1
|
Pivonello R, Waaijers M, Kros JM, Pivonello C, de Angelis C, Cozzolino A, Colao A, Lamberts SWJ, Hofland LJ. Dopamine D2 receptor expression in the corticotroph cells of the human normal pituitary gland. Endocrine 2017; 57:314-325. [PMID: 27738887 DOI: 10.1007/s12020-016-1107-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/29/2016] [Indexed: 12/22/2022]
Abstract
The dopamine D2 receptor is the main dopamine receptor expressed in the human normal pituitary gland. The aim of the current study was to evaluate dopamine D2 receptor expression in the corticotroph cell populations of the anterior lobe and pars intermedia, as well as posterior lobe of the human normal pituitary gland by immunohistochemistry. Human normal pituitary gland samples obtained from routine autopsies were used for the study. In all cases, histology together with immunostaining for adrenocorticotropic hormone, melanocyte-stimulating hormone, prolactin, and neurofilaments were performed and compared to the immunostaining for D2 receptor. D2 receptor was heterogeneously expressed in the majority of the cell populations of the anterior and posterior lobe as well as in the area localized between the anterior and posterior lobe, and arbitrary defined as "intermediate zone". This zone, characterized by the presence of nerve fibers included the residual pars intermedia represented by the colloid-filled cysts lined by the remnant melanotroph cells strongly expressing D2 receptors, and clusters of corticotroph cells, belonging to the anterior lobe but localized within the cysts and adjacent to the posterior lobe, variably expressing D2 receptors. D2 dopamine receptor is expressed in the majority of the cell populations of the human normal pituitary gland, and particularly, in the different corticotroph cell populations localized in the anterior lobe and the intermediate zone of the pituitary gland.
Collapse
MESH Headings
- Adrenocorticotropic Hormone/metabolism
- Corticotrophs/metabolism
- Humans
- Immunohistochemistry
- Melanocyte-Stimulating Hormones/metabolism
- Nerve Fibers/metabolism
- Pituitary Gland/cytology
- Pituitary Gland/innervation
- Pituitary Gland/metabolism
- Pituitary Gland, Anterior/cytology
- Pituitary Gland, Anterior/innervation
- Pituitary Gland, Anterior/metabolism
- Pituitary Gland, Intermediate/cytology
- Pituitary Gland, Intermediate/innervation
- Pituitary Gland, Intermediate/metabolism
- Pituitary Gland, Posterior/cytology
- Pituitary Gland, Posterior/innervation
- Pituitary Gland, Posterior/metabolism
- Prolactin/metabolism
- Receptors, Dopamine D2/biosynthesis
- Receptors, Dopamine D2/genetics
Collapse
Affiliation(s)
- Rosario Pivonello
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy.
| | - Marlijn Waaijers
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Johan M Kros
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Claudia Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | | | - Alessia Cozzolino
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, Naples, Italy
| | - Steven W J Lamberts
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Leo J Hofland
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Jansen EJR, van Bakel NHM, Olde Loohuis NFM, Hafmans TGM, Arentsen T, Coenen AJM, Scheenen WJJM, Martens GJM. Identification of domains within the V-ATPase accessory subunit Ac45 involved in V-ATPase transport and Ca2+-dependent exocytosis. J Biol Chem 2012; 287:27537-46. [PMID: 22736765 DOI: 10.1074/jbc.m112.356105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vacuolar (H(+))-ATPase (V-ATPase) is crucial for maintenance of the acidic microenvironment in intracellular organelles, whereas its membrane-bound V(0)-sector is involved in Ca(2+)-dependent membrane fusion. In the secretory pathway, the V-ATPase is regulated by its type I transmembrane and V(0)-associated accessory subunit Ac45. To execute its function, the intact-Ac45 protein is proteolytically processed to cleaved-Ac45 thereby releasing its N-terminal domain. Here, we searched for the functional domains within Ac45 by analyzing a set of deletion mutants close to the in vivo situation, namely in transgenic Xenopus intermediate pituitary melanotrope cells. Intact-Ac45 was poorly processed and accumulated in the endoplasmic reticulum of the transgenic melanotrope cells. In contrast, cleaved-Ac45 was efficiently transported through the secretory pathway, caused an accumulation of the V-ATPase at the plasma membrane and reduced dopaminergic inhibition of Ca(2+)-dependent peptide secretion. Surprisingly, removal of the C-tail from intact-Ac45 caused cellular phenotypes also found for cleaved-Ac45, whereas C-tail removal from cleaved-Ac45 still allowed its transport to the plasma membrane, but abolished V-ATPase recruitment into the secretory pathway and left dopaminergic inhibition of the cells unaffected. We conclude that domains located in the N- and C-terminal portions of the Ac45 protein direct its trafficking, V-ATPase recruitment and Ca(2+)-dependent-regulated exocytosis.
