1
|
Tandon A, Harioudh MK, Verma NK, Saroj J, Gupta A, Pant G, Tripathi JK, Kumar A, Kumari T, Tripathi AK, Mitra K, Ghosh JK. Characterization of a Myeloid Differentiation Factor 2-Derived Peptide that Facilitates THP-1 Macrophage-Mediated Phagocytosis of Gram-Negative Bacteria. ACS Infect Dis 2024; 10:845-857. [PMID: 38363869 DOI: 10.1021/acsinfecdis.3c00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Myeloid differentiation factor 2 (MD2), the TLR4 coreceptor, has been shown to possess opsonic activity and has been implicated in phagocytosis and intracellular killing of Gram-negative bacteria. However, any MD2 protein segment involved in phagocytosis of Gram-negative bacteria is not yet known. A short synthetic MD2 segment, MD54 (amino acid regions 54 to 69), was shown to interact with a Gram-negative bacterial outer membrane component, LPS, earlier. Furthermore, the MD54 peptide induced aggregation of LPS and facilitated its internalization in THP-1 cells. Currently, it has been investigated if MD2-derived MD54 possesses any opsonic property and role in phagocytosis of Gram-negative bacteria. Remarkably, we observed that MD54 facilitated agglutination of Gram-negative bacteria, Escherichia coli (ATCC 25922) and Pseudomonas aeruginosa (ATCC BAA-427), but not of Gram-positive bacteria, Bacillus subtilis (ATCC 6633) and Staphylococcus aureus (ATCC 25923). The MD54-opsonized Gram-negative bacteria internalized within PMA-treated THP-1 cells and were killed over a longer incubation period. However, both internalization and intracellular killing of the MD54-opsonized Gram-negative bacteria within THP-1 phagocytes were appreciably inhibited in the presence of a phagocytosis inhibitor, cytochalasin D. Furthermore, MD54 facilitated the clearance of Gram-negative bacteria E. coli (ATCC 25922) and P. aeruginosa (ATCC BAA-427) from the infected BALB/c mice whereas an MD54 analog, MMD54, was inactive. Overall, for the first time, the results revealed that a short MD2-derived peptide can specifically agglutinate Gram-negative bacteria, act as an opsonin for these bacteria, and facilitate their phagocytosis by THP-1 phagocytes. The results suggest that the MD54 segment could have a crucial role in MD2-mediated host-pathogen interaction involving the Gram-negative bacteria.
Collapse
Affiliation(s)
- Anshika Tandon
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, India
| | - Munesh Kumar Harioudh
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, India
| | - Neeraj Kumar Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, India
| | - Jyotshana Saroj
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - Arvind Gupta
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - Garima Pant
- Electron Microscopy Unit, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, India
| | - Jitendra Kumar Tripathi
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, India
| | - Amit Kumar
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, India
| | - Tripti Kumari
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, India
| | - Amit Kumar Tripathi
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, India
| | - Kalyan Mitra
- Electron Microscopy Unit, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, India
| | - Jimut Kanti Ghosh
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| |
Collapse
|
2
|
Acharya D, Dutta TK. Elucidating the network features and evolutionary attributes of intra- and interspecific protein-protein interactions between human and pathogenic bacteria. Sci Rep 2021; 11:190. [PMID: 33420198 PMCID: PMC7794237 DOI: 10.1038/s41598-020-80549-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/09/2020] [Indexed: 01/08/2023] Open
Abstract
Host–pathogen interaction is one of the most powerful determinants involved in coevolutionary processes covering a broad range of biological phenomena at molecular, cellular, organismal and/or population level. The present study explored host–pathogen interaction from the perspective of human–bacteria protein–protein interaction based on large-scale interspecific and intraspecific interactome data for human and three pathogenic bacterial species, Bacillus anthracis, Francisella tularensis and Yersinia pestis. The network features revealed a preferential enrichment of intraspecific hubs and bottlenecks for both human and bacterial pathogens in the interspecific human–bacteria interaction. Analyses unveiled that these bacterial pathogens interact mostly with human party-hubs that may enable them to affect desired functional modules, leading to pathogenesis. Structural features of pathogen-interacting human proteins indicated an abundance of protein domains, providing opportunities for interspecific domain-domain interactions. Moreover, these interactions do not always occur with high-affinity, as we observed that bacteria-interacting human proteins are rich in protein-disorder content, which correlates positively with the number of interacting pathogen proteins, facilitating low-affinity interspecific interactions. Furthermore, functional analyses of pathogen-interacting human proteins revealed an enrichment in regulation of processes like metabolism, immune system, cellular localization and transport apart from divulging functional competence to bind enzyme/protein, nucleic acids and cell adhesion molecules, necessary for host-microbial cross-talk.
Collapse
Affiliation(s)
- Debarun Acharya
- Department of Microbiology, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, West Bengal, 700 054, India
| | - Tapan K Dutta
- Department of Microbiology, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, West Bengal, 700 054, India.
| |
Collapse
|
3
|
Alkorashy AI, Doghish AS, Abulsoud AI, Ewees MG, Abdelghany TM, Elshafey MM, Elkhatib WF. Effect of scopoletin on phagocytic activity of U937-derived human macrophages: Insights from transcriptomic analysis. Genomics 2020; 112:3518-3524. [PMID: 32243896 DOI: 10.1016/j.ygeno.2020.03.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/09/2020] [Accepted: 03/22/2020] [Indexed: 10/24/2022]
Abstract
Scopoletin is a botanical coumarin. Notably, scopoletin effect on phagocytic activity has not been addressed on transcriptomic level. Accordingly, this study investigated the effect of scopoletin on phagocytosis-linked gene transcription. Whole phagocytosis transcriptional profiling of stimulated U937-derived macrophages (SUDMs) in response to scopoletin as compared to non-treated SUDMs was studied. Regarding scopoletin effect on 92 phagocytosis-linked genes, 12 of them were significantly affected (p-value < .05). Seven genes were downregulated (CDC42, FCGR1A/FCGR1C, ITGA9, ITGB3, PLCE1, RHOD & RND3) and five were upregulated (DIRAS3, ITGA1, PIK3CA, PIK3R3 & PLCD1). Moreover, scopoletin enhanced phagocytic activity of SUDMs. The current results highlighted the potential use of scopoletin as immunity booster and as an adjuvant remedy in management of some autoimmune reactions. To the best of our knowledge, this is the first report that unravels the effect of scopoletin on phagocytosis via transcriptomic analysis.
