Divison, University Hospital Zurich, Zurich, Switzerland
| | - Nina Dehzad
- III. Medical Clinic, Johannes Gutenberg-University, Mainz, Germany
| | - Katharina Kreymborg
- Institute of Experimental Immunology, Department of Pathology, Neuroimmunology Divison, University Hospital Zurich, Zurich, Switzerland
| | | | - Erich Michel
- Institute for Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Sebastian Reuter
- III. Medical Clinic, Johannes Gutenberg-University, Mainz, Germany
| | - Jean-Christophe Renauld
- Ludwig Institute for Cancer Research Ltd Experimental Medicine Unit, Universite Catholique de Louvain, Louvain, Belgium
| | | | - Hansjörg Schild
- Institute of Immunology, Johannes Gutenberg-University, Mainz, Germany
| | - Roland Buhl
- III. Medical Clinic, Johannes Gutenberg-University, Mainz, Germany
| | - Burkhard Becher
- Institute of Experimental Immunology, Department of Pathology, Neuroimmunology Divison, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Reuter S, Taube C. Mast cells and the development of allergic airway disease. J Occup Med Toxicol 2011; 3 Suppl 1:S2. [PMID: 18315833 PMCID: PMC2259396 DOI: 10.1186/1745-6673-3-s1-s2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Murine models have highlighted the importance of T-cells and TH2 cytokines in development of allergen-induced airway disease. In contrast, the role of mast cells for the development of allergic airway disease has been controversial. Recent studies in murine models demonstrate a significant contribution of mast cells during the development of airway hyperresponsiveness and airway inflammation. Furthermore these models have allowed identifying certain mast cell-produced mediators (e.g. histamine and leukotriene B4) to be involved in the recruitment of effector T-cells into the lung. Additionally, mast cell-produced TNF can directly activate TH2 cells and contribute to the development of allergic airway disease. These new findings demonstrate a complex role of mast cells and their mediators, not only as effector cells, but also during sensitization and development of allergic airway disease. Therefore mast cells and certain mast cell-produced mediators might be an interesting target for the prevention and treatment of allergic asthma.
Collapse
Affiliation(s)
- Sebastian Reuter
- III, Medical Clinic, Dept, of Pulmonary Medicine, Johannes-Gutenberg-University, Langenbeckstr, 1, 55101 Mainz, Germany.
| | | |
Collapse
|
28
|
The Role of RSV Infection in Asthma Initiation and Progression: Findings in a Mouse Model. Pulm Med 2011; 2011:748038. [PMID: 21766019 PMCID: PMC3135221 DOI: 10.1155/2011/748038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 03/31/2011] [Indexed: 11/26/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a common cause of severe lower respiratory tract diseases (bronchiolitis and pneumonia) during infancy and early childhood. There is increasing evidence which indicates that severe pulmonary disease caused by RSV infection in infancy is associated with recurrent wheezing and development of asthma later in childhood. However, the underlying mechanisms linking RSV infection to persistent airway hyperresponsiveness and dysfunction are not fully defined. To study these processes in ways which are not available in humans, animal models have been established and have provided valuable insight into the pathophysiology of RSV-induced disease. In this paper, we discuss experimental models of RSV infection in mice and highlight a new investigative approach in which mice are initially infected as neonates and then reinfected later in life. The findings shed light on the mechanisms underlying the association between early severe RSV infection and development of asthma later in childhood.
Collapse
|
29
|
Dehzad N, Bopp T, Reuter S, Klein M, Martin H, Ulges A, Stassen M, Schild H, Buhl R, Schmitt E, Taube C. Regulatory T cells more effectively suppress Th1-induced airway inflammation compared with Th2. THE JOURNAL OF IMMUNOLOGY 2011; 186:2238-44. [PMID: 21242522 DOI: 10.4049/jimmunol.1002027] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Asthma is a syndrome with different inflammatory phenotypes. Animal models have shown that, after sensitization and allergen challenge, Th2 and Th1 cells contribute to the development of allergic airway disease. We have previously demonstrated that naturally occurring regulatory T cells (nTregs) can only marginally suppress Th2-induced airway inflammation and airway hyperresponsiveness. In this study, we investigated nTreg-mediated suppression of Th2-induced and Th1-induced acute allergic airway disease. We demonstrate in vivo that nTregs exert their suppressive potency via cAMP transfer on Th2- and Th1-induced airway disease. A comparison of both phenotypes revealed that, despite similar cAMP transfers, Th1-driven airway hyperresponsiveness and inflammation are more susceptible to nTreg-dependent suppression, suggesting that potential nTreg-based therapeutic strategies might be more effective in patients with predominantly neutrophilic airway inflammation based on deregulated Th1 response.