Collapse
Affiliation(s)
- Eric J R Jansen
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition, and Behaviour and Nijmegen Centre for Molecular Life Sciences (NCMLS), Faculty of Science, Radboud University Nijmegen, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Dunn TW, Farah CA, Sossin WS. Inhibitory responses in Aplysia pleural sensory neurons act to block excitability, transmitter release, and PKC Apl II activation. J Neurophysiol 2011; 107:292-305. [PMID: 21994260 DOI: 10.1152/jn.00767.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Expression of the 5-HT(1Apl(a)) receptor in Aplysia pleural sensory neurons inhibited 5-HT-mediated translocation of the novel PKC Apl II in sensory neurons and prevented PKC-dependent synaptic facilitation at sensory to motoneuron synapses (Nagakura et al. 2010). We now demonstrate that the ability of inhibitory receptors to block PKC activation is a general feature of inhibitory receptors and is found after expression of the 5-HT(1Apl(b)) receptor and with activation of endogenous dopamine and FMRFamide receptors in sensory neurons. Pleural sensory neurons are heterogeneous for their inhibitory response to endogenous transmitters, with dopamine being the most prevalent, followed by FMRFamide, and only a small number of neurons with inhibitory responses to 5-HT. The inhibitory response is dominant, reduces membrane excitability and synaptic efficacy, and can reverse 5-HT facilitation at both naive and depressed synapses. Indeed, dopamine can reverse PKC translocation during the continued application of 5-HT. Reversal of translocation can also be seen after translocation mediated by an analog of diacylglycerol, suggesting inhibition is not through blockade of diacylglycerol production. The effects of inhibition on PKC translocation can be rescued by phosphatidic acid, consistent with the inhibitory response involving a reduction or block of production of this lipid. However, phosphatidic acid could not recover PKC-dependent synaptic facilitation due to an additional inhibitory effect on the non-L-type calcium flux linked to synaptic transmission. In summary, we find a novel mechanism downstream of inhibitory receptors linked to inhibition of PKC activation in Aplysia sensory neurons.
Collapse
Affiliation(s)
- Tyler W Dunn
- Dept. of Neurology and Neurosurgery, McGill Univ., Montreal Neurological Institute, BT 110, 3801 Univ. St., Montreal, Quebec H3A 2B4, Canada.
| | | | | |
Collapse
|
4
|
Perez MF, Ford KA, Goussakov I, Stutzmann GE, Hu XT. Repeated cocaine exposure decreases dopamine D₂-like receptor modulation of Ca(2+) homeostasis in rat nucleus accumbens neurons. Synapse 2011; 65:168-80. [PMID: 20665696 DOI: 10.1002/syn.20831] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The nucleus accumbens (NAc) is a limbic structure in the forebrain that plays a critical role in cognitive function and addiction. Dopamine modulates activity of medium spiny neurons (MSNs) in the NAc. Both dopamine D₁-like and D₂-like receptors (including D1R or D(1,5)R and D2R or D(2,3,4)R, respectively) are thought to play critical roles in cocaine addiction. Our previous studies demonstrated that repeated cocaine exposure (which alters dopamine transmission) decreases excitability of NAc MSNs in cocaine-sensitized, withdrawn rats. This decrease is characterized by a reduction in voltage-sensitive Na(+) currents and high voltage-activated Ca(2+) currents, along with increased voltage-gated K(+) currents. These changes are associated with enhanced activity in the D1R/cAMP/PKA/protein phosphatase 1 pathway and diminished calcineurin function. Although D1R-mediated signaling is enhanced by repeated cocaine exposure, little is known whether and how the D2R is implicated in the cocaine-induced NAc dysfunction. Here, we performed a combined electrophysiological, biochemical, and neuroimaging study that reveals the cocaine-induced dysregulation of Ca(2+) homeostasis with involvement of D2R. Our novel findings reveal that D2R stimulation reduced Ca(2+) influx preferentially via the L-type Ca(2+) channels and evoked intracellular Ca(2+) release, likely via inhibiting the cAMP/PKA cascade, in the NAc MSNs of drug-free rats. However, repeated cocaine exposure abolished the D₂R effects on modulating Ca(2+) homeostasis with enhanced PKA activity and led to a decrease in whole-cell Ca(2+) influx. These adaptations, which persisted for 21 days during cocaine abstinence, may contribute to the mechanism of cocaine withdrawal.