Collapse
Affiliation(s)
- Amgad I Alkorashy
- Department of Biochemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11651, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11651, Egypt; Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11651, Egypt; Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohamed G Ewees
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11651, Egypt; Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Tamer M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11651, Egypt; Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Mostafa M Elshafey
- Department of Biochemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11651, Egypt
| | - Walid F Elkhatib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Abbassia, Cairo 11566, Egypt.
| |
Collapse
|
4
|
Recent progress on pathophysiology, inflammation and defense mechanism of mast cells against invading microbes: inhibitory effect of IL-37. Cent Eur J Immunol 2020; 44:447-454. [PMID: 32140058 PMCID: PMC7050054 DOI: 10.5114/ceji.2019.92807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/26/2017] [Indexed: 11/21/2022] Open
Abstract
Mast cells (MCs) have historically been considered masters of allergy, but there is substantial evidence supporting their contribution to tissue microorganism clearance. Their activation through the cross-linking of bound IgE provokes mast cell degranulation and activates tyrosine kinase (Syk and Lyn), leading to cytokine/chemokine generation and release. Current consensus holds that mast cells participate in the body’s defense against numerous pathogens, including bacteria, fungi, viruses and parasites, but also contribute to the inflammatory response induced by these biological agents. In the light of the latest findings, we describe the cross-talk between mast cells and pathogenic microorganisms. This review summarizes our current understanding of the host immune response, with emphasis on the roles of MCs and the cytokine/chemokine network in provoking inflammation and generating protective immunity. This review addresses the ability of microorganisms to activate MCs provoking inflammation. We describe some MC-specific biological activities related to infections and discuss the evidence of MC mechanisms involved in the microbial activation which cause cytokine/chemokine generation-mediated inflammation, and provide a description of novel functions of mast cells during microbial infection. Interleukin (IL)-37 binds the α chain of the IL-18 receptor and suppresses MyD88-mediated inflammatory responses. IL-37 plays a pathological role in certain infections by inhibiting the production of pro-inflammatory cytokines, such as IL-1 and TNF. Here we report the interrelationship between IL-37, inflammatory cytokines and mast cells. Our report offers opportunities for the design of new therapeutic interventions in inflamed tissue induced by microorganism infections, acting on manipulation of mast cells and/or inflammatory cytokine blockage.
Collapse
|
5
|
Vanoni NM, Carugati M, Borsa N, Sotgiu G, Saderi L, Gori A, Mantero M, Aliberti S, Blasi F. Management of Acute Respiratory Failure Due to Community-Acquired Pneumonia: A Systematic Review. Med Sci (Basel) 2019; 7:medsci7010010. [PMID: 30646626 PMCID: PMC6359640 DOI: 10.3390/medsci7010010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 01/15/2023] Open
Abstract
Community-acquired pneumonia (CAP) is a leading cause of mortality worldwide. CAP mortality is driven by the development of sepsis and acute respiratory failure (ARF). We performed a systematic review of the available English literature published in the period 1 January 1997 to 31 August 2017 and focused on ARF in CAP. The database searches identified 189 articles—of these, only 29 were retained for data extraction. Of these 29 articles, 12 addressed ARF in CAP without discussing its ventilatory management, while 17 evaluated the ventilatory management of ARF in CAP. In the studies assessing the ventilatory management, the specific treatments addressed were: high-flow nasal cannula (HFNC) (n = 1), continuous positive airway pressure (n = 2), non-invasive ventilation (n = 9), and invasive mechanical ventilation (n = 5). When analyzed, non-invasive ventilation (NIV) success rates ranged from 20% to 76% and they strongly predicted survival, while NIV failure led to an increased risk of adverse outcome. In conclusion, ARF in CAP patients may require both ventilatory and non-ventilatory management. Further research is needed to better evaluate the use of NIV and HFNC in those patients. Alongside the prompt administration of antimicrobials, the potential use of steroids and the implementation of severity scores should also be considered.
Collapse
Affiliation(s)
- Nicolò Maria Vanoni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Internal Medicine Department, Respiratory unit and Adult Cystic Fibrosis Center, 20122 Milan, Italy.
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy.
| | - Manuela Carugati
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Internal Medicine Department, Infectious Diseases Unit, 20122 Milan, Italy.
- Division of Infectious Diseases, Duke University, 27710 Durham, NC, USA.
| | - Noemi Borsa
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Internal Medicine Department, Respiratory unit and Adult Cystic Fibrosis Center, 20122 Milan, Italy.
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy.
| | - Giovanni Sotgiu
- Clinical Epidemiology and Medical Statistics Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy.
| | - Laura Saderi
- Clinical Epidemiology and Medical Statistics Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy.
| | - Andrea Gori
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy.
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Internal Medicine Department, Infectious Diseases Unit, 20122 Milan, Italy.
| | - Marco Mantero
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Internal Medicine Department, Respiratory unit and Adult Cystic Fibrosis Center, 20122 Milan, Italy.
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy.
| | - Stefano Aliberti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Internal Medicine Department, Respiratory unit and Adult Cystic Fibrosis Center, 20122 Milan, Italy.
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy.
| | - Francesco Blasi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Internal Medicine Department, Respiratory unit and Adult Cystic Fibrosis Center, 20122 Milan, Italy.