Collapse
Affiliation(s)
- Nina Dehzad
- III Medical Department, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Mast cells have been regarded for a long time as effector cells in IgE mediated type I reactions and in host defence against parasites. However, they are resident in all environmental exposed tissues and express a wide variety of receptors, suggesting that these cells can also function as sentinels in innate immune responses. Indeed, studies have demonstrated an important role of mast cells during the induction of life-saving antibacterial responses. Furthermore, recent findings have shown that mast cells promote and modulate the development of adaptive immune responses, making them an important hinge of innate and acquired immunity. In addition, mast cells and several mast cell-produced mediators have been shown to be important during the development of allergic airway diseases. In the present review, we will summarize findings on the role of mast cells during the development of adaptive immune responses and highlight their function, especially during the development of allergic asthma.
Collapse
Affiliation(s)
- Sebastian Reuter
- III Medical Clinic, Johannes Gutenberg-University, Langenbeckstr 1, 55131 Mainz, Germany.
| | | | | |
Collapse
|
31
|
Lee MY, Seo CS, Ha H, Jung D, Lee H, Lee NH, Lee JA, Kim JH, Lee YK, Son JK, Shin HK. Protective effects of Ulmus davidiana var. japonica against OVA-induced murine asthma model via upregulation of heme oxygenase-1. JOURNAL OF ETHNOPHARMACOLOGY 2010; 130:61-69. [PMID: 20420895 DOI: 10.1016/j.jep.2010.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 04/09/2010] [Accepted: 04/11/2010] [Indexed: 05/29/2023]
Abstract
AIM OF THE STUDY Traditionally, the stem and root bark of Ulmus davidiana var. japonica (Ulmaceae) are Korean herbal medicines used for anti-inflammatory and anticancer therapy. In this study, we investigated the protective effects of Ulmus davidiana var. japonica ethanolic extract (UD) in a murine asthma model. Furthermore, we determined whether heme oxygenase (HO)-1 is required for the protective activity of UD. MATERIALS AND METHODS Airways of ovalbumin (OVA)-sensitized mice exposed to OVA challenge developed eosinophilia, mucus hypersecretion and increased cytokine levels. UD was applied 1h prior to OVA challenge. Mice were administered UD orally at doses of 100 and 200mg/kg once daily on days 18-23. Bronchoalveolar lavage fluid (BALF) was collected 48 h after the final OVA challenge. Levels of interleukin (IL)-4 and IL-5 in BALF were measured using enzyme-linked immunosorbent assays (ELISAs). Lung tissue sections 4 microm in thickness were stained with Mayer's hematoxylin and eosin for assessment of cell infiltration and mucus production with PAS (periodic acid shift reagent) staining, in conjunction with ELISA, immunohistochemistry and Western blot analyses for HO-1 protein expression. RESULTS AND CONCLUSION Orally administered UD significantly inhibited the number of OVA-induced inflammatory cells and IgE production, along with reduced T-helper (Th)2 cytokine levels, such as IL-4 and IL-5, in BALF and lung tissue. In addition, UD induced a marked decrease in OVA-induced reactive oxygen species (ROS), inflammatory cell infiltration and mucus production in lung tissue. These effects were correlated with HO-1 mRNA and protein induction. Our results indicate that UD protects against OVA-induced airway inflammation, at least in part, via HO-1 upregulation.
Collapse
Affiliation(s)
- Mee-Young Lee
- Herbal Medicine EBM Research Center, Korea Institute of Oriental Medicine, Exporo 483, Yusung-gu, Daejeon 305-811, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Suzuki A, Iwamura C, Shinoda K, Tumes DJ, Kimura MY, Hosokawa H, Endo Y, Horiuchi S, Tokoyoda K, Koseki H, Yamashita M, Nakayama T. Polycomb group gene product Ring1B regulates Th2-driven airway inflammation through the inhibition of Bim-mediated apoptosis of effector Th2 cells in the lung. THE JOURNAL OF IMMUNOLOGY 2010; 184:4510-20. [PMID: 20237291 DOI: 10.4049/jimmunol.0903426] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Polycomb group (PcG) gene products regulate the maintenance of homeobox gene expression in Drosophila and vertebrates. In the immune system, PcG molecules control cell cycle progression of thymocytes, Th2 cell differentiation, and the generation of memory CD4 T cells. In this paper, we extended the study of PcG molecules to the regulation of in vivo Th2 responses, especially allergic airway inflammation, by using conditional Ring1B-deficient mice with a CD4 T cell-specific deletion of the Ring1B gene (Ring1B(-/-) mice). In Ring1B(-/-) mice, CD4 T cell development appeared to be normal, whereas the differentiation of Th2 cells but not Th1 cells was moderately impaired. In an Ag-induced Th2-driven allergic airway inflammation model, eosinophilic inflammation was attenuated in Ring1B(-/-) mice. Interestingly, Ring1B(-/-) effector Th2 cells were highly susceptible to apoptosis in comparison with wild-type effector Th2 cells in vivo and in vitro. The in vitro experiments revealed that the expression of Bim was increased at both the transcriptional and protein levels in Ring1B(-/-) effector Th2 cells, and the enhanced apoptosis in Ring1B(-/-) Th2 cells was rescued by the knockdown of Bim but not the other proapoptotic genes, such as Perp, Noxa, or Bax. The enhanced apoptosis detected in the transferred Ring1B(-/-) Th2 cells in the lung of the recipient mice was also rescued by knockdown of Bim. Therefore, these results indicate that Ring1B plays an important role in Th2-driven allergic airway inflammation through the control of Bim-dependent apoptosis of effector Th2 cells in vivo.
Collapse
Affiliation(s)
- Akane Suzuki
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Allen IC. Searching for an improved mouse model of allergic airway disease using dual allergen exposures. Dis Model Mech 2010; 2:519-20. [PMID: 19892879 DOI: 10.1242/dmm.004333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Irving C Allen
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
34
|
Abstract
During the last decades more than 100 000 new chemicals have been introduced to the environment. Many of these new chemicals and many common consumer products that include these have been shown to be toxic in animal studies and an increasing body of evidence suggests that they are also impacting human health. Among the suspect chemicals, the endocrine disrupting chemicals (EDCs) are of particular concern. One such chemical group is the phthalates, used in soft poly vinyl chloride (PVC) material and in a huge number of consumer products. During the same period of time that the prevalence of these modern chemicals has increased, there has been a remarkable increase in several chronic illnesses, including asthma and allergy in children. In this article we outline the scientific knowledge on phthalate exposure for asthma and airway diseases in children by examining epidemiological and experimental peer review data for potential explanatory mechanisms. Epidemiological data point to a possible correlation between phthalate exposure and asthma and airway diseases in children. Experimental studies present support for an adjuvant effect on basic mechanisms in allergic sensitization by several phthalates. Despite variations in the experimental design and reported result in the individual studies, a majority of published reports have identified adjuvant effects on Th2 differentiation, production of Th2 cytokines and enhanced levels of Th2 promoted immunoglobulins (mainly IgG1 but also IgE) in mice. A limited amount of data do also suggest phthalate-induced enhancement of mast cell degranulation and eosinophilic infiltration which are important parts in the early inflammation phase. Thus, some of the early key mechanisms in the pathology of allergic asthma could possibly be targeted by phthalate exposure. But the important questions of clinical relevance of real life exposure and identification of molecular targets that can explain interactions largely remain to be answered.
Collapse
Affiliation(s)
- C G Bornehag
- Public Health Sciences, Karlstad University, Karlstad, Sweden.
| | | |
Collapse
|
35
|
Perona-Wright G, Mohrs K, Mayer KD, Mohrs M. Differential regulation of IL-4Ralpha expression by antigen versus cytokine stimulation characterizes Th2 progression in vivo. THE JOURNAL OF IMMUNOLOGY 2009; 184:615-23. [PMID: 20018622 DOI: 10.4049/jimmunol.0902408] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
IL-4 promotes Th2 differentiation and provides immunity to helminth infections but is also associated with allergy and asthma. This suggests that precise adjustment of IL-4 responsiveness is needed to correctly balance immune responses. The IL-4Ralpha chain is an essential component of the IL-4 receptor and signals via STAT6. In this study, we show that infection with a helminth pathogen elicited broad upregulation of IL-4Ralpha on bystander CD4+ T cells in the draining lymph node, while simultaneously resulting in the loss of IL-4Ralpha expression on activated Th2 cells. IL-4Ralpha upregulation was restricted to the reactive lymph node, occurred within 4 d of infection, and was driven by an IL-4- and STAT6-dependent mechanism. Mice heterozygous for Stat6 exhibited reduced IL-4Ralpha upregulation and a correspondingly attenuated Th2 response. Indeed, the enhanced IL-4Ralpha upregulation in BALB/c mice, compared with that in C57BL6 mice, predicted their stronger Th2 response. The selective downregulation of IL-4Ralpha on highly activated Th cells was triggered by antigenic stimulation, was accompanied by loss of IL-7Ralpha, and rendered the cells unresponsive to IL-4. Together these data reveal a tightly controlled program of changing IL-4 responsiveness that characterizes the initiation, amplification, and restriction of a Th2 response in vivo.
Collapse
|
36
|
Mouse models of allergic diseases. Curr Opin Immunol 2009; 21:660-5. [PMID: 19828303 DOI: 10.1016/j.coi.2009.09.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 09/01/2009] [Indexed: 12/11/2022]
Abstract
The increasing prevalence of allergic diseases worldwide is posing significant socio-economic challenges. The pathogenesis of these diseases reflects a complex interaction of genetic and environmental factors. The heterogeneity of disease phenotypes challenges the concept of single mechanisms of disease. As human experimentation is limited, animal models have been developed to provide insights into pathogenesis and potential for discovery of novel therapeutics. Mice have served in models of many of the allergic diseases including asthma, allergic rhinitis, food allergy, atopic dermatitis (AD), and allergic conjunctivitis. Although much has been learned from these investigations, there are limitations when these models are translated to the human diseases.
Collapse
|
37
|
Zuberi RI, Ge XN, Jiang S, Bahaie NS, Kang BN, Hosseinkhani RM, Frenzel EM, Fuster MM, Esko JD, Rao SP, Sriramarao P. Deficiency of endothelial heparan sulfates attenuates allergic airway inflammation. THE JOURNAL OF IMMUNOLOGY 2009; 183:3971-9. [PMID: 19710461 DOI: 10.4049/jimmunol.0901604] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The effect of targeted inactivation of the gene encoding N-deacetylase/N-sulfotransferase-1 (Ndst1), a key enzyme involved in the biosynthesis of heparan sulfate (HS) chains, on the inflammatory response associated with allergic inflammation in a murine model of OVA-induced acute airway inflammation was investigated. OVA-exposed Ndst1(f/f)TekCre(+) (mutant) mice deficient in endothelial and leukocyte Ndst1 demonstrated significantly decreased allergen-induced airway hyperresponsiveness and inflammation characterized by a significant reduction in airway recruitment of inflammatory cells (eosinophils, macrophages, neutrophils, and lymphocytes), diminished IL-5, IL-2, TGF-beta1, and eotaxin levels, as well as decreased expression of TGF-beta1 and the angiogenic protein FIZZ1 (found in inflammatory zone 1) in lung tissue compared with OVA-exposed Ndst1(f/f)TekCre(-) wild-type littermates. Furthermore, murine eosinophils demonstrated significantly decreased rolling on lung endothelial cells (ECs) from mutant mice compared with wild-type ECs under conditions of flow in vitro. Treatment of wild-type ECs, but not eosinophils, with anti-HS Abs significantly inhibited eosinophil rolling, mimicking that observed with Ndst1-deficient ECs. In vivo, trafficking of circulating leukocytes in lung microvessels of allergen-challenged Ndst1-deficient mice was significantly lower than that observed in corresponding WT littermates. Endothelial-expressed HS plays an important role in allergic airway inflammation through the regulation of recruitment of inflammatory cells to the airways by mediating interaction of leukocytes with the vascular endothelium. Furthermore, HS may also participate by sequestering and modulating the activity of allergic asthma-relevant mediators such as IL-5, IL-2, and TGF-beta1.
Collapse
Affiliation(s)
- Riaz I Zuberi
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St Paul, MN 55108, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Combined sensitization of mice to extracts of dust mite, ragweed, and Aspergillus species breaks through tolerance and establishes chronic features of asthma. J Allergy Clin Immunol 2009; 123:925-32.e11. [PMID: 19348928 DOI: 10.1016/j.jaci.2009.02.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 01/20/2009] [Accepted: 02/03/2009] [Indexed: 11/23/2022]
Abstract
BACKGROUND Existing asthma models develop tolerance when chronically exposed to the same allergen. OBJECTIVE We sought to establish a chronic model that sustains features of asthma long after discontinuation of allergen exposure. METHODS We immunized and exposed mice to a combination of single, double, or triple allergens (dust mite, ragweed, and Aspergillus species) intranasally for 8 weeks. Airway hyperreactivity (AHR) and morphologic features of asthma were studied 3 weeks after allergen exposure. Signaling effects of the allergens were studied on dendritic cells. RESULTS Sensitization and repeated exposure to a single allergen induced tolerance. Sensitization to double and especially triple allergens broke through tolerance and established AHR, eosinophilic inflammation, mast cell and smooth muscle hyperplasia, mucus production, and airway remodeling that persisted at least 3 weeks after allergen exposure. Mucosal exposure to triple allergens in the absence of an adjuvant was sufficient to induce chronic airway inflammation. Anti-IL-5 and anti-IL-13 antibodies inhibited inflammation and AHR in the acute asthma model but not in the chronic triple-allergen model. Multiple allergens produce a synergy in p38 mitogen-activated protein kinase signaling and maturation of dendritic cells, which provides heightened T-cell costimulation at a level that cannot be achieved with a single allergen. CONCLUSIONS Sensitivity to multiple allergens leads to chronic asthma in mice. Multiple allergens synergize in dendritic cell signaling and T-cell stimulation that allows escape from the single allergen-associated tolerance development.
Collapse
|
39
|
Bopp T, Dehzad N, Reuter S, Klein M, Ullrich N, Stassen M, Schild H, Buhl R, Schmitt E, Taube C. Inhibition of cAMP degradation improves regulatory T cell-mediated suppression. THE JOURNAL OF IMMUNOLOGY 2009; 182:4017-24. [PMID: 19299699 DOI: 10.4049/jimmunol.0803310] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Naturally occurring regulatory T cells (nTreg cells) are crucial for the maintenance of peripheral tolerance. We have previously shown that a key mechanism of their suppressive action is based on a contact-dependent transfer of cAMP from nTreg cells to responder T cells. Herein, we further elucidate the important role of cAMP for the suppressive properties of nTreg cells. Prevention of cAMP degradation by application of the phosphodiesterase 4 inhibitor rolipram led to strongly increased suppressive potency of nTreg cells for Th2 cells in vitro and in vivo. Detailed analyses revealed that rolipram caused, in the presence of nTreg cells, a synergistic increase of cAMP in responder Th2 cells. In vivo, the application of nTreg cells in a strictly Th2-dependent preclinical model of asthma had only a marginal effect. However, the additional treatment with rolipram led to a considerable reduction of airway hyperresponsiveness and inflammation in a prophylactic as well as in a therapeutic model. This amelioration was correlated with enhanced cAMP-levels in lung Th2 cells in vivo. Collectively, these data support our observation that cAMP has a key function for nTreg cell-based suppression and they clearly demonstrate that the effect of cAMP on T responder cells can be greatly enhanced upon application of phosphodiesterase 4 inhibitors.
Collapse
Affiliation(s)
- Tobias Bopp
- Institute for Immunology, Johannes Gutenberg-University, Mainz, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
DiGiovanni FA, Ellis R, Wattie J, Hirota JA, Southam DS, Inman MD. Concurrent dual allergen exposure and its effects on airway hyperresponsiveness, inflammation and remodeling in mice. Dis Model Mech 2009; 2:275-82. [PMID: 19380307 DOI: 10.1242/dmm.001859] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Experimental mouse models of asthma have broadened our understanding of the mechanisms behind allergen-induced asthma. Typically, mouse models of allergic asthma explore responses to a single allergen; however, patients with asthma are frequently exposed to, and tend to be allergic to, more than one allergen. The aim of the current study was to develop a new and more relevant mouse model of asthma by measuring the functional, inflammatory and structural consequences of chronic exposure to a combination of two different allergens, ovalbumin (OVA) and house dust mite (HDM), in comparison with either allergen alone. BALB/c mice were sensitized and exposed to OVA, HDM or the combination of HDM and OVA for a period of 10 weeks. Following allergen exposure, airway responsiveness was measured using the flexiVent small animal ventilator, and mice were assessed for indices of airway inflammation and remodeling at both 24 hours and 4 weeks after the final allergen exposure. Mice exposed to the HDM-OVA combination exhibited increased numbers of inflammatory cells in the bronchoalveolar lavage (BAL) when compared with mice exposed to a single allergen. Mice exposed to HDM-OVA also exhibited an elevated level of lung tissue mast cells compared with mice exposed to a single allergen. Following the resolution of inflammatory events, mice exposed to the allergen combination displayed an elevation in the maximal degree of total respiratory resistance (Max R(RS)) compared with mice exposed to a single allergen. Furthermore, trends for increases in indices of airway remodeling were observed in mice exposed to the allergen combination compared with a single allergen. Although concurrent exposure to HDM and OVA resulted in increased aspects of airway hyperresponsiveness, airway inflammation and airway remodeling when compared with exposure to each allergen alone, concurrent exposure did not result in a substantially more robust mouse model of allergic asthma than exposure to either allergen alone.
Collapse
Affiliation(s)
- Franco A DiGiovanni
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
41
|
Vanoirbeek JAJ, Rinaldi M, De Vooght V, Haenen S, Bobic S, Gayan-Ramirez G, Hoet PHM, Verbeken E, Decramer M, Nemery B, Janssens W. Noninvasive and invasive pulmonary function in mouse models of obstructive and restrictive respiratory diseases. Am J Respir Cell Mol Biol 2009; 42:96-104. [PMID: 19346316 DOI: 10.1165/rcmb.2008-0487oc] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pulmonary function analysis is an important tool in the evaluation of mouse respiratory disease models, but much controversy still exists on the validity of some tests. Most commonly used pulmonary function variables of humans are not routinely applied in mice, and the question of which pulmonary function is optimal for the monitoring of a particular disease model remains largely unanswered. Our study aimed to delineate the potential and restrictions of existing pulmonary function techniques in different respiratory disease models, and to determine some common variables between humans and mice. A noninvasive (unrestrained plethysmography) and two invasive pulmonary function devices (forced maneuvers system from Buxco Research Systems [Wilmington, NC] and forced oscillation technique from SCIREQ [Montreal, PQ, Canada]) were evaluated in well-established models of asthma (protein and chemical induced): a model of elastase-induced pulmonary emphysema, and a model of bleomycin-induced pulmonary fibrosis. In contrast to noninvasive tests, both invasive techniques were efficacious for the quantification of parenchymal disease via changes in functional residual capacity, total lung capacity, vital capacity, and compliance of the respiratory system. Airflow obstruction and airflow limitation at baseline were only present in emphysema, but could be significantly induced after methacholine challenge in mice with asthma, which correlated best with an increase of respiratory resistance. Invasive pulmonary functions allow distinction between respiratory diseases in mice by clinically relevant variables, and should become standard in the functional evaluation of pathological disease models.
Collapse
Affiliation(s)
- Jeroen A J Vanoirbeek
- Lung Toxicology Research Unit, Katholieke Universiteit Leuven, Herestraat 49 bus 706, Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
North ML, Khanna N, Marsden PA, Grasemann H, Scott JA. Functionally important role for arginase 1 in the airway hyperresponsiveness of asthma. Am J Physiol Lung Cell Mol Physiol 2009; 296:L911-20. [PMID: 19286931 DOI: 10.1152/ajplung.00025.2009] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
l-Arginine metabolism by the arginase and nitric oxide (NO) synthase (NOS) families of enzymes is important in NO production, and imbalances between these pathways contribute to airway hyperresponsiveness (AHR) in asthma. To investigate the role of arginase isozymes (ARG1 and ARG2) in AHR, we determined the protein expression of ARG1, ARG2, the NOS isozymes, and other proteins involved in l-arginine metabolism in lung tissues from asthma patients and in acute (3-wk) and chronic (12-wk) murine models of ovalbumin-induced airway inflammation. Expression of ARG1 was increased in human asthma, whereas ARG2, NOS isoforms, and the other l-arginine-related proteins (i.e., cationic amino acid transporters 1 and 2, agmatinase, and ornithine decarboxylase) were unchanged. In the acute murine model of allergic airway inflammation, augmentation of ARG1 expression was similarly the most dramatic change in protein expression. However, ARG2, NOS1, NOS2, and agmatinase were also increased, whereas NOS3 expression was decreased. Arginase inhibition in vivo with nebulized S-(2-boronoethyl)-l-cysteine attenuated the methacholine responsiveness of the central airways in mice from the acute model. Further investigations in the chronic murine model revealed an expression profile that more closely paralleled the human asthma samples: only ARG1 expression was significantly increased. Interestingly, in the chronic mouse model, which generates a remodeling phenotype, arginase inhibition attenuated methacholine responsiveness of the central and peripheral airways. The similarity in arginase expression between human asthma and the chronic model and the attenuation of AHR after in vivo treatment with an arginase inhibitor suggest the potential for therapeutic modification of arginase activity in asthma.
Collapse
Affiliation(s)
- Michelle L North
- Institutes of Medical Sciences, Dalla Lana School of Public Health, Faculty of Medicine, Ontario, Canada
| | | | | | | | | |
Collapse
|
43
|
Hutchison S, Choo-Kang BSW, Gibson VB, Bundick RV, Leishman AJ, Brewer JM, McInnes IB, Garside P. An investigation of the impact of the location and timing of antigen-specific T cell division on airways inflammation. Clin Exp Immunol 2009; 155:107-16. [PMID: 19076834 DOI: 10.1111/j.1365-2249.2008.03800.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
It is widely accepted that allergic asthma is orchestrated by T helper type 2 lymphocytes specific for inhaled allergen. However, it remains unclear where and when T cell activation and division occurs after allergen challenge, and whether these factors have a significant impact on airways inflammation. We therefore employed a CD4-T cell receptor transgenic adoptive transfer model in conjunction with laser scanning cytometry to characterize the location and timing of T cell division in asthma in vivo. Thus, for the first time we have directly assessed the division of antigen-specific T cells in situ. We found that accumulation of divided antigen-specific T cells in the lungs appeared to occur in two waves. The first very early wave was apparent before dividing T cells could be detected in the lymph node (LN) and coincided with neutrophil influx. The second wave of divided T cells accumulating in lung followed the appearance of these cells in LN and coincided with peak eosinophilia. Furthermore, accumulation of antigen-specific T cells in the draining LN and lung tissue, together with accompanying pathology, was reduced by intervention with the sphingosine 1-phosphate receptor agonist FTY720 2 days after challenge. These findings provide greater insight into the timing and location of antigen-specific T cell division in airways inflammation, indicate that distinct phases and locations of antigen presentation may be associated with different aspects of pathology and that therapeutics targeted against leukocyte migration may be useful in these conditions.
Collapse
Affiliation(s)
- S Hutchison
- Centre for Biophotonics, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Dittrich AM, Chen HC, Xu L, Ranney P, Connolly S, Yarovinsky TO, Bottomly HK. A new mechanism for inhalational priming: IL-4 bypasses innate immune signals. THE JOURNAL OF IMMUNOLOGY 2008; 181:7307-15. [PMID: 18981153 DOI: 10.4049/jimmunol.181.10.7307] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Signaling via innate immune mechanisms is considered pivotal for T cell-mediated responses to inhaled Ags. Furthermore, Th2 cells specific for one inhaled Ag can facilitate priming of naive T cells to unrelated new inhaled Ags, a process we call "Th2 collateral priming". Interestingly, our previous studies showed that collateral priming is independent of signals via the innate immune system but depends on IL-4 secretion by CD4(+) T cells. We thus hypothesized that IL-4 can bypass the need for signals via the innate immune system, considered essential for pulmonary priming. Indeed, we were able to show that IL-4 bypasses the requirement for TLR4- and MyD88-mediated signaling for responses to new allergens. Furthermore, we characterized the mechanisms by which IL-4 primes for new inhaled allergens: "IL-4-dependent pulmonary priming" relies on IL-4 receptor expression on hematopoietic cells and structural cells. Transfer experiments indicate that within the hematopoietic compartment both T cells and dendritic cells need to express the IL-4 receptor. Finally, we were able to show that IL-4 induces recruitment and maturation of myeloid dendritic cells in vivo and increases T cell recruitment to the draining lymph nodes. Our findings bring new mechanistic knowledge to the phenomenon of polysensitization and primary sensitization in asthma.
Collapse
Affiliation(s)
- Anna M Dittrich
- Department for Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Anti-asthmatic effect of marine red alga (Laurencia undulata) polyphenolic extracts in a murine model of asthma. Food Chem Toxicol 2008; 47:293-7. [PMID: 19049817 DOI: 10.1016/j.fct.2008.11.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 10/22/2008] [Accepted: 11/03/2008] [Indexed: 11/27/2022]
Abstract
The aim of the present work is focused on protective effects of an edible red alga, Laurencia undulata ethanolic (EtOH) extracts (LU) containing a large amount of polyphenols against OVA-induced murine allergic airway reactions using in vivo histological and cytokine assay. Mice sensitized and challenged with ovalbumin (OVA) showed typical asthmatic reactions as follows: an increase in the number of eosinophil in bronchoalveolar lavage fluid; a marked influx of inflammatory cells into the lung around blood vessels and airways, and airway luminal narrowing; the development of airway hyperresponsiveness; the detection of TNF-alpha and Th2 cytokines, such as IL-4 and IL-5 in the bronchoalveolar lavage (BAL) fluid; and detection of allergen-specific IgE in the serum. The successive intraperitoneal administration of LU before the last airway OVA-challenge resulted in a significant inhibition of all asthmatic reactions. These results suggest that L. undulata polyphenolic extracts possess therapeutic potential for combating bronchial asthma associated with allergic diseases.
Collapse
|
46
|
Heib V, Becker M, Taube C, Stassen M. Advances in the understanding of mast cell function. Br J Haematol 2008; 142:683-94. [DOI: 10.1111/j.1365-2141.2008.07244.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Spinozzi F, de Benedictis D, de Benedictis FM. Apoptosis, airway inflammation and anti-asthma therapy: from immunobiology to clinical application. Pediatr Allergy Immunol 2008; 19:287-95. [PMID: 18179617 DOI: 10.1111/j.1399-3038.2007.00668.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
T lymphocyte apoptosis is essential for maintaining immune system homeostasis. Experimental evidence suggests apoptosis control mechanisms may be impaired in inflammatory conditions, particularly airway Th2-type allergic diseases. This review briefly examines the mucosal immune system homeostasis and common apoptotic pathways and discusses impaired apoptosis, allergy, airway inflammation, remodelling and fibrosis. Finally, the paper presents an update on pharmacological targeting of apoptosis to control airway inflammation in patients with allergic asthma.
Collapse
Affiliation(s)
- Fabrizio Spinozzi
- Department of Clinical and Experimental Medicine, University of Perugia, Italy
| | | | | |
Collapse
|
48
|
Effects of radix adenophorae and cyclosporine A on an OVA-induced murine model of asthma by suppressing to T cells activity, eosinophilia, and bronchial hyperresponsiveness. Mediators Inflamm 2008; 2008:781425. [PMID: 18382613 PMCID: PMC2276601 DOI: 10.1155/2008/781425] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 01/02/2008] [Indexed: 12/03/2022] Open
Abstract
The present study is performed to investigate the inhibitory effects of Radix Adenophorae extract (RAE) on ovalbumin-induced asthma murine model. To study the anti-inflammatory and antiasthmatic effects of RAE, we examined the development of pulmonary eosinophilic inflammation and inhibitory effects of T cells in murine by RAE and cyclosporine A (CsA). We examined determination of airway hyperresponsiveness, flow cytometric analysis (FACS), enzyme-linked immunosorbent assay (ELISA), quantitative real time (PCR), hematoxylin-eosin staining, and Masson trichrome staining in lung tissue, lung weight, total cells, and eosinophil numbers in lung tissue. We demonstrated how RAE suppressed development on inflammation and decreased airway damage.
Collapse
|
49
|
Finkelman FD, Wills-Karp M. Usefulness and optimization of mouse models of allergic airway disease. J Allergy Clin Immunol 2008; 121:603-6. [PMID: 18328889 DOI: 10.1016/j.jaci.2008.01.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2007] [Accepted: 01/07/2008] [Indexed: 01/13/2023]
|
50
|
Minne A, Huaux F, Jaworska J, Rha RD, Hamelmann E, Vanbever R. Safety evaluation of pulmonary influenza vaccination in healthy and "asthmatic" mice. Vaccine 2008; 26:2360-8. [PMID: 18403071 DOI: 10.1016/j.vaccine.2008.02.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 02/12/2008] [Accepted: 02/28/2008] [Indexed: 10/22/2022]
Abstract
The present study reports animal immuno-toxicological data of pulmonary vaccination against inactivated seasonal influenza. Its aims were (i) to monitor the temporal kinetics of lung inflammation in normal mice over a period of 2 weeks following pulmonary vaccination in order to assess the risk of chronic lung inflammation, (ii) to evaluate the impact of pulmonary vaccination on the asthmatic phenotype in an established allergen-sensitized murine model of asthma. Both sets of experiments were performed using high doses of split influenza virus vaccine. In the first part of this study, we showed that pulmonary influenza vaccination induced a slight local inflammatory response which was limited in duration since it was no longer observed at 2 weeks post-vaccination. At this time point, it has previously been shown that the immunogenic efficacy was maintained. In the second part, we demonstrated that pulmonary influenza vaccination did not significantly exacerbate the cardinal features of asthma, i.e., allergen-specific IgE formation, the development of airway hyperreactivity (AHR) and eosinophilic airway inflammation. Our data therefore suggest that the overall immuno-toxicological profile of pulmonary vaccination against seasonal influenza was acceptable, even in an animal model of pulmonary hypersensitivity.
Collapse
Affiliation(s)
- Antoine Minne
- Department of Pharmaceutical Technology, Université catholique de Louvain, Avenue E. Mounier, 73 UCL 73.20, Brussels B-1200, Belgium
| | | | | | | | | | | |
Collapse
|