1
|
Zhou Q, Weng Q, Zhang X, Liu Y, Tong J, Hao X, Shi H, Shen P, Ren H, Xie J, Chen N. Association Between NPHS2 p.R229Q and Focal Segmental Glomerular Sclerosis/Steroid-Resistant Nephrotic Syndrome. Front Med (Lausanne) 2022; 9:937122. [PMID: 35935761 PMCID: PMC9354893 DOI: 10.3389/fmed.2022.937122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/01/2022] [Indexed: 01/10/2023] Open
Abstract
Aim NPHS2 is the coding gene of podocin. This study aims to investigate the association between NPHS2 p.R229Q (rs61747728), the most frequently reported missense variant of NPHS2, and focal segmental glomerular sclerosis (FSGS) or steroid-resistant nephrotic syndrome (SRNS) based on typing the variant in a Chinese FSGS/SRNS cohort and conducting a meta-analysis. Method We recruited patients with FSGS or SRNS and healthy individuals. To conduct a meta-analysis, all studies on p.R229Q and FSGS/SRNS were searched from public databases. Results In total, we enrolled 204 patients with FSGS, 61 patients with SRNS [46 with FSGS, 9 with minimal change disease (MCD), and six patients with IgA nephropathy (IgAN)], and 100 healthy controls. Unexpectedly, p.R229Q was absent in the patients from our cohort. By meta-analysis of 21 studies including 2,489 patients with FSGS/SRNS and 6,004 healthy controls, we confirmed that the A allele of p.R229Q was significantly associated with increased risk of FSGS/SRNS (allelic OR = 1.9, 95% CI = 1.44-2.52, P < 0.001). However, the subgroup analysis showed that the association between p.R229Q and FSGS/SRNS was true only in Caucasians (allelic OR = 2.14, 95%CI = 1.54-2.98, P < 0.001) and in early-onset patients (allelic OR: 2.13, 95% CI = 1.21-3.76, P = 0.009). Conclusion NPHS2 p.R229Q may play an important role in enhancing the susceptibility of FSGS/SRNS, especially in ethnicity of Caucasian and age of early-onset patients.
Collapse
Affiliation(s)
- Qiongxiu Zhou
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qinjie Weng
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyan Zhang
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yunzi Liu
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Tong
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Hao
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Shi
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Pingyan Shen
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Ren
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jingyuan Xie
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Jingyuan Xie,
| | - Nan Chen
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Nan Chen,
| |
Collapse
|
2
|
Butt L, Unnersjö-Jess D, Höhne M, Hahnfeldt R, Reilly D, Rinschen MM, Plagmann I, Diefenhardt P, Brähler S, Brinkkötter PT, Brismar H, Blom H, Schermer B, Benzing T. Super-Resolution Imaging of the Filtration Barrier Suggests a Role for Podocin R229Q in Genetic Predisposition to Glomerular Disease. J Am Soc Nephrol 2022; 33:138-154. [PMID: 34853150 PMCID: PMC8763184 DOI: 10.1681/asn.2020060858] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/07/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Diseases of the kidney's glomerular filtration barrier are a leading cause of end stage renal failure. Despite a growing understanding of genes involved in glomerular disorders in children, the vast majority of adult patients lack a clear genetic diagnosis. The protein podocin p.R229Q, which results from the most common missense variant in NPHS2, is enriched in cohorts of patients with FSGS. However, p.R229Q has been proposed to cause disease only when transassociated with specific additional genetic alterations, and population-based epidemiologic studies on its association with albuminuria yielded ambiguous results. METHODS To test whether podocin p.R229Q may also predispose to the complex disease pathogenesis in adults, we introduced the exact genetic alteration in mice using CRISPR/Cas9-based genome editing (PodR231Q ). We assessed the phenotype using super-resolution microscopy and albuminuria measurements and evaluated the stability of the mutant protein in cell culture experiments. RESULTS Heterozygous PodR231Q/wild-type mice did not present any overt kidney disease or proteinuria. However, homozygous PodR231Q/R231Q mice developed increased levels of albuminuria with age, and super-resolution microscopy revealed preceding ultrastructural morphologic alterations that were recently linked to disease predisposition. When injected with nephrotoxic serum to induce glomerular injury, heterozygous PodR231Q/wild-type mice showed a more severe course of disease compared with Podwild-type/wild-type mice. Podocin protein levels were decreased in PodR231Q/wild-type and PodR231Q/R231Q mice as well as in human cultured podocytes expressing the podocinR231Q variant. Our in vitro experiments indicate an underlying increased proteasomal degradation. CONCLUSIONS Our findings demonstrate that podocin R231Q exerts a pathogenic effect on its own, supporting the concept of podocin R229Q contributing to genetic predisposition in adult patients.
Collapse
Affiliation(s)
- Linus Butt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - David Unnersjö-Jess
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Martin Höhne
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Robert Hahnfeldt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Dervla Reilly
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Markus M. Rinschen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark,III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingo Plagmann
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Paul Diefenhardt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Sebastian Brähler
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Paul T. Brinkkötter
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Hjalmar Brismar
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| | - Hans Blom
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| |
Collapse
|
3
|
Lepori N, Zand L, Sethi S, Fernandez-Juarez G, Fervenza FC. Clinical and pathological phenotype of genetic causes of focal segmental glomerulosclerosis in adults. Clin Kidney J 2018; 11:179-190. [PMID: 29644057 PMCID: PMC5888331 DOI: 10.1093/ckj/sfx143] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 11/17/2017] [Indexed: 02/07/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a histologic lesion resulting from a variety of pathogenic processes that cause injury to the podocytes. Recently, mutations in more than 50 genes expressed in podocyte or glomerular basement membrane were identified as causing genetic forms of FSGS, the majority of which are characterized by onset in childhood. The prevalence of adult-onset genetic FSGS is likely to be underestimated and its clinical and histological features have not been clearly described. A small number of studies of adult-onset genetic FSGS showed that there is heterogeneity in clinical and histological findings, with a presentation ranging from sub-nephrotic proteinuria to full nephrotic syndrome. A careful evaluation of adult-onset FSGS that do not have typical features of primary or secondary FSGS (familial cases, resistance to immunosuppression and absence of evident cause of secondary FSGS) should include a genetic evaluation. Indeed, recognizing genetic forms of adult-onset FSGS is of the utmost importance, given that this diagnosis will have major implications on treatment strategies, selecting of living-related kidney donor and renal transplantation success.
Collapse
Affiliation(s)
- Nicola Lepori
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
- Division of Nephrology and Dialysis, Azienda Ospedaliera G. Brotzu, Cagliari, Italy
| | - Ladan Zand
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Sanjeev Sethi
- Division of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | - Gema Fernandez-Juarez
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
- Nephrology Division, Hospital Universitario Fundacion Alcorcon, Madrid, Spain
| | | |
Collapse
|
4
|
Lu L, Sun XM, Yin Y, Huang YF, Wang M, Wan H, Wei LB, Xiao W. The amino acid mutations of the podocin in proteinuria: a meta-analysis. Ren Fail 2015. [PMID: 26211502 DOI: 10.3109/0886022x.2015.1067129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
While many previous studies have reported an association between the single-nucleotide polymorphisms (SNPs) of the podocin and proteinuria occurred, a conclusive relationship has not been defined in every oligoallelic state of amino acid (AA) mutations in podocin. In this study, we performed a meta-analysis of the published data to investigate the impact of the oligoallelic AA mutations of the podocin on proteinuria; a total 16 AA mutations were investigated for oligoallelic pathogenicity. Despite significant heterogeneity within some of the comparisons, the results revealed significantly higher risks of proteinuria in early-onset (onset age <16) individuals for five mutations (P118L, R138Q, R168H, V180M, and V260E), and in all onset ages individuals for five mutations (R138Q, G140X, R229Q, V260E, and V290M) compared to non-variant individuals. We also tested the steroid response in individuals with R229Q and E237Q. No statistically significant differences in the two mutations carrier rate were observed between steroid resistance patients and controls. No AA mutation was selected for meta-analysis on the recurrence of proteinuria after renal transplantation as lack of control data. In conclusion, our meta-analysis tested the pathogenicity of the oligoallelic AA mutations in podocin and suggested the potential causative mutations, and the alleles showing an association with protein susceptibility. The sensitivity and specificity of each causative mutation are pending further testing.
Collapse
Affiliation(s)
- Lu Lu
- a School of Traditional Chinese Medicine, Southern Medical University , Guangzhou , China
| | - Xiao-ming Sun
- a School of Traditional Chinese Medicine, Southern Medical University , Guangzhou , China
| | - Yi Yin
- a School of Traditional Chinese Medicine, Southern Medical University , Guangzhou , China .,b Department of Nephrology , Southern Medical University TCM-Integrated Hospital , Guangzhou , China .,c Department of Traditional Chinese Medicine , ZhuJiang Hospital, Southern Medical University , Guangzhou , China , and
| | - Yan-feng Huang
- a School of Traditional Chinese Medicine, Southern Medical University , Guangzhou , China .,b Department of Nephrology , Southern Medical University TCM-Integrated Hospital , Guangzhou , China
| | - Ming Wang
- c Department of Traditional Chinese Medicine , ZhuJiang Hospital, Southern Medical University , Guangzhou , China , and
| | - Heng Wan
- d Department of Endocrinology , The Third Affiliated Hospital, Southern Medical University , Guangzhou , China
| | - Lian-Bo Wei
- a School of Traditional Chinese Medicine, Southern Medical University , Guangzhou , China .,b Department of Nephrology , Southern Medical University TCM-Integrated Hospital , Guangzhou , China .,c Department of Traditional Chinese Medicine , ZhuJiang Hospital, Southern Medical University , Guangzhou , China , and
| | - Wei Xiao
- a School of Traditional Chinese Medicine, Southern Medical University , Guangzhou , China
| |
Collapse
|
5
|
An update: the role of Nephrin inside and outside the kidney. SCIENCE CHINA-LIFE SCIENCES 2015; 58:649-57. [PMID: 25921941 DOI: 10.1007/s11427-015-4844-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/27/2015] [Indexed: 12/18/2022]
Abstract
Nephrin is a key molecule in podocytes to maintain normal slit diaphragm structure. Nephin interacts with many other podocyte and slit diaphragm protein and also mediates important cell signaling pathways in podocytes. Loss of nephrin during the development leads to the congenital nephrotic syndrome in children. Reduction of nephrin expression is often observed in adult kidney diseases including diabetic nephropathy and HIV-associated nephropathy. The critical role of nephrin has been confirmed by different animal models with nephrin knockout and knockdown. Recent studies demonstrate that knockdown of nephrin expression in adult mice aggravates the progression of unilateral nephrectomy and Adriamycin-induced kidney disease. In addition to its critical role in maintaining normal glomerular filtration unit in the kidney, nephrin is also expressed in other organs. However, the exact role of nephrin in kidney and extra-renal organs has not been well characterized. Future studies are required to determine whether nephrin could be developed as a drug target to treat patients with kidney disease.
Collapse
|
6
|
Lu L, Wan H, Yin Y, Feng WJ, Wang M, Zou YC, Huang B, Wang DT, Shi Y, Zhao Y, Wei LB. The p.R229Q variant of the NPHS2 (podocin) gene in focal segmental glomerulosclerosis and steroid-resistant nephrotic syndrome: a meta-analysis. Int Urol Nephrol 2014; 46:1383-93. [PMID: 24715228 DOI: 10.1007/s11255-014-0676-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 02/13/2014] [Indexed: 01/10/2023]
Abstract
While many previous studies have reported an association between the p.R229Q variant of the NPHS2 gene and focal segmental glomerulosclerosis (FSGS) or steroid-resistant nephrotic syndrome (SRNS), a conclusive relationship has not been defined. In this study, we performed a meta-analysis of the published data to investigate the impact of the p.R229Q polymorphism on FSGS and SRNS patients. Despite significant heterogeneity within some of the comparisons, the results revealed significantly higher risks of SRNS in individuals homozygous for the variant allele (OR 7.411, 95% confidence interval 1.876-29.436, p = 0.004) compared to homozygous non-variant individuals. However, the carrier rate of the p.R229Q variant was not significantly different between SRNS patients and steroid-sensitive nephrotic syndrome patients. No statistically significant differences in the p.R229Q carrier rate were observed between FSGS patients and controls or FSGS patients and patients with different pathology classifications. No notable differences in the p.R229Q carrier rate were found between patients and controls in any group with early-onset disease (onset age < 18). In conclusion, our meta-analysis suggests that for adult-onset disease (onset age > 18), the homozygous variant could be a potential predictor of hereditary nephrotic syndrome and that the p.R229Q allele cannot currently be considered a risk factor for predicting FSGS.
Collapse
Affiliation(s)
- Lu Lu
- Department of Traditional Chinese Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Laurin LP, Lu M, Mottl AK, Blyth ER, Poulton CJ, Weck KE. Podocyte-associated gene mutation screening in a heterogeneous cohort of patients with sporadic focal segmental glomerulosclerosis. Nephrol Dial Transplant 2014; 29:2062-9. [DOI: 10.1093/ndt/gft532] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
8
|
Bouchireb K, Boyer O, Gribouval O, Nevo F, Huynh-Cong E, Morinière V, Campait R, Ars E, Brackman D, Dantal J, Eckart P, Gigante M, Lipska BS, Liutkus A, Megarbane A, Mohsin N, Ozaltin F, Saleem MA, Schaefer F, Soulami K, Torra R, Garcelon N, Mollet G, Dahan K, Antignac C. NPHS2Mutations in Steroid-Resistant Nephrotic Syndrome: A Mutation Update and the Associated Phenotypic Spectrum. Hum Mutat 2013; 35:178-86. [DOI: 10.1002/humu.22485] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/05/2013] [Indexed: 01/10/2023]
Affiliation(s)
- Karim Bouchireb
- Assistance Publique-Hôpitaux de Paris, Service de Néphrologie Pédiatrique; Centre de Référence des Maladies Rénales Héréditaires (MARHEA), Hôpital Necker-Enfants Malades; Paris France
- Inserm U983; Institut Imagine, Hôpital Necker-Enfants Malades; Paris France
- Université Paris Descartes-Sorbonne Paris Cité; Paris France
| | - Olivia Boyer
- Assistance Publique-Hôpitaux de Paris, Service de Néphrologie Pédiatrique; Centre de Référence des Maladies Rénales Héréditaires (MARHEA), Hôpital Necker-Enfants Malades; Paris France
- Inserm U983; Institut Imagine, Hôpital Necker-Enfants Malades; Paris France
- Université Paris Descartes-Sorbonne Paris Cité; Paris France
| | - Olivier Gribouval
- Inserm U983; Institut Imagine, Hôpital Necker-Enfants Malades; Paris France
- Université Paris Descartes-Sorbonne Paris Cité; Paris France
| | - Fabien Nevo
- Inserm U983; Institut Imagine, Hôpital Necker-Enfants Malades; Paris France
- Université Paris Descartes-Sorbonne Paris Cité; Paris France
| | - Evelyne Huynh-Cong
- Inserm U983; Institut Imagine, Hôpital Necker-Enfants Malades; Paris France
- Université Paris Descartes-Sorbonne Paris Cité; Paris France
| | - Vincent Morinière
- Assistance Publique-Hôpitaux de Paris; Département de Génétique, Hôpital Necker-Enfants Malades; Paris France
| | - Raphaëlle Campait
- Assistance Publique-Hôpitaux de Paris; Département de Génétique, Hôpital Necker-Enfants Malades; Paris France
| | - Elisabet Ars
- Molecular Biology Laboratory; Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Instituto de Investigación Carlos III; Barcelona Spain
| | - Damien Brackman
- Department of Pediatrics; Haukeland University Hospital; Bergen Norway
| | - Jacques Dantal
- Service de Néphrologie et Immunologie Clinique; ITERT, CHU Hôtel Dieu; Nantes France
| | | | - Maddalena Gigante
- Department of Medical and Surgical Sciences; University of Foggia; Foggia Italy
| | - Beata S. Lipska
- Department of Biology and Genetics; Medical University of Gdansk; Gdansk 80-211 Poland
| | - Aurélia Liutkus
- Service de Néphrologie et Rhumatologie Pédiatriques; Centre de référence des Maladies Rénales Rares, Hôpital Femme Mère Enfant; Bron France
| | - André Megarbane
- Unité de Génétique Médicale, Faculté de Médecine; Université Saint Joseph; Beirut Lebanon
| | - Nabil Mohsin
- Department of Nephrology; Royal Hospital; Muscat Oman
| | - Fatih Ozaltin
- Nephrogenetics Laboratory, Department of Pediatric Nephrology; Hacettepe University Faculty of Medicine; Ankara Turkey
| | - Moin A. Saleem
- Department of Paediatric Nephrology; Bristol Royal Hospital for Children, Academic Renal Unit, School of Clinical Sciences, University of Bristol; Bristol UK
| | - Franz Schaefer
- PodoNet Consortium; Division of Pediatric Nephrology, Heidelberg University Center for Pediatrics and Adolescent Medicine; Heidelberg Germany
| | - Kenza Soulami
- CHU Ibn Rochd; Service de Néphrologie Dialyse Transplantation; Casablanca Morocco
| | - Roser Torra
- Nephrology Department; Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Instituto de Investigación Carlos III; Barcelona Spain
| | - Nicolas Garcelon
- Assistance Publique-Hôpitaux de Paris; Département de Génétique, Hôpital Necker-Enfants Malades; Paris France
- Inserm U872; Institut Imagine, Hôpital Necker-Enfants Malades; Paris France
| | - Géraldine Mollet
- Inserm U983; Institut Imagine, Hôpital Necker-Enfants Malades; Paris France
- Université Paris Descartes-Sorbonne Paris Cité; Paris France
| | - Karin Dahan
- Centre de Génétique Humaine; Université Catholique de Louvain; Bruxelles Belgique
| | - Corinne Antignac
- Assistance Publique-Hôpitaux de Paris; Département de Génétique, Hôpital Necker-Enfants Malades; Paris France
- Inserm U983; Institut Imagine, Hôpital Necker-Enfants Malades; Paris France
- Université Paris Descartes-Sorbonne Paris Cité; Paris France
| |
Collapse
|
9
|
Toyama K, Morisaki H, Cheng J, Kawachi H, Shimizu F, Ikawa M, Okabe M, Morisaki T. Proteinuria in AMPD2-deficient mice. Genes Cells 2013; 17:28-38. [PMID: 22212473 DOI: 10.1111/j.1365-2443.2011.01568.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The AMPD2 gene, a member of the AMPD gene family encoding AMP deaminase, is widely expressed in nonmuscle tissues including kidney, although its functions have not been fully elucidated. In this study, we studied the function of the AMPD2 gene by establishing AMPD2-deficient model animal. We established AMPD2 knockout mice by using gene transfer and homologous recombination in murine ES cells and studied phenotypes and functions in the kidneys of these animals. AMPD activity was decreased from 22.9 mIU/mg protein to 2.5 mIU/mg protein in the kidneys of AMPD knockout mice. In addition to changes in nucleotide metabolism in the kidneys, proteinuria was found in 3-week-old AMPD2 knockout mice, followed by a further increment up to a peak level at 6 weeks old (up to 0.6 g/dL). The major protein component in the urine of AMPD2 knockout mice was found to be albumin, indicating that AMPD2 may have a key role in glomerular filtration. Indeed, an ultrastructure study of glomerulus specimens from these mice showed effacement of the podocyte foot processes, resembling minimal-change nephropathy in humans. Based on our results, we concluded that AMPD2 deficiency induces imbalanced nucleotide metabolism and proteinuria, probably due to podocyte dysfunction.
Collapse
Affiliation(s)
- Keiko Toyama
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Bostrom MA, Perlegas P, Lu L, Hicks PJ, Hawkins G, Ng MCY, Langefeld CD, Freedman BI, Bowden DW. Relevance of the ACTN4 gene in African-Americans with non-diabetic end-stage renal disease. Am J Nephrol 2012; 36:252-60. [PMID: 22965004 DOI: 10.1159/000342205] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 07/21/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND African-Americans (AAs) are predisposed to non-diabetic (non-DM) end-stage renal disease (ESRD), and studies have shown a genetic component to this risk. Rare mutations in ACTN4 (α-actinin-4), an actin-binding protein expressed in podocytes, cause familial focal segmental glomerulosclerosis. METHODS We assessed the contribution of coding variants in ACTN4 to non-DM ESRD risk in AAs. Nineteen exons, 2,800 bases of the promoter and 392 bases of the 3' untranslated region of ACTN4 were sequenced in 96 AA non-DM ESRD cases and 96 non-nephropathy controls (384 chromosomes). Sixty-seven single-nucleotide polymorphisms (SNPs) including 51 novel SNPs were identified. The SNPs comprised 33 intronic, 21 promoter, 12 exonic, and one 3' variant. Sixty-two of the SNPs were genotyped in 296 AA non-DM ESRD cases and 358 non-nephropathy controls. RESULTS One SNP, rs10404257, was associated with non-DM ESRD (p < 1.0E-4, odds ratio, OR = 0.76; confidence interval, CI = 0.59-0.98; additive model). Forty-seven SNPs had minor allele frequencies <5%. These SNPs were segregated into risk and protective SNPs, and each category was collapsed into a single marker, designated by the presence or absence of any rare allele. The presence of any rare allele at a risk SNP was significantly associated with non-DM ESRD (p = 0.001, dominant model). The SNPs with the strongest evidence for association (n = 20) were genotyped in an independent set of 467 non-DM ESRD cases and 279 controls. Although rs10404257 was not associated in this replication sample, when the samples were combined, rs10404257 was modestly associated (p = 0.032, OR = 0.78, CI = 0.63-0.98; dominant model). SNPs were tested for interaction with markers in the APOL1 gene, previously associated with non-DM ESRD in AAs, and rs10404257 was modestly associated (p = 0.0261, additive model). CONCLUSIONS This detailed evaluation of ACTN4 variation revealed limited evidence of association with non-DM ESRD in AAs.
Collapse
|
11
|
Chapter 6: Idiopathic focal segmental glomerulosclerosis in adults. Kidney Int Suppl (2011) 2012; 2:181-185. [PMID: 25018931 PMCID: PMC4089762 DOI: 10.1038/kisup.2012.19] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
12
|
|
13
|
Rood IM, Deegens JKJ, Wetzels JFM. Genetic causes of focal segmental glomerulosclerosis: implications for clinical practice. Nephrol Dial Transplant 2012; 27:882-90. [PMID: 22334613 DOI: 10.1093/ndt/gfr771] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a common cause of steroid-resistant nephrotic syndrome in children and adults. Although FSGS is considered a podocyte disease, the aetiology is diverse. In recent years, many inheritable genetic forms of FSGS have been described, caused by mutations in proteins that are important for podocyte function. In the present commentary, we review these genetic causes of FSGS and describe their prevalence in familial and sporadic FSGS. In routine clinical practice, the decision to perform the costly DNA analysis should be based on the assessment if the results affect the care of the individual patient with respect to the evaluation of extra-renal manifestations, treatment decisions, transplantation and genetic counselling.
Collapse
Affiliation(s)
- Ilse M Rood
- Department of Nephrology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | |
Collapse
|
14
|
Santín S, Bullich G, Tazón-Vega B, García-Maset R, Giménez I, Silva I, Ruíz P, Ballarín J, Torra R, Ars E. Clinical utility of genetic testing in children and adults with steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 2011; 6:1139-48. [PMID: 21415313 DOI: 10.2215/cjn.05260610] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVES The increasing number of podocyte-expressed genes implicated in steroid-resistant nephrotic syndrome (SRNS), the phenotypic variability, and the uncharacterized relative frequency of mutations in these genes in pediatric and adult patients with SRNS complicate their routine genetic analysis. Our aim was to compile the clinical and genetic data of eight podocyte genes analyzed in 110 cases (125 patients) with SRNS (ranging from congenital to adult onset) to provide a genetic testing approach. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Mutation analysis was performed by sequencing the NPHS1, NPHS2, TRPC6, CD2AP, PLCE1, INF2, WT1 (exons 8 and 9), and ACTN4 (exons 1 to 10) genes. RESULTS We identified causing mutations in 34% (37/110) of SRNS patients, representing 67% (16/24) familial and 25% (21/86) sporadic cases. Mutations were detected in 100% of congenital-onset, 57% of infantile-onset, 24 and 36% of early and late childhood-onset, 25% of adolescent-onset, and 14% of adult-onset patients. The most frequently mutated gene was NPHS1 in congenital onset and NPHS2 in the other groups. A partial remission was observed in 7 of 26 mutation carriers treated with immunosuppressive agents and/or angiotensin-converting enzyme inhibitors. Patients with NPHS1 mutations showed a faster progression to ESRD than patients with NPHS2 mutations. None of these mutation carriers relapsed after kidney transplantation. CONCLUSIONS We propose a genetic testing algorithm for SRNS based on the age at onset and the familial/sporadic status. Mutation analysis of specific podocyte-genes has a clinical value in all age groups, especially in children.
Collapse
Affiliation(s)
- Sheila Santín
- Molecular Biology Laboratory, Fundació Puigvert, Universitat Autònoma de Barcelona, REDinREN, Instituto de Investigación Carlos III, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Santín S, Tazón-Vega B, Silva I, Cobo MÁ, Giménez I, Ruíz P, García-Maset R, Ballarín J, Torra R, Ars E. Clinical value of NPHS2 analysis in early- and adult-onset steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 2010; 6:344-54. [PMID: 20947785 DOI: 10.2215/cjn.03770410] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND OBJECTIVES To date, very few cases with adult-onset focal segmental glomerulosclerosis (FSGS) carrying NPHS2 variants have been described, all of them being compound heterozygous for the p.R229Q variant and one pathogenic mutation. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Mutation analysis was performed in 148 unrelated Spanish patients, of whom 50 presented with FSGS after 18 years of age. Pathogenicity of amino acid substitutions was evaluated through an in silico scoring system. Haplotype analysis was carried out using NPHS2 single nucleotide polymorphism and microsatellite markers. RESULTS Compound heterozygous or homozygous NPHS2 pathogenic mutations were identified in seven childhood-onset steroid-resistant nephrotic syndrome (SRNS) cases. Six additional cases with late childhood- and adult-onset SRNS were compound heterozygotes for p.R229Q and one pathogenic mutation, mostly p.A284V. p.R229Q was more frequent among SRNS cases relative to controls (odds ratio=2.65; P=0.02). Significantly higher age at onset of the disease and slower progression to ESRD were found in patients with one pathogenic mutation plus the p.R229Q variant in respect to patients with two NPHS2 pathogenic mutations. CONCLUSIONS NPHS2 analysis has a clinical value in both childhood- and adult-onset SRNS patients. For adult-onset patients, the first step should be screening for p.R229Q and, if positive, for p.A284V. These alleles are present in conserved haplotypes, suggesting a common origin for these substitutions. Patients carrying this specific NPHS2 allele combination did not respond to corticoids or immunosuppressors and showed FSGS, average 8-year progression to ESRD, and low risk for recurrence of FSGS after kidney transplant.
Collapse
Affiliation(s)
- Sheila Santín
- Fundació Puigvert, Cartagena 340-350, 08025 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Megremis S, Mitsioni A, Mitsioni AG, Fylaktou I, Kitsiou-Tzelli S, Stefanidis CJ, Kanavakis E, Traeger-Synodinos J. Nucleotide variations in the NPHS2 gene in Greek children with steroid-resistant nephrotic syndrome. Genet Test Mol Biomarkers 2009; 13:249-56. [PMID: 19371226 DOI: 10.1089/gtmb.2008.0083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mutations in the NPHS2 gene, encoding podocin, are a major cause of autosomal-recessive steroid-resistant nephrotic syndrome (SRNS) in childhood, accounting for up to 30% of sporadic and 20-40% of familial cases. Among 22 Greek children with a clinical diagnosis of SRNS, mutation analysis was performed in all eight NPHS2 gene exons, using denaturing gradient gel electrophoresis and DNA sequencing. The frequency of all nucleotide variations found in patients was also evaluated in 100 unrelated samples (18-30 years) with no known history of nephrotic disease. Three pathogenic genotypes (R138Q/R138Q, R229Q/A295T, and R168H/R168H) accounted for 3/14 (21%) of sporadic patients; the A295T mutation in exon 8 (c.883G>A) is novel and predicted in silico to be pathogenic. Among the familial cases, a single patient was heterozygous for R229Q. Several known polymorphisms were found, including the in cis variants IVS3-46C>T plus IVS3-21C>T, IVS7+7A>G A and exonic variants S96S (c.288C>T), A318A (c.954T>C), and L346L (c.1038A>G), with allele frequencies comparable to those in other populations. A novel substitution (IVS3-17C>T) was found in two related patients, but in no controls. In conclusion, podocin mutations do not appear to be a major cause of SRNS in Greek children, although the study cohort was small. However, NPHS2 gene analysis could still be considered in Greek SRNS patients to support appropriate management. The present study also contributes potentially useful observations for the clinical management of SRNS patients.
Collapse
Affiliation(s)
- Spyridon Megremis
- Medical Genetics, Aghia Sofia Children's Hospital, Athens University, Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Guay-Woodford LM, Knoers NV. Genetic Testing: Considerations for Pediatric Nephrologists. Semin Nephrol 2009; 29:338-48. [DOI: 10.1016/j.semnephrol.2009.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Tonna SJ, Needham A, Polu K, Uscinski A, Appel GB, Falk RJ, Katz A, Al-Waheeb S, Kaplan BS, Jerums G, Savige J, Harmon J, Zhang K, Curhan GC, Pollak MR. NPHS2 variation in focal and segmental glomerulosclerosis. BMC Nephrol 2008; 9:13. [PMID: 18823551 PMCID: PMC2569023 DOI: 10.1186/1471-2369-9-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 09/29/2008] [Indexed: 11/10/2022] Open
Abstract
Background Focal and segmental glomerulosclerosis (FSGS) is the most common histologic pattern of renal injury seen in adults with idiopathic proteinuria. Homozygous or compound heterozygous mutations in the podocin gene NPHS2 are found in 10–30% of pediatric cases of steroid resistant nephrosis and/or FSGS. Methods We studied the spectrum of genetic variation in 371 individuals with predominantly late onset FSGS (mean age of onset 25 years) by analysis of DNA samples. Results We identified 15 non-synonymous alleles that changed the amino acid sequence in 63 of the subjects screened (17%). Eight of these (p.R138Q, p.V180M, p.R229Q, p.E237Q, p.A242V, p.A284V, p.L327F and the frameshift 855–856 delAA) are alleles previously reported to cause FSGS in either the homozygous or compound heterozygous states, while the remaining 7 (p.R10T, p.V127W, p.Q215X, p.T232I, p.L270F, p.L312V and the frameshift 397delA) are novel alleles that have not been demonstrated previously. Twelve individuals of the 371 (3.2%) screened had two likely disease-causing NPHS2 alleles, present in either a homozygous or compound heterozygous state. We genotyped the two most common of the non-synonymous NPHS2 alleles (p.A242V and p.R229Q) identified by resequencing in participants from the Nurses' Health Study and also genotyped p.R229Q in 3 diabetic cohorts. We found that the presence of either of these variants does not significantly alter the risk of albuminuria in the Nurses' Health participants, nor does p.R229Q associate with "diabetic nephropathy". Conclusion NPHS2 mutations are a rare cause of FSGS in adults. The most common non-synonymous NPHS2 variants, p.R229Q and p.A242V, do not appear to alter the risk of proteinuria in the general population nor does p.R229Q associate with measures of kidney dysfunction in diabetic individuals. Our results help clarify the frequency of FSGS-causing NPHS2 mutations in adults and broaden our understanding of the spectrum of NPHS2 mutations that lead to human disease.
Collapse
Affiliation(s)
- Stephen J Tonna
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Deegens JKJ, Dijkman HBPM, Borm GF, Steenbergen EJ, van den Berg JG, Weening JJ, Wetzels JFM. Podocyte foot process effacement as a diagnostic tool in focal segmental glomerulosclerosis. Kidney Int 2008; 74:1568-76. [PMID: 18813290 DOI: 10.1038/ki.2008.413] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Podocyte foot process effacement is characteristic of proteinuric renal diseases. In minimal change nephrotic syndrome (MCNS) foot processes are diffusely effaced whereas the extent of effacement varies in focal segmental glomerulosclerosis (FSGS). Here we measured foot process effacement in FSGS and compared it to that in MCNS and in normal kidneys. A clinical diagnosis was used to differentiate idiopathic FSGS from secondary FSGS. Median foot process width, determined morphometrically by electron microscopy, was 3236 nm in 17 patients with idiopathic FSGS, 1098 nm in 7 patients with secondary FSGS, and 1725 nm in 15 patients with MCNS, as compared to 562 nm in 12 control patients. Multivariate analysis showed that foot process width did not correlate with proteinuria or serum albumin levels but was significantly associated as an independent factor with the type of disease. Foot process width over 1500 nm differentiated idiopathic from secondary FSGS with high sensitivity and specificity. Our results show that quantitative analysis of foot processes may offer a potential tool to distinguish idiopathic from secondary FSGS.
Collapse
Affiliation(s)
- Jeroen K J Deegens
- Division of Nephrology, Department of Medicine, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
20
|
Woroniecki RP, Kopp JB. Genetics of focal segmental glomerulosclerosis. Pediatr Nephrol 2007; 22:638-44. [PMID: 17347836 PMCID: PMC2467504 DOI: 10.1007/s00467-007-0445-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 12/18/2006] [Accepted: 01/09/2007] [Indexed: 11/30/2022]
Abstract
The recent advances in understanding the pathophysiology of focal segmental glomerulosclerosis (FSGS) and molecular function of glomerular filtration barrier come directly from genetic linkage and positional cloning studies. The exact role and function of the newly discovered genes and proteins are being investigated by in vitro and in vivo mechanistic studies. Those genes and proteins interactions seem to change susceptibility to kidney disease progression. Better understanding of their exact role in the development of FSGS may influence future therapies and outcomes in this complex disease.
Collapse
|
21
|
Franceschini N, North KE, Kopp JB, McKenzie L, Winkler C. NPHS2 gene, nephrotic syndrome and focal segmental glomerulosclerosis: A HuGE review. Genet Med 2006; 8:63-75. [PMID: 16481888 DOI: 10.1097/01.gim.0000200947.09626.1c] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Nephrotic syndrome, characterized by edema, proteinuria, hyperlipidemia and low serum albumin, is a manifestation of kidney disease involving the glomeruli. Nephrotic syndrome may be caused by primary kidney disease such as focal segmental glomerulosclerosis. Mutations in the podocin gene, NPHS2, have been shown in familial and sporadic forms of steroid-resistant nephrotic syndrome, including focal segmental glomerulosclerosis. Podocin is an integral membrane protein located at the slit diaphragm of the glomerular permeability barrier. Complete information is lacking for the population frequency of some NPHS2 variants for all racial and ethnic groups. The most frequently reported variant, R229Q, is more common among European-derived populations than African-derived populations. We calculated crude odds ratios and 95% confidence intervals of childhood nephrotic syndrome and focal segmental glomerulosclerosis associated with R229Q heterozygosity using data from five studies. The R229Q variant is not associated with focal segmental glomerulosclerosis in the US population of African descent. In contrast, the R229Q variant is associated with a trend toward increased focal segmental glomerulosclerosis risk in European-derived populations, with an estimated increased risk of 20-40%. Our insight into the association between NPHS2 variants and nephrotic disease is hampered by the limitations of the existing studies, including small numbers of affected individuals and suboptimal control groups. Nevertheless, the available data suggest that large epidemiological case-control studies to examine the association between NPHS2 variants and nephrotic syndrome are warranted.
Collapse
Affiliation(s)
- Nora Franceschini
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill, NC 27514-3628, USA
| | | | | | | | | |
Collapse
|