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy.
| |
Collapse
|
6
|
Oyama T, Miyazaki M, Yoshimura M, Takata T, Ohjimi H, Jimi S. Biofilm-Forming Methicillin-Resistant Staphylococcus aureus Survive in Kupffer Cells and Exhibit High Virulence in Mice. Toxins (Basel) 2016; 8:toxins8070198. [PMID: 27376326 PMCID: PMC4963831 DOI: 10.3390/toxins8070198] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/15/2016] [Accepted: 06/24/2016] [Indexed: 11/26/2022] Open
Abstract
Although Staphylococcus aureus is part of the normal body flora, heavy usage of antibiotics has resulted in the emergence of methicillin-resistant strains (MRSA). MRSA can form biofilms and cause indwelling foreign body infections, bacteremia, soft tissue infections, endocarditis, and osteomyelitis. Using an in vitro assay, we screened 173 clinical blood isolates of MRSA and selected 20 high-biofilm formers (H-BF) and low-biofilm formers (L-BF). These were intravenously administered to mice and the general condition of mice, the distribution of bacteria, and biofilm in the liver, lung, spleen, and kidney were investigated. MRSA count was the highest in the liver, especially within Kupffer cells, which were positive for acid polysaccharides that are associated with intracellular biofilm. After 24 h, the general condition of the mice worsened significantly in the H-BF group. In the liver, bacterial deposition and aggregation and the biofilm-forming spot number were all significantly greater for H-BF group than for L-BF. CFU analysis revealed that bacteria in the H-BF group survived for long periods in the liver. These results indicate that the biofilm-forming ability of MRSA is a crucial factor for intracellular persistence, which could lead to chronic infections.
Collapse
Affiliation(s)
- Takuto Oyama
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan.
| | - Motoyasu Miyazaki
- Department of Pharmacy, Fukuoka University Chikushi Hospital, Chikusino 818-8502, Japan.
| | - Michinobu Yoshimura
- Department of Medical Oncology, Hematology, and Infectious Diseases, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan.
| | - Tohru Takata
- Department of Medical Oncology, Hematology, and Infectious Diseases, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan.
| | - Hiroyuki Ohjimi
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan.
| | - Shiro Jimi
- Central Laboratory for Pathology and Morphology, Department of Pathology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan.
| |
Collapse
|
7
|
Bor C, Demirag K, Okcu O, Cankayali I, Uyar M. Ventilator-associated pneumonia in critically ill patients with intensive antibiotic usage. Pak J Med Sci 2016; 31:1441-6. [PMID: 26870112 PMCID: PMC4744297 DOI: 10.12669/pjms.316.8038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Objective: Ventilator-associated pneumonia (VAP) is an infection with high mortality and morbidity that prolongs the length of stay in the intensive care unit (ICU) and hospitalisation. VAP is one of the most common infections in critically ill patients. This study aimed to prospectively determine the VAP rate and associated factors in critically ill patients with intensive antibiotic usage during a one-year period. Methods: In total, 125 out of 360 patients admitted to the intensive care unit during the one-year study period (September 2010-2011) were included for follow-up for VAP diagnosis. Demographic data, APACHE II scores, diagnoses on admission, clinical pulmonary infection scores (CPIS), CRP, procalcitonin, risk factors for infection, time to VAP diagnosis, and bacteriological culture results were recorded. All data were assessed in terms of ICU, hospital and 28-day mortality. Results: In total, 56 (45%) out of 125 patients were diagnosed with VAP. In addition, 91% of patients diagnosed with VAP were administered antibiotics before diagnosis. In the VAP patients, the mortality rates were 48, 68 and 71% for 28-day, ICU and hospital mortality, respectively. Conclusion: The coexistence of clinical and microbiological parameters should not be sought when diagnosing VAP in patients who use antibiotics intensively. VAP can be diagnosed when CPIS≤6 in cases with sufficient microbiological evidence. This strategy may decrease mortality by preventing a delay in therapy.
Collapse
Affiliation(s)
- Canan Bor
- Canan Bor, Department of Anaesthesiology and Intensive Care Unit, Ege University School of Medicine Hospital, Izmir, Turkey
| | - Kubilay Demirag
- Kubilay Demirag, Department of Anaesthesiology and Intensive Care Unit, Ege University School of Medicine Hospital, Izmir, Turkey
| | - Ozlem Okcu
- Ozlem Okcu, Department of Radiology, Ege University School of Medicine Hospital, Izmir, Turkey
| | - Ilkin Cankayali
- Ilkin Cankayali, Department of Anaesthesiology and Intensive Care Unit, Ege University School of Medicine Hospital, Izmir, Turkey
| | - Mehmet Uyar
- Mehmet Uyar, Department of Anaesthesiology and Intensive Care Unit, Ege University School of Medicine Hospital, Izmir, Turkey
| |
Collapse
|
8
|
Mott TM, Johnston RK, Vijayakumar S, Estes DM, Motamedi M, Sbrana E, Endsley JJ, Torres AG. Monitoring Therapeutic Treatments against Burkholderia Infections Using Imaging Techniques. Pathogens 2013; 2. [PMID: 24349761 PMCID: PMC3859531 DOI: 10.3390/pathogens2020383] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Burkholderia mallei, the etiologic agent of glanders, are Category B select agents with biothreat potential, and yet effective therapeutic treatments are lacking. In this study, we showed that CpG administration increased survival, demonstrating protection in the murine glanders model. Bacterial recovery from infected lungs, liver and spleen was significantly reduced in CpG-treated animals as compared with non-treated mice. Reciprocally, lungs of CpG-treated infected animals were infiltrated with higher levels of neutrophils and inflammatory monocytes, as compared to control animals. Employing the B. mallei bioluminescent strain CSM001 and the Neutrophil-Specific Fluorescent Imaging Agent, bacterial dissemination and neutrophil trafficking were monitored in real-time using multimodal in vivo whole body imaging techniques. CpG-treatment increased recruitment of neutrophils to the lungs and reduced bioluminescent bacteria, correlating with decreased bacterial burden and increased protection against acute murine glanders. Our results indicate that protection of CpG-treated animals was associated with recruitment of neutrophils prior to infection and demonstrated, for the first time, simultaneous real time in vivo imaging of neutrophils and bacteria. This study provides experimental evidence supporting the importance of incorporating optimized in vivo imaging methods to monitor disease progression and to evaluate the efficacy of therapeutic treatment during bacterial infections.
Collapse
Affiliation(s)
- Tiffany M Mott
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (T.M.M.); (R.K.J.); (S.V.); (E.S.); (J.J.E.)
| | - R Katie Johnston
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (T.M.M.); (R.K.J.); (S.V.); (E.S.); (J.J.E.)
| | - Sudhamathi Vijayakumar
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (T.M.M.); (R.K.J.); (S.V.); (E.S.); (J.J.E.)
| | - D Mark Estes
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| | - Massoud Motamedi
- Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Elena Sbrana
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (T.M.M.); (R.K.J.); (S.V.); (E.S.); (J.J.E.) ; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Janice J Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (T.M.M.); (R.K.J.); (S.V.); (E.S.); (J.J.E.)
| | - Alfredo G Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (T.M.M.); (R.K.J.); (S.V.); (E.S.); (J.J.E.) ; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
9
|
Hodge LM. Osteopathic lymphatic pump techniques to enhance immunity and treat pneumonia. INT J OSTEOPATH MED 2012; 15:13-21. [PMID: 22977459 DOI: 10.1016/j.ijosm.2011.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Pneumonia is a common cause of morbidity and mortality worldwide. While antibiotics are generally effective for the treatment of infection, the emergence of resistant strains of bacteria threatens their success. The osteopathic medical profession has designed a set of manipulative techniques called lymphatic pump techniques (LPT), to enhance the flow of lymph through the lymphatic system. Clinically, LPT is used to treat infection and oedemaand might be an effective adjuvant therapy in patients with pneumonia.The immune system uses the lymphatic and blood systems to survey to rid the body of pathogens; however, only recently have the effects of LPT on the lymphatic and immune systems been investigated. This short review highlightsclinical and basic science research studies that support the use of LPT to enhance the lymphatic and immune systems and treat pneumonia, and discusses the potential mechanisms by which LPT benefits patients with pneumonia.
Collapse
Affiliation(s)
- Lisa M Hodge
- Osteopathic Research Center, University of North Texas Health Science Center Fort Worth, Texas
| |
Collapse
|
10
|
Karavitis J, Murdoch EL, Deburghgraeve C, Ramirez L, Kovacs EJ. Ethanol suppresses phagosomal adhesion maturation, Rac activation, and subsequent actin polymerization during FcγR-mediated phagocytosis. Cell Immunol 2012; 274:61-71. [PMID: 22381996 PMCID: PMC3334404 DOI: 10.1016/j.cellimm.2012.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/02/2012] [Accepted: 02/03/2012] [Indexed: 12/16/2022]
Abstract
Clinical and laboratory investigations have provided evidence that ethanol suppresses normal lung immunity. Our initial studies revealed that acute ethanol exposure results in transient suppression of phagocytosis of Pseudomonas aeruginosa by macrophages as early as 3 h after initial exposure. Focusing on mechanisms by which ethanol decreases macrophage Fcγ-receptor (FcγR) phagocytosis we targeted the study on the focal adhesion and cytoskeletal elements that are necessary for phagosome progression. Ethanol inhibited macrophage phagocytosis of IgG-coated bead recruitment of actin to the site of the phagosome, dampened the phosphorylation of vinculin, but had no effect on paxillin phosphorylation suggesting a loss in "phagosomal adhesion" maturation. Moreover, our observations revealed that FcγR-phagocytosis induced Rac activation, which was increased by only 50% in ethanol exposed cells, compared to 175% in the absence of ethanol. This work is the first to show evidence of the cellular mechanisms involved in the ethanol-induced suppression of FcγR-mediated phagocytosis.
Collapse
Affiliation(s)
- John Karavitis
- Program of Cell Biology, Neurobiology and Anatomy, Loyola University Medical Center, Maywood, IL, United States
| | | | | | | | | |
Collapse
|
11
|
Friaza V, la Horra CD, Rodríguez-Domínguez MJ, Martín-Juan J, Cantón R, Calderón EJ, Del Campo R. Metagenomic analysis of bronchoalveolar lavage samples from patients with idiopathic interstitial pneumonia and its antagonic relation with Pneumocystis jirovecii colonization. J Microbiol Methods 2010; 82:98-101. [PMID: 20382190 DOI: 10.1016/j.mimet.2010.03.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Revised: 03/30/2010] [Accepted: 03/31/2010] [Indexed: 10/19/2022]
Abstract
Idiopathic interstitial pneumonias are interstitial lung diseases of unknown etiology which prognosis is usually fatal. Microbiota associated to bronchoalveolar lavage from 20 patients with negative bacterial cultures was explored by 16S-rDNA PCR-DGGE, showing a clearly negative relation among the presence of P. jirovecii and bacterial colonization. This is the first report of in vivo antagonistic relation among fungi and bacteria.
Collapse
Affiliation(s)
- Vicente Friaza
- Instituto de Biomedicina de Sevilla, Hospital Universitario, Virgen del Rocío, Seville, Spain
| | | | | | | | | | | | | |
Collapse
|
12
|
Eum SY, Lee YJ, Min JH, Kwak HK, Hong MS, Kong JH, Hwang SH, Park SK, Leblanc JJ, Via LE, Barry CE, Cho SN. Association of antigen-stimulated release of tumor necrosis factor-alpha in whole blood with response to chemotherapy in patients with pulmonary multidrug-resistant tuberculosis. ACTA ACUST UNITED AC 2010; 80:275-84. [PMID: 20145387 DOI: 10.1159/000283687] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 11/30/2009] [Indexed: 11/19/2022]
Abstract
BACKGROUND We have previously reported that TNF-α levels correlate to total mycobacterial burden in tuberculosis (TB) patients. OBJECTIVE To characterize the dynamics of cytokine responses in TB patients during chemotherapy to identify potential surrogate markers for effective treatment. METHODS Following induction by culture filtrate proteins in whole blood, production patterns of TNF-α, IL-10, IFN-γ and IL-12 were measured in 23 non-multidrug-resistant (MDR)-TB and 16 MDR-TB patients and in 31 healthy controls. Rates of mycobacterial clearance from the sputum were then measured and compared. RESULTS Prior to the initiation of chemotherapy, TNF-α and IL-10 levels were significantly higher in TB patients than in healthy controls while IFN-γ and IL-12 levels were similar. During chemotherapy, the levels of all 4 cytokines increased. We evaluated these responses separately in patients that did and did not clear their sputum culture at 2 and 6 months. At 2 months, decreases in both IFN-γ and IL-12 correlated strongly with a successful early response, while after 6 months of therapy, when half (7/14) of MDR-TB patients were still sputum culture positive, downregulation of TNF-α was uniquely correlated with sputum conversion between the groups. CONCLUSION Our findings suggest the possibility that the regulation of TNF-α production in whole blood may be a more specific indicator of sputum conversion at 6 months than IFN-γ, IL-12 or IL-10 in MDR-TB patients.
Collapse
Affiliation(s)
- Seok-Yong Eum
- Division of Immunopathology and Cellular Immunology, and of Molecular Microbiology, International Tuberculosis Research Center, Masan, Republic of Korea. syeumkr @ gmail.com
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Smagur J, Guzik K, Bzowska M, Kuzak M, Zarebski M, Kantyka T, Walski M, Gajkowska B, Potempa J. Staphylococcal cysteine protease staphopain B (SspB) induces rapid engulfment of human neutrophils and monocytes by macrophages. Biol Chem 2009; 390:361-71. [PMID: 19284294 DOI: 10.1515/bc.2009.042] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract Circulating neutrophils and monocytes constitute the first line of antibacterial defence, which is responsible for the phagocytosis and killing of microorganisms. Previously, we have described that the staphylococcal cysteine proteinase staphopain B (SspB) cleaves CD11b on peripheral blood phagocytes, inducing the rapid development of features of atypical cell death in protease-treated cells. Here, we report that exposure of phagocytes to SspB critically impairs their antibacterial functions. Specifically, SspB blocks phagocytosis of Staphylococcus aureus by both neutrophils and monocytes, represses their chemotactic activity and induces extensive, nonphlogistic clearance of SspB-treated cells by macrophages. The proteinase also cleaves CD31, a major repulsion ('do not-eat-me') signal, on the surface of neutrophils. We suggest that both proteolytic degradation of repulsion signals and induction of 'eat-me' signals on the surface of leukocytes are responsible for the observed intensive phagocytosis of SspB-treated neutrophils by human monocyte-derived macrophages. Collectively, this may lead to the depletion of functional neutrophils at the site of infection, thus facilitating staphylococcal colonisation and spreading.
Collapse
Affiliation(s)
- Jan Smagur
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30-386 Krakow, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Radaelli E, Luini M, Domeneghini C, Loria G, Recordati C, Radaelli P, Scanziani E. Expression of Class II Major Histocompatibility Complex Molecules in Chronic Pulmonary Mycoplasma bovis Infection in Cattle. J Comp Pathol 2009; 140:198-202. [DOI: 10.1016/j.jcpa.2008.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 10/26/2008] [Indexed: 10/21/2022]
|
15
|
The orphan response regulator CovR: a globally negative modulator of virulence in Streptococcus suis serotype 2. J Bacteriol 2009; 191:2601-12. [PMID: 19181815 DOI: 10.1128/jb.01309-08] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis serotype 2 is an emerging zoonotic pathogen responsible for a wide range of life-threatening diseases in pigs and humans. However, the pathogenesis of S. suis serotype 2 infection is not well understood. In this study, we report that an orphan response regulator, CovR, globally regulates gene expression and negatively controls the virulence of S. suis 05ZYH33, a streptococcal toxic shock syndrome (STSS)-causing strain. A covR-defective (DeltacovR) mutant of 05ZYH33 displayed dramatic phenotypic changes, such as formation of longer chains, production of thicker capsules, and increased hemolytic activity. Adherence of the DeltacovR mutant to epithelial cells was greatly increased, and its resistance to phagocytosis and killing by neutrophils and monocytes was also significantly enhanced. More importantly, inactivation of covR increased the lethality of S. suis serotype 2 in experimental infection of piglets, and this phenotype was restored by covR complementation. Colonization experiments also showed that the DeltacovR mutant exhibited an increased ability to colonize susceptible tissues of piglets. The pleiotropic phenotype of the DeltacovR mutant is in full agreement with the large number of genes controlled by CovR as revealed by transcription profile analysis: 2 genes are positively regulated, and 193 are repressed, including many that encode known or putative virulence factors. These findings suggested that CovR is a global repressor in virulence regulation of STSS-causing S. suis serotype 2.
Collapse
|
16
|
Abstract
Pulmonary pathology includes a large spectrum of both neoplastic and non-neoplastic diseases that affect the lung. Many of these are a result of the unusual relationship of the lung with the outside world. Every breath that a human takes brings the outside world into the body in the form of infectious agents, organic and inorganic particles, and noxious agents of all types. Although the lung has many defense mechanisms to protect itself from these insults, these are not infallible; therefore, lung pathology arises. Damage to the lung is particularly important given the role of the lung in the survival of the organism. Any impairment of lung function has widespread effects throughout the body, since all organs depend on the lungs for the oxygen they need. Pulmonary pathology catalogs the changes in the lung tissues and the mechanisms through which these occur. This chapter presents a review of lung pathology and the current state of knowledge about the pathogenesis of each disease. It suggests that a clear understanding of both morphology and mechanism is required for the development of new therapies and preventive measures.
Collapse
|
17
|
Holt PG, Strickland DH, Wikström ME, Jahnsen FL. Regulation of immunological homeostasis in the respiratory tract. Nat Rev Immunol 2008; 8:142-52. [DOI: 10.1038/nri2236] [Citation(s) in RCA: 393] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Nart P, Holden N, McAteer SP, Wang D, Flockhart AF, Naylor SW, Low JC, Gally DL, Huntley JF. Mucosal antibody responses of colonized cattle to Escherichia coli O157-secreted proteins, flagellin, outer membrane proteins and lipopolysaccharide. ACTA ACUST UNITED AC 2007; 52:59-68. [PMID: 17995963 DOI: 10.1111/j.1574-695x.2007.00341.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The aim of this work was to characterize adaptive mucosal immune responses to Escherichia coli O157:H7 at the principal site of colonization in the bovine species. Following experimental infection, extracts from terminal rectum mucosal samples were tested for IgA antibodies by immunoblotting against different bacterial antigens including: whole-cell E. coli O157:H7 with and without proteinase treatment, outer membrane and cytoplasmic preparations, secreted protein supernatants and purified E. coli O157 lipopolysaccharide and H7 flagellin. Lipopolysaccharide and H7 flagellin preparations were also used to coat enzyme-linked immunosorbent assay plates to determine mucosal IgG1 and IgA antibody titers. In this work, evidence is presented of strong local IgA immune responses induced following infection at the bovine terminal rectal mucosa directed against multiple antigens including type III secretion-dependent proteins, O157 lipopolysaccharide, H7 flagellin and OmpC.
Collapse
Affiliation(s)
- Pablo Nart
- Centre for Infectious Diseases, School of Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Harraz MM, Park A, Abbott D, Zhou W, Zhang Y, Engelhardt JF. MKK6 phosphorylation regulates production of superoxide by enhancing Rac GTPase activity. Antioxid Redox Signal 2007; 9:1803-13. [PMID: 17854274 PMCID: PMC3597076 DOI: 10.1089/ars.2007.1579] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Rac-dependent NADPH oxidases generate reactive oxygen species used in cell signaling and microbial killing or both. Whereas the mechanisms leading to NADPH oxidase activation are fairly well studied, the mechanisms that control downregulation of this enzyme complex remain unclear. We hypothesized that reactive oxygen species produced by NADPH oxidase may autoregulate the complex by inhibiting Rac activity. To this end, we searched for binding partners of Rac1 and identified a tyrosine-phosphorylated fragment of MKK6 that bound to Rac1 under redox-stress conditions. Constitutively active MKK6 interacted directly with Rac1 in vitro, and this interaction was enhanced when MKK6 was phosphorylated on tyrosine 219. Both Rac1 and Rac2 immunoprecipitated an MKK6 fragment under conditions that elevate cellular peroxide levels in 293 and RAW cells, respectively. Constitutively active and wild-type MKK6 enhanced Rac-GTPase activity in vitro, and their overexpression inhibited PMA-induced NADPH oxidase activation in RAW cells. In contrast, a Y219F mutant of MKK6 only partially enhanced Rac1 GTPase activity, and its overexpression did not alter PMA-induced NADPH oxidase activation in RAW cells. Last, MKK6 deficiency led to an increase in Rac1-GTP levels in brain tissue. Our findings suggest that MKK6 downregulates NADPH oxidase activity by enhancing Rac-GTPase activity.
Collapse
Affiliation(s)
- Maged M Harraz
- Department of Anatomy & Cell Biology, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | |
Collapse
|
20
|
Hayes D, Meyer KC. Acute exacerbations of chronic bronchitis in elderly patients: pathogenesis, diagnosis and management. Drugs Aging 2007; 24:555-72. [PMID: 17658907 DOI: 10.2165/00002512-200724070-00004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Chronic bronchitis (CB) is a disorder that is characterised by chronic mucus production. This disorder is called chronic obstructive pulmonary disease (COPD) when airflow obstruction is present. The majority of patients with COPD, which often goes undiagnosed or inadequately treated in the elderly, have symptoms consistent with CB. The clinical course of CB is usually punctuated by periodic acute exacerbations linked to infections caused by viral and typical or atypical bacterial pathogens. Acute exacerbations of chronic bronchitis (AECB) often lead to a decline in lung function and poor quality of life in association with increased risk of mortality and a significant economic impact on the healthcare system and society because of the direct costs of hospitalisations. In elderly individuals with COPD, co-morbidities play a vital role as determinants of health status and prognosis. Failure to eradicate infecting pathogens contributes to persistence of infection and inflammation that requires repeated courses of therapy and hospitalisation. Stratifying patients with AECB according to symptoms, degree of pulmonary function impairment and risk factors for poor outcome can help clinicians choose empirical antimicrobial chemotherapy regimens that are most likely to result in treatment success. Failure to cover likely pathogens associated with episodes of AECB can lead to lengthy hospital admissions and significant declines in functional status for elderly patients. Fluoroquinolones may provide the best therapeutic option for elderly patients with COPD who have complicated underlying CB but who are sufficiently stable to be treated in the outpatient setting. Optimised treatment for stable outpatients with CB may diminish the frequency of AECB, and effective antimicrobial therapy for AECB episodes can significantly diminish healthcare costs and maintain quality of life in the elderly patient.
Collapse
Affiliation(s)
- Don Hayes
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | | |
Collapse
|
21
|
Garg S, Vitvitsky V, Gendelman HE, Banerjee R. Monocyte Differentiation, Activation, and Mycobacterial Killing Are Linked to Transsulfuration-dependent Redox Metabolism. J Biol Chem 2006; 281:38712-20. [PMID: 17046819 DOI: 10.1074/jbc.m606235200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Modulation of the ambient redox status by mononuclear phagocytes is central to their role in health and disease. However, little is known about the mechanism of redox regulation during mononuclear phagocyte differentiation and activation, critical cellular steps in innate immunity, and microbial clearance. An important intermediate in GSH-based redox metabolism is homocysteine, which can undergo transmethylation via methionine synthase (MS) or transsulfuration via cystathionine beta-synthase (CBS). The transsulfuration pathway generates cysteine, the limiting reagent in GSH biosynthesis. We now demonstrate that expression of CBS and MS are strongly induced during differentiation of human monocytes and are regulated at the transcriptional and posttranscriptional levels, respectively. The changes in enzyme expression are paralleled by an approximately 150% increase in S-adenosylmethionine (accompanied by a corresponding increase in phospholipid methylation) and a similar increase in GSH. Activation with lipopolysachharide or infection with Mycobacterium smegmatis diminished expression of both enzymes to a significant extent and decreased S-adenosylmethionine concentration by approximately 30% of the control value while GSH and cysteine concentrations increased approximately 100 and 300%, respectively. Blockade of the transsulfuration pathway with propargylglycine suppressed clearance of M. smegmatis by macrophages and inhibited phagolysosomal fusion, whereas N-acetylcysteine promoted phagolysosomal fusion and enhanced mycobacterial clearance 3-fold compared with untreated cells. We posit that regulation of the transsulfuration pathway during monocyte differentiation, activation, and infection can boost host defense against invading pathogens and may represent a heretofore unrecognized antimicrobial therapeutic target.
Collapse
Affiliation(s)
- Sanjay Garg
- Redox Biology Center and the Department of Biochemistry, University of Nebraska, Lincoln, NE 68588-0664, USA
| | | | | | | |
Collapse
|
22
|
Kruit A, Grutters JC, Ruven HJT, Sato H, Izumi T, Nagai S, Welsh KI, du Bois RM, van den Bosch JMM. Chymase Gene (CMA1) Polymorphisms in Dutch and Japanese Sarcoidosis Patients. Respiration 2006; 73:623-33. [PMID: 16446531 DOI: 10.1159/000091190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Accepted: 10/26/2005] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Chymase is released from mast cells following activation. Evidence suggests that chymase plays an important role in tissue injury and remodeling of the lungs, heart and skin. OBJECTIVE We postulated that chymase gene (CMA1) polymorphisms are associated with pulmonary fibrosis in Dutch and with cardiac and skin involvement in Japanese sarcoidosis patients. PATIENTS AND METHODS Dutch (n = 153) and Japanese (n = 122) sarcoidosis patients with controls (Dutch, n = 309; Japanese, n = 111) were studied. Pulmonary involvement in Dutch patients as well as clinical manifestations in Japanese patients was evaluated for association with five CMA1 polymorphisms. RESULTS The CMA1 polymorphisms were not associated with disease susceptibility in either population, or with radiographic evolution in the Dutch or with cardiac or skin involvement in the Japanese patients. The -526 T allele was associated with a lower iVC in Dutch patients. CONCLUSIONS The CMA1 polymorphisms studied do not contribute to disease susceptibility in Japanese or Dutch sarcoidosis patients. CMA1 polymorphisms do not influence radiographic evolution in Dutch sarcoidosis patients, nor do they predispose to cardiac or skin involvement in Japanese patients. However, the association between CMA1 -526 C/T and iVC in the Dutch patients suggests that chymase may modify the functional outcome of pulmonary sarcoidosis.
Collapse
Affiliation(s)
- Adrian Kruit
- Department of Pulmonology, Heart Lung Centre Utrecht, St. Antonius Hospital, Nieuwegein, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bocchino M, Marruchella A, Saltini C. Immunogenetics of severe respiratory infections: models for the development of new therapeutic strategies. Respiration 2006; 72:449-57. [PMID: 16210881 DOI: 10.1159/000087666] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Innate and adaptive immunity plays a critical role in the defence of the lung and other mucosal surfaces exposed to micro-organisms. Anti-microbial peptides and proteins, cytokines and chemokines are important immune weapons as they build up the protective front for the respiratory tract. The notion that susceptibility to infectious diseases may be inherited is widely accepted and, as it is the failure to activate adaptive immunity that may allow infection to become established and progress toward invasion and dissemination, the recognition of specific gene defects affecting the ability of the immune system to overcome invading pathogens may shed light upon those mechanisms of immune regulation that are playing the most critical roles. The aim of the present review is to discuss some of the advances in infection immunogenetics that may lead to identify new strategies in the development of new anti-infectious and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Marialuisa Bocchino
- Specialization School of Respiration Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | | |
Collapse
|
24
|
Ramos CDL, Fernandes KSS, Canetti C, Teixeira MM, Silva JS, Cunha FQ. Neutrophil recruitment in immunized mice depends on MIP-2 inducing the sequential release of MIP-1alpha, TNF-alpha and LTB(4). Eur J Immunol 2006; 36:2025-34. [PMID: 16856209 DOI: 10.1002/eji.200636057] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neutrophils are thought to play an important role in the tissue damage observed in various autoimmune diseases. Chemokines, cytokines and leukotrienes have recognized roles in the orchestration of neutrophil migration. We have recently shown that antigen-induced neutrophil migration into the peritoneum of immunized mice is mediated by macrophage-inflammatory protein (MIP)-1alpha which interacts with CCR1 and induces the sequential release of TNF-alpha and leukotriene B(4) (LTB(4)). The present study investigates the role of MIP-2 and CXCR2 in the cascade of events leading to mediator generation and neutrophil influx. Antigen challenge of immunized mice induced the expression of CXCR2 and the production of KC and MIP-2 proteins. Antigen-induced neutrophil migration was inhibited by a CXCR2 receptor antagonist (repertaxin) or an anti-MIP-2 antibody, but not by an anti-KC antibody. Administration of MIP-2 promoted a dose-dependent neutrophil migration in naive mice which was inhibited by repertaxin, anti-TNF-alpha, anti-MIP-1alpha antibodies or by MK886 (leukotriene synthesis inhibitor). MIP-2 administration induced the release of MIP-1alpha, TNF-alpha and LTB(4), and the release of the latter two was inhibited by anti-MIP-1alpha antibody treatment. Our studies highlight the intricate balance between mediator production and action during an immune-mediated inflammatory response and suggest a mediator cascade leading to neutrophil influx following antigen challenge of immunized mice: MIP-2 --> MIP-1alpha --> TNF-alpha --> LTB(4).
Collapse
Affiliation(s)
- Cleber D L Ramos
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
25
|
Marra A. Targeting virulence for antibacterial chemotherapy: identifying and characterising virulence factors for lead discovery. Drugs R D 2006; 7:1-16. [PMID: 16620133 DOI: 10.2165/00126839-200607010-00001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The antibacterial drug discovery industry is fast losing participants; at the same time it is facing the challenge of developing new antibiotics that are effective against frequently occurring and multiply resistant organisms. One intriguing approach is to target bacterial virulence, and the last decade or so has seen a focus on bacterial pathogenesis along with the development of reagents and strategies that could make this possible. Several processes utilised by a range of bacteria to cause infection may be conserved enough to make attractive targets; indeed it is known that mammalian cells can affect bacterial gene expression and vice versa. Interesting targets involving virulence include type III secretion systems, two-component signal transduction systems, quorum sensing, and biofilm formation. In order to better understand these systems and strategies, investigators have developed novel strategies of their own, involving negative selections, surrogate models of infection, and screens for gene induction and antigenicity. Inhibitors of such targets would be unlikely to adversely affect patients, be cross-resistant to existing therapies, or cause resistance themselves. It might be the case that virulence target-based therapies would not be powerful enough to clear an existing infection alone, but if they are instead considered as adjunct therapy to existing antibiotics, or potentiators of the host immune response, they may show efficacy in a non-traditional way.