Collapse
Affiliation(s)
- Mariela F Perez
- IFEC, CONICET, Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba, Argentina
| | | | | | | | | |
Collapse
|
5
|
Roubos EW, Jenks BG, Xu L, Kuribara M, Scheenen WJJM, Kozicz T. About a snail, a toad, and rodents: animal models for adaptation research. Front Endocrinol (Lausanne) 2010; 1:4. [PMID: 22649351 PMCID: PMC3355873 DOI: 10.3389/fendo.2010.00004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 09/29/2010] [Indexed: 12/28/2022] Open
Abstract
Neural adaptation mechanisms have many similarities throughout the animal kingdom, enabling to study fundamentals of human adaptation in selected animal models with experimental approaches that are impossible to apply in man. This will be illustrated by reviewing research on three of such animal models, viz. (1) the egg-laying behavior of a snail, Lymnaea stagnalis: how one neuron type controls behavior, (2) adaptation to the ambient light condition by a toad, Xenopus laevis: how a neuroendocrine cell integrates complex external and neural inputs, and (3) stress, feeding, and depression in rodents: how a neuronal network co-ordinates different but related complex behaviors. Special attention is being paid to the actions of neurochemical messengers, such as neuropeptide Y, urocortin 1, and brain-derived neurotrophic factor. While awaiting new technological developments to study the living human brain at the cellular and molecular levels, continuing progress in the insight in the functioning of human adaptation mechanisms may be expected from neuroendocrine research using invertebrate and vertebrate animal models.
Collapse
Affiliation(s)
- Eric W. Roubos
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University NijmegenNijmegen, Netherlands
| | - Bruce G. Jenks
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University NijmegenNijmegen, Netherlands
| | - Lu Xu
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University NijmegenNijmegen, Netherlands
| | - Miyuki Kuribara
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University NijmegenNijmegen, Netherlands
| | - Wim J. J. M. Scheenen
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University NijmegenNijmegen, Netherlands
| | - Tamás Kozicz
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University NijmegenNijmegen, Netherlands
| |
Collapse
|
6
|
Zhang H, Langeslag M, Breukels V, Jenks BG, Roubos EW, Scheenen WJJM. Calcium channel kinetics of melanotrope cells in Xenopus laevis depend on environmental stimulation. Gen Comp Endocrinol 2008; 156:104-12. [PMID: 18206885 DOI: 10.1016/j.ygcen.2007.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 11/23/2007] [Accepted: 12/10/2007] [Indexed: 10/22/2022]
Abstract
We have tested the hypothesis that the type and kinetics of voltage-activated Ca(2+) channels in a neuroendocrine cell depend on the cell's long-term external input. For this purpose, the presence and kinetics of both low (LVA) and high-voltage-activated (HVA) L-type Ca(2+) channels have been assessed in melanotrope pituitary cells of the amphibian Xenopus laevis. The secretory activity of this cell type can readily be manipulated in vivo by changing the animal's environmental light condition, from a black to a white background. We here show that, compared to white background-adapted Xenopus, melanotropes from black background-adapted frogs have (1) a much larger size, as revealed by their 2.5 times larger membrane capacitance (P<0.001), (2) a 2 times higher HVA current density (P<0.05), (3) a clearly smaller Ca(2+)-dependent inactivation (10%; P<0.05), (4) L-type channels with 5 times slower activation and inactivation kinetics (P<0.05), and (5) slower kinetics of L-type channels that become faster and more similar to those in white-background adapted cells when the intracellular Ca(2+)-buffering capacity is reduced. Furthermore, white-adapted melanotropes possess LVA-type Ca(2+) channels, which are lacking from cells from black-adapted animals. The melanotrope calmodulin mRNA level does not differ between the two adaptation states. These results indicate that HVA L-type channel kinetics differ in relation to environmentally induced changes in cellular secretory state, probably mediated via intracellular Ca(2+)-buffering, whereas the occurrence of LVA Ca(2+) channels may depend on environmentally controlled channel gene expression.
Collapse
Affiliation(s)
- Hongyan Zhang
- Department of Cellular Animal Physiology, EURON European Graduate School of Neuroscience, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
7
|
Jenks BG, Kidane AH, Scheenen WJJM, Roubos EW. Plasticity in the melanotrope neuroendocrine interface of Xenopus laevis. Neuroