1
|
Pathak A, Willis KG, Bankaitis VA, McDermott MI. Mammalian START-like phosphatidylinositol transfer proteins - Physiological perspectives and roles in cancer biology. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159529. [PMID: 38945251 PMCID: PMC11533902 DOI: 10.1016/j.bbalip.2024.159529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/09/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
PtdIns and its phosphorylated derivatives, the phosphoinositides, are the biochemical components of a major pathway of intracellular signaling in all eukaryotic cells. These lipids are few in terms of cohort of unique positional isomers, and are quantitatively minor species of the bulk cellular lipidome. Nevertheless, phosphoinositides regulate an impressively diverse set of biological processes. It is from that perspective that perturbations in phosphoinositide-dependent signaling pathways are increasingly being recognized as causal foundations of many human diseases - including cancer. Although phosphatidylinositol transfer proteins (PITPs) are not enzymes, these proteins are physiologically significant regulators of phosphoinositide signaling. As such, PITPs are conserved throughout the eukaryotic kingdom. Their biological importance notwithstanding, PITPs remain understudied. Herein, we review current information regarding PITP biology primarily focusing on how derangements in PITP function disrupt key signaling/developmental pathways and are associated with a growing list of pathologies in mammals.
Collapse
Affiliation(s)
- Adrija Pathak
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, 77843, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Katelyn G Willis
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, 77843, USA
| | - Vytas A Bankaitis
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, 77843, USA; Department of Chemistry, Texas A&M University, College Station, Texas 77843 USA
| | - Mark I McDermott
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, 77843, USA.
| |
Collapse
|
2
|
Liu Z, Shi Y, Lin Q, Yang W, Luo Q, Cen Y, Li J, Fang X, Jiang WG, Gong C. Attenuation of PITPNM1 Signaling Cascade Can Inhibit Breast Cancer Progression. Biomolecules 2021; 11:biom11091265. [PMID: 34572478 PMCID: PMC8467484 DOI: 10.3390/biom11091265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/21/2021] [Accepted: 08/21/2021] [Indexed: 11/16/2022] Open
Abstract
Phosphatidylinositol transfer protein membrane-associated 1 (PITPNM1) contains a highly conserved phosphatidylinositol transfer domain which is involved in phosphoinositide trafficking and signaling transduction under physiological conditions. However, the functional role of PITPNM1 in cancer progression remains unknown. Here, by integrating datasets of The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer (METABRIC), we found that the expression of PITPNM1 is much higher in breast cancer tissues than in normal breast tissues, and a high expression of PITPNM1 predicts a poor prognosis for breast cancer patients. Through gene set variation analysis (GSEA) and gene ontology (GO) analysis, we found PITPNM1 is mainly associated with carcinogenesis and cell-to-cell signaling ontology. Silencing of PITPNM1, in vitro, significantly abrogates proliferation and colony formation of breast cancer cells. Collectively, PITPNM1 is an important prognostic indicator and a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Zihao Liu
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; (Z.L.); (Y.S.); (Q.L.); (W.Y.); (Q.L.); (Y.C.); (J.L.); (X.F.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yu Shi
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; (Z.L.); (Y.S.); (Q.L.); (W.Y.); (Q.L.); (Y.C.); (J.L.); (X.F.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qun Lin
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; (Z.L.); (Y.S.); (Q.L.); (W.Y.); (Q.L.); (Y.C.); (J.L.); (X.F.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Wenqian Yang
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; (Z.L.); (Y.S.); (Q.L.); (W.Y.); (Q.L.); (Y.C.); (J.L.); (X.F.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qing Luo
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; (Z.L.); (Y.S.); (Q.L.); (W.Y.); (Q.L.); (Y.C.); (J.L.); (X.F.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yinghuan Cen
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; (Z.L.); (Y.S.); (Q.L.); (W.Y.); (Q.L.); (Y.C.); (J.L.); (X.F.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Juanmei Li
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; (Z.L.); (Y.S.); (Q.L.); (W.Y.); (Q.L.); (Y.C.); (J.L.); (X.F.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xiaolin Fang
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; (Z.L.); (Y.S.); (Q.L.); (W.Y.); (Q.L.); (Y.C.); (J.L.); (X.F.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Wen G. Jiang
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK;
| | - Chang Gong
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; (Z.L.); (Y.S.); (Q.L.); (W.Y.); (Q.L.); (Y.C.); (J.L.); (X.F.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Correspondence: or
| |
Collapse
|
3
|
Lete MG, Tripathi A, Chandran V, Bankaitis VA, McDermott MI. Lipid transfer proteins and instructive regulation of lipid kinase activities: Implications for inositol lipid signaling and disease. Adv Biol Regul 2020; 78:100740. [PMID: 32992233 PMCID: PMC7986245 DOI: 10.1016/j.jbior.2020.100740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 05/17/2023]
Abstract
Cellular membranes are critical platforms for intracellular signaling that involve complex interfaces between lipids and proteins, and a web of interactions between a multitude of lipid metabolic pathways. Membrane lipids impart structural and functional information in this regulatory circuit that encompass biophysical parameters such as membrane thickness and fluidity, as well as chaperoning the interactions of protein binding partners. Phosphatidylinositol and its phosphorylated derivatives, the phosphoinositides, play key roles in intracellular membrane signaling, and these involvements are translated into an impressively diverse set of biological outcomes. The phosphatidylinositol transfer proteins (PITPs) are key regulators of phosphoinositide signaling. Found in a diverse array of organisms from plants, yeast and apicomplexan parasites to mammals, PITPs were initially proposed to be simple transporters of lipids between intracellular membranes. It now appears increasingly unlikely that the soluble versions of these proteins perform such functions within the cell. Rather, these serve to facilitate the activity of intrinsically biologically insufficient inositol lipid kinases and, in so doing, promote diversification of the biological outcomes of phosphoinositide signaling. The central engine for execution of such functions is the lipid exchange cycle that is a fundamental property of PITPs. How PITPs execute lipid exchange remains very poorly understood. Molecular dynamics simulation approaches are now providing the first atomistic insights into how PITPs, and potentially other lipid-exchange/transfer proteins, operate.
Collapse
Affiliation(s)
- Marta G Lete
- Department of Molecular and Cellular Medicine, Texas A&M Health Sciences Center, College Station, TX, 77843-1114, USA; Institute Biofisika (UPV/EHU, CSIC) and University of the Basque Country, Leioa, Spain
| | - Ashutosh Tripathi
- Department of Molecular and Cellular Medicine, Texas A&M Health Sciences Center, College Station, TX, 77843-1114, USA
| | - Vijay Chandran
- Department of Molecular and Cellular Medicine, Texas A&M Health Sciences Center, College Station, TX, 77843-1114, USA
| | - Vytas A Bankaitis
- Department of Molecular and Cellular Medicine, Texas A&M Health Sciences Center, College Station, TX, 77843-1114, USA; Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA; Department of Chemistry, Texas A&M University, College Station, TX, 77840, USA
| | - Mark I McDermott
- Department of Molecular and Cellular Medicine, Texas A&M Health Sciences Center, College Station, TX, 77843-1114, USA.
| |
Collapse
|
4
|
Li H, Zhao X, Wen X, Zeng A, Mao G, Lin R, Hu S, Liao W, Zhang Z. Inhibition of miR-490-5p Promotes Human Adipose-Derived Stem Cells Chondrogenesis and Protects Chondrocytes via the PITPNM1/PI3K/AKT Axis. Front Cell Dev Biol 2020; 8:573221. [PMID: 33240879 PMCID: PMC7680841 DOI: 10.3389/fcell.2020.573221] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) play a pivotal role in cartilage development and homeostasis in osteoarthritis (OA). While the fundamental roles of miRNAs in cartilage degeneration have been extensively studied, their effects on chondrogenic differentiation induced by human adipose-derived stem cells (hADSCs) and the underlying mechanisms remain largely elusive. Here, we investigated the roles and mechanisms of miRNAs in hADSC chondrogenic differentiation and chondrocyte homeostasis. Using microarray analysis, we screened miRNAs expressed in the chondrogenic differentiated hADSCs and identified miR-490-5p as the most significantly down-regulated miRNA. We analyzed its expression patterns during chondrogenesis in vivo and in vitro. Our study showed that miR-490-5p overexpression promoted the transition of hADSCs from chondrogenesis to osteogenesis. In addition, based on miRNA-mRNA prediction analysis and dual-luciferase reporter assay, we proposed and proved that miR-490-5p targeted PITPNM1 by binding to its 3'-UTR and inhibiting its translation. Moreover, loss- and gain-of-function experiments identified the involvement of the PI3K/AKT signaling pathway, and a rescue experiment determined the effect and specific mechanism of the miR-490-5p/PITPNM1/PI3K/AKT axis in hADSC chondrogenic differentiation and chondrocyte homeostasis. Inhibition of miR-490-5p alleviated cartilage injury in vivo as demonstrated using the destabilization of the medial meniscus (DMM) OA model. We identified miR-490-5p as a novel modulator of hADSC-mediated chondrogenesis and chondrocyte phenotype. This study highlighted that miR-490-5p attenuated hADSC chondrogenesis and accelerated cartilage degradation through activation of the PI3K/AKT signaling pathway by targeting PITPNM1. Inhibition of miR-490-5p facilitated hADSC chondrogenic differentiation and protected chondrocyte phenotype via the PITPNM1/PI3K/AKT axis, thus providing a novel stem cell potential therapeutic target for OA treatment.
Collapse
Affiliation(s)
- Hongyi Li
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Xiaoyi Zhao
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xingzhao Wen
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Anyu Zeng
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guping Mao
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ruifu Lin
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shu Hu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weiming Liao
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhiqi Zhang
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Groblewska M, Litman-Zawadzka A, Mroczko B. The Role of Selected Chemokines and Their Receptors in the Development of Gliomas. Int J Mol Sci 2020; 21:ijms21103704. [PMID: 32456359 PMCID: PMC7279280 DOI: 10.3390/ijms21103704] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Among heterogeneous primary tumors of the central nervous system (CNS), gliomas are the most frequent type, with glioblastoma multiforme (GBM) characterized with the worst prognosis. In their development, certain chemokine/receptor axes play important roles and promote proliferation, survival, metastasis, and neoangiogenesis. However, little is known about the significance of atypical receptors for chemokines (ACKRs) in these tumors. The objective of the study was to present the role of chemokines and their conventional and atypical receptors in CNS tumors. Therefore, we performed a thorough search for literature concerning our investigation via the PubMed database. We describe biological functions of chemokines/chemokine receptors from various groups and their significance in carcinogenesis, cancer-related inflammation, neo-angiogenesis, tumor growth, and metastasis. Furthermore, we discuss the role of chemokines in glioma development, with particular regard to their function in the transition from low-grade to high-grade tumors and angiogenic switch. We also depict various chemokine/receptor axes, such as CXCL8-CXCR1/2, CXCL12-CXCR4, CXCL16-CXCR6, CX3CL1-CX3CR1, CCL2-CCR2, and CCL5-CCR5 of special importance in gliomas, as well as atypical chemokine receptors ACKR1-4, CCRL2, and PITPMN3. Additionally, the diagnostic significance and usefulness of the measurement of some chemokines and their receptors in the blood and cerebrospinal fluid (CSF) of glioma patients is also presented.
Collapse
Affiliation(s)
- Magdalena Groblewska
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland;
| | - Ala Litman-Zawadzka
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland;
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland;
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland;
- Correspondence: ; Tel.: +48-85-831-8785
| |
Collapse
|
6
|
Lokeshwar BL, Kallifatidis G, Hoy JJ. Atypical chemokine receptors in tumor cell growth and metastasis. Adv Cancer Res 2020; 145:1-27. [PMID: 32089162 DOI: 10.1016/bs.acr.2019.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Atypical chemokine receptors (ACKRs) are seven-transmembrane cell surface protein receptors expressed in immune cells, normal mesenchymal cells, and several tumor cells. As of this writing, six ACKRs have been characterized by diverse activities. They bind both cysteine-cysteine (CC) type and cysteine-X-cysteine (CXC)-type chemokines, either alone, or together with a ligand bound-functional G-protein coupled (typical) chemokine receptor. The major structural difference between ACKRs and typical chemokine receptors is the substituted DRYLAIV amino acid motif in the second intracellular loop of the ACKR. Due to this substitution, these receptors cannot bind Gαi-type G-proteins responsible for intracellular calcium mobilization and cellular chemotaxis. Although initially characterized as non-signaling transmembrane receptors (decoy receptors) that attenuate ligand-induced signaling by GPCRs, studies of all ACKRs have shown ligand-independent and ligand-dependent transmembrane signaling in both non-tumor and tumor cells. The precise function and mechanism of the differential expression of ACKRs in many tumors are not understood well. The use of antagonists of ACKRs ligands has shown limited antitumor potential; however, depleting ACKR expression resulted in a reduction in experimental tumor growth and metastasis. The ACKRs represent a unique class of transmembrane signaling proteins that regulate growth, survival, and metastatic processes in tumor cells, affecting multiple pathways of tumor growth. Therefore, closer investigations of ACKRs have a high potential for identifying therapeutics which affect the intracellular signaling, preferentially via the ligand-independent mechanism.
Collapse
Affiliation(s)
- Bal L Lokeshwar
- Georgia Cancer Center, Augusta University, Augusta, GA, United States; Research Service, Charlie Norwood Veterans Administration Medical Center, Augusta, GA, United States.
| | - Georgios Kallifatidis
- Georgia Cancer Center, Augusta University, Augusta, GA, United States; Research Service, Charlie Norwood Veterans Administration Medical Center, Augusta, GA, United States; Department of Biological Sciences, Augusta University, Augusta, GA, United States
| | - James J Hoy
- LCMB Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
7
|
Pemberton JG, Kim YJ, Balla T. Integrated regulation of the phosphatidylinositol cycle and phosphoinositide-driven lipid transport at ER-PM contact sites. Traffic 2019; 21:200-219. [PMID: 31650663 DOI: 10.1111/tra.12709] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/02/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022]
Abstract
Among the structural phospholipids that form the bulk of eukaryotic cell membranes, phosphatidylinositol (PtdIns) is unique in that it also serves as the common precursor for low-abundance regulatory lipids, collectively referred to as polyphosphoinositides (PPIn). The metabolic turnover of PPIn species has received immense attention because of the essential functions of these lipids as universal regulators of membrane biology and their dysregulation in numerous human pathologies. The diverse functions of PPIn lipids occur, in part, by orchestrating the spatial organization and conformational dynamics of peripheral or integral membrane proteins within defined subcellular compartments. The emerging role of stable contact sites between adjacent membranes as specialized platforms for the coordinate control of ion exchange, cytoskeletal dynamics, and lipid transport has also revealed important new roles for PPIn species. In this review, we highlight the importance of membrane contact sites formed between the endoplasmic reticulum (ER) and plasma membrane (PM) for the integrated regulation of PPIn metabolism within the PM. Special emphasis will be placed on non-vesicular lipid transport during control of the PtdIns biosynthetic cycle as well as toward balancing the turnover of the signaling PPIn species that define PM identity.
Collapse
Affiliation(s)
- Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland
| | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
8
|
Nir2 Is an Effector of VAPs Necessary for Efficient Hepatitis C Virus Replication and Phosphatidylinositol 4-Phosphate Enrichment at the Viral Replication Organelle. J Virol 2019; 93:JVI.00742-19. [PMID: 31484747 DOI: 10.1128/jvi.00742-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/28/2019] [Indexed: 01/19/2023] Open
Abstract
The endoplasmic reticulum (ER)-resident proteins vesicle-associated membrane protein (VAMP)-associated protein A and B (VAPA and VAPB) have been reported to be necessary for efficient hepatitis C virus (HCV) replication, but the specific mechanisms are not well understood. VAPs are known to recruit lipid transfer proteins to the ER, including oxysterol binding protein (OSBP), which has been previously shown to be necessary for cholesterol delivery to the HCV replication organelle in exchange for phosphatidylinositol 4-phosphate [PI(4)P]. Here, we show that VAPA and VAPB are redundant for HCV infection and that dimerization is not required for their function. In addition, we identify the phosphatidylinositol transfer protein Nir2 as an effector of VAPs to support HCV replication. We propose that Nir2 functions to replenish phosphoinositides at the HCV replication organelle to maintain elevated steady-state levels of PI(4)P, which is removed by OSBP. Thus, Nir2, along with VAPs, OSBP, and the phosphatidylinositol 4-kinase, completes a cycle of phosphoinositide flow between the ER and viral replication organelles to drive ongoing viral replication.IMPORTANCE Hepatitis C virus (HCV) is known for its ability to modulate phosphoinositide signaling pathways for its replication. Elevated levels of phosphatidylinositol 4-phosphate [PI(4)P] in HCV replication organelles (ROs) recruits lipid transfer proteins (LTPs), like oxysterol-binding protein (OSBP). OSBP exchanges PI(4)P with cholesterol, thus removing PI(4)P from the HCV RO. Here, we found that the phosphatidylinositol transfer protein Nir2 acts as an LTP and may replenish PI at the HCV RO by interacting with VAMP-associated proteins (VAPs), enabling continuous viral replication during chronic infection. Therefore, the coordination of OSBP, Nir2, and VAPs completes our understanding of the phosphoinositide cycle between the ER and HCV ROs.
Collapse
|
9
|
Pemberton JG, Balla T. Polyphosphoinositide-Binding Domains: Insights from Peripheral Membrane and Lipid-Transfer Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1111:77-137. [PMID: 30483964 DOI: 10.1007/5584_2018_288] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Within eukaryotic cells, biochemical reactions need to be organized on the surface of membrane compartments that use distinct lipid constituents to dynamically modulate the functions of integral proteins or influence the selective recruitment of peripheral membrane effectors. As a result of these complex interactions, a variety of human pathologies can be traced back to improper communication between proteins and membrane surfaces; either due to mutations that directly alter protein structure or as a result of changes in membrane lipid composition. Among the known structural lipids found in cellular membranes, phosphatidylinositol (PtdIns) is unique in that it also serves as the membrane-anchored precursor of low-abundance regulatory lipids, the polyphosphoinositides (PPIn), which have restricted distributions within specific subcellular compartments. The ability of PPIn lipids to function as signaling platforms relies on both non-specific electrostatic interactions and the selective stereospecific recognition of PPIn headgroups by specialized protein folds. In this chapter, we will attempt to summarize the structural diversity of modular PPIn-interacting domains that facilitate the reversible recruitment and conformational regulation of peripheral membrane proteins. Outside of protein folds capable of capturing PPIn headgroups at the membrane interface, recent studies detailing the selective binding and bilayer extraction of PPIn species by unique functional domains within specific families of lipid-transfer proteins will also be highlighted. Overall, this overview will help to outline the fundamental physiochemical mechanisms that facilitate localized interactions between PPIn lipids and the wide-variety of PPIn-binding proteins that are essential for the coordinate regulation of cellular metabolism and membrane dynamics.
Collapse
Affiliation(s)
- Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
10
|
Broadgate S, Yu J, Downes SM, Halford S. Unravelling the genetics of inherited retinal dystrophies: Past, present and future. Prog Retin Eye Res 2017; 59:53-96. [PMID: 28363849 DOI: 10.1016/j.preteyeres.2017.03.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 02/07/2023]
Abstract
The identification of the genes underlying monogenic diseases has been of interest to clinicians and scientists for many years. Using inherited retinal dystrophies as an example of monogenic disease we describe the history of molecular genetic techniques that have been pivotal in the discovery of disease causing genes. The methods that were developed in the 1970's and 80's are still in use today but have been refined and improved. These techniques enabled the concept of the Human Genome Project to be envisaged and ultimately realised. When the successful conclusion of the project was announced in 2003 many new tools and, as importantly, many collaborations had been developed that facilitated a rapid identification of disease genes. In the post-human genome project era advances in computing power and the clever use of the properties of DNA replication has allowed the development of next-generation sequencing technologies. These methods have revolutionised the identification of disease genes because for the first time there is no need to define the position of the gene in the genome. The use of next generation sequencing in a diagnostic setting has allowed many more patients with an inherited retinal dystrophy to obtain a molecular diagnosis for their disease. The identification of novel genes that have a role in the development or maintenance of retinal function is opening up avenues of research which will lead to the development of new pharmacological and gene therapy approaches. Neither of which can be used unless the defective gene and protein is known. The continued development of sequencing technologies also holds great promise for the advent of truly personalised medicine.
Collapse
Affiliation(s)
- Suzanne Broadgate
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Jing Yu
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Susan M Downes
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, OX3 9DU, UK
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK.
| |
Collapse
|
11
|
Wyckoff GJ, Solidar A, Yoden MD. Phosphatidylinositol transfer proteins: sequence motifs in structural and evolutionary analyses. ACTA ACUST UNITED AC 2010; 3:65-77. [PMID: 27429707 DOI: 10.4236/jbise.2010.31010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phosphatidylinositol transfer proteins (PITP) are a family of monomeric proteins that bind and transfer phosphatidylinositol and phosphatidylcholine between membrane compartments. They are required for production of inositol and diacylglycerol second messengers, and are found in most metazoan organisms. While PITPs are known to carry out crucial cell-signaling roles in many organisms, the structure, function and evolution of the majority of family members remains unexplored; primarily because the ubiquity and diversity of the family thwarts traditional methods of global alignment. To surmount this obstacle, we instead took a novel approach, using MEME and a parsimony-based analysis to create a cladogram of conserved sequence motifs in 56 PITP family proteins from 26 species. In keeping with previous functional annotations, three clades were supported within our evolutionary analysis; two classes of soluble proteins and a class of membrane-associated proteins. By, focusing on conserved regions, the analysis allowed for in depth queries regarding possible functional roles of PITP proteins in both intra- and extra- cellular signaling.
Collapse
Affiliation(s)
- Gerald J Wyckoff
- Division of Molecular Biology and Biochemistry, University of Missouri-Kansas City, Kansas City, USA
| | | | - Marilyn D Yoden
- Division of Cell Biology and Biophysics, University of Missouri-Kansas City, Kansas City, USA.
| |
Collapse
|
12
|
Liu CP, Wey MT, Chang CC, Kan LS. Direct observation of single molecule conformational change of tight-turn paperclip DNA triplex in solution. Appl Biochem Biotechnol 2008; 159:261-9. [PMID: 18931945 DOI: 10.1007/s12010-008-8390-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 09/30/2008] [Indexed: 10/21/2022]
Abstract
DNA triplex modulates gene expression by forming stable conformation in physiological condition. However, it is not feasible to observe this unique molecular structure of large molecule with 54 oligodeoxynucleotides directly by conventional nuclear magnetic approach. In this study, we observed directly single molecular images of paperclip DNA triplexes formation in a buffer solution of pH 6.0 by atomic force microscopy (AFM). Meanwhile, a diffuse "tail" of unwound DNA was observed in pH 8.0 solution. This designable approach in visualizing the overall structures and shapes of oligo-DNAs at the single molecular level, by AFM, is applicable to other biopolymers as well.
Collapse
|
13
|
Cockcroft S, Carvou N. Biochemical and biological functions of class I phosphatidylinositol transfer proteins. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:677-91. [PMID: 17490911 DOI: 10.1016/j.bbalip.2007.03.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 03/05/2007] [Accepted: 03/27/2007] [Indexed: 12/21/2022]
Abstract
Phosphoinositides function in a diverse array of cellular activities. They include a role as substrate for lipid kinases and phospholipases to generate second messengers, regulators of the cytoskeleton, of enzymes and of ion channels, and docking sites for reversible recruitment of proteins to membranes. Mammalian phosphatidylinositol transfer proteins, PITPalpha and PITPbeta are paralogs that share 77% sequence identity and contain a hydrophobic cavity that can sequester either phosphatidylinositol or phosphatidylcholine. A string of 11 amino acid residues at the C-terminal acts as a "lid" which shields the lipid from the aqueous environment. PITPs in vitro can facilitate inter-membrane lipid transfer and this requires the movement of the "lid" to allow the lipid cargo to be released. Thus PITPs are structurally designed for delivering lipid cargo and could thus participate in cellular events that are dependent on phosphatidylinositol or derivatives of phosphatidylinositol. Phosphatidylinositol, the precursor for all phosphoinositides is synthesised at the endoplasmic reticulum and its distribution to other organelles could be facilitated by PITPs. Here we highlight recent studies that report on the three-dimensional structures of the different PITP forms and suggest how PITPs are likely to dock at the membrane surface for lipid delivery and extraction. Additionally we discuss whether PITPs are important regulators of sphingomyelin metabolism, and finally describe recent studies that link the association of PITPs with diverse functions including membrane traffic at the Golgi, neurite outgrowth, cytokinesis and stem cell growth.
Collapse
Affiliation(s)
- Shamshad Cockcroft
- Department of Physiology, 21 University Street, University College London, London WC1E 6JJ, UK.
| | | |
Collapse
|
14
|
Trivedi D, Padinjat R. RdgB proteins: Functions in lipid homeostasis and signal transduction. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:692-9. [PMID: 17543578 DOI: 10.1016/j.bbalip.2007.04.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 04/26/2007] [Accepted: 04/26/2007] [Indexed: 11/22/2022]
Abstract
The RdgBs are a group of evolutionarily conserved molecules that contain a phosphatidylinositol transfer protein (PITP) domain. However in contrast to classical PITPs (PITPalpha) with whom they share the conserved PITP domain, these proteins also contain several additional sequence elements whose functional significance remains unknown. The founding member of the family DrdgB alpha (Drosophila rdgB) appears to be essential for sensory transduction and maintenance of ultra structure in photoreceptors (retinal sensory neurons). Although proposed to support the maintenance of phosphatidylinositol 4, 5 bisphosphate [PI (4, 5) P(2)] levels during G-protein coupled phospholipase C activity in these cells, the biochemical mechanism of DrdgB alpha function remains unresolved. More recently, a mammalian RdgB protein has been implicated in the maintenance of diacylglycerol (DAG) levels and secretory function at Golgi membranes. In this review we discuss existing work on the function of RdgB proteins and set out future challenges in understanding this group of lipid transfer proteins.
Collapse
Affiliation(s)
- Deepti Trivedi
- Inositide Laboratory, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | | |
Collapse
|
15
|
Wirtz KWA. Phospholipid transfer proteins in perspective. FEBS Lett 2006; 580:5436-41. [PMID: 16828756 DOI: 10.1016/j.febslet.2006.06.065] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 06/19/2006] [Accepted: 06/20/2006] [Indexed: 01/07/2023]
Abstract
Since their discovery and subsequent purification from mammalian tissues more than 30 years ago an impressive number of studies have been carried out to characterize and elucidate the biological functions of phosphatidylcholine transfer protein (PC-TP), phosphatidylinositol transfer protein (PI-TP) and non-specific lipid transfer protein, more commonly known as sterol carrier protein 2 (SCP-2). Here I will present information to show that these soluble, low-molecular weight proteins constitute domain structures in StArR-related lipid transfer (START) proteins (i.e. PC-TP), in retinal degeneration protein, type B (RdgB)-related PI-TPs (e.g. Dm RdgB, Nir2, Nir3) and in peroxisomal beta-oxidation enzyme-related SCP-2 (i.e. 3-oxoacyl-CoA thiolase, also denoted as SCP-X and the 80-kDa D-bifunctional protein). Further I will summarize the most recent studies pertaining to the physiological function of these soluble phospholipid transfer proteins in metazoa.
Collapse
Affiliation(s)
- Karel W A Wirtz
- Bijvoet Center for Biomolecular Research, Section of Lipid Biochemistry, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands.
| |
Collapse
|
16
|
Wirtz KWA, Schouten A, Gros P. Phosphatidylinositol transfer proteins: From closed for transport to open for exchange. ACTA ACUST UNITED AC 2006; 46:301-11. [PMID: 16854452 DOI: 10.1016/j.advenzreg.2006.01.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Karel W A Wirtz
- Bijvoet Center for Biomolecular Research, Department of Lipid Biochemistry, Utrecht University, Utrecht, The Netherlands.
| | | | | |
Collapse
|