Collapse
|
26
|
Gursel G, Demirtas S. Value of APACHE II, SOFA and CPIS Scores in Predicting Prognosis in Patients with Ventilator-Associated Pneumonia. Respiration 2006; 73:503-8. [PMID: 16205047 DOI: 10.1159/000088708] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Accepted: 05/27/2005] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Ventilator-associated pneumonia (VAP) is the most frequent infection with high mortality rates in intensive care units (ICUs) and the prediction of outcome is important in the decision-making process. OBJECTIVE To assess the value of the Acute Physiology and Chronic Health Evaluation II (APACHE II), Sequential Organ Failure Assessment (SOFA) and Clinical Pulmonary Infection Score (CPIS) in the prediction of mortality during VAP episodes in pulmonary patients. METHODS This study was a prospective observational cohort study. Sixty-three patients who were admitted to the ICU and developed VAP were included in the study consecutively. Clinical and laboratory data conforming to the APACHE II and SOFA scores were recorded on admission and APACHE II, SOFA and CPIS scores on the day of the diagnosis of VAP. The outcome measure was the ICU mortality. Logistic regression and receiver operating characteristic (ROC) curve analyses and the area under the curve (AUC) were used to estimate the predictive ability of the scoring systems. RESULTS Mortality rate was 54%. The mean APACHE II (21 +/- 6, 14 +/- 5; p = 0.001), SOFA (7 +/- 3, 4 +/- 2; p = 0.002) and CPIS (8 +/- 2, 7 +/- 3; p = 0.025) scores determined at the time of VAP diagnosis were significantly higher in nonsurvivors than in survivors. Discrimination was excellent for APACHE II (ROC AUC: 0.81; p = 0.001) and acceptable for SOFA (ROC AUC: 0.71; p = 0.005) scores. Of the three scores only APACHE II >16 was an independent predictor of the mortality (OR: 5; 95% CI: 1.3-18; p = 0.019) in the logistic regression analysis. CONCLUSION These results suggest that APACHE II determined at the time of VAP diagnosis may be useful in predicting mortality in the pulmonary ICU patient population who develops VAP.
Collapse
Affiliation(s)
- Gul Gursel
- Pulmonary Diseases Department, Intensive Care Unit, Gazi University School of Medicine, Besevler, Ankara, Turkey.
| | | |
Collapse
|
27
|
Martinez FJ, Han MK, Flaherty K, Curtis J. Role of infection and antimicrobial therapy in acute exacerbations of chronic obstructive pulmonary disease. Expert Rev Anti Infect Ther 2006; 4:101-24. [PMID: 16441213 DOI: 10.1586/14787210.4.1.101] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the past several years, the significance of acute exacerbations of chronic obstructive pulmonary disease (AECOPD) in patients with chronic airflow obstruction has become increasingly apparent due to the impact these episodes have on the natural history of disease. It is now known that frequent AECOPD can adversely affect a patient's health-related quality of life and short- and long-term pulmonary function. The economic burden of these episodes is also substantial. AECOPDs represent a local and systemic inflammatory response to both infectious and noninfectious stimuli, but the majority of episodes are likely related to bacterial or viral pathogens. Patients with purulent sputum and multiple symptoms are the most likely to benefit from treatment with antibiotics. Antibiotic choice should be tailored to the individual patient, taking into account the severity of the episode and host factors which might increase the likelihood of treatment failure. Current evidence suggests that therapeutic goals not only include resolution of the acute episode, but also prolonging the time to the next event. In the future, preventing exacerbations will likely become increasingly accepted as an additional therapeutic goal in chronic obstructive pulmonary disease patients.
Collapse
Affiliation(s)
- Fernando J Martinez
- The University of Michigan Health System, 1500 East Medical Center Drive, 3916 Taubman Center, Box 0360, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
28
|
Current World Literature. Curr Opin Allergy Clin Immunol 2006; 6:67-9. [PMID: 16505615 DOI: 10.1097/01.all.0000202355.95779.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Roxo Júnior P, Ferriani VPL, Teixeira JE, Barbosa JE. Complement levels in Brazilian children during and after meningococcal meningitis. Clinics (Sao Paulo) 2005; 60:127-30. [PMID: 15880248 DOI: 10.1590/s1807-59322005000200008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To evaluate the functional activity of the classical and alternative pathways of the complement system and the levels of C3, C4, and factor B during the first episode of meningococcal infection and during the convalescence period. PATIENTS AND METHODS Ten Brazilian children ranging in age from 8 months to 8 years, admitted from 1991 to 1993 with a clinical-laboratory diagnosis of meningococcal meningitis, were studied during acute infection (up to 7 days from diagnosis) and during the convalescence period (1 to 6 months after the acute episode). C3, C4, and Factor B were measured using nephelometry, and the lytic activity of classical and alternative pathways were evaluated by a kinetic method and expressed as the time needed to lyse 50% of an erythrocyte suspension (T1/2, expressed in seconds). Low T1/2 values for classical and alternative pathways correlate with high activities of the classical and alternative complement pathways, respectively. RESULTS A significant difference was observed between the alternative pathway lytic activity during infection and the convalescence period (282 vs 238 seconds, respectively, P = .01). No differences were detected in the other complement parameters analyzed. CONCLUSIONS In the presence of meningococcal meningitis, the alternative pathway is preferentially activated. This is probably due to the greater ability of the meningococcal endotoxin to activate this pathway in vivo.
Collapse
Affiliation(s)
- Pérsio Roxo Júnior
- Department of Pediatrics, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | |
Collapse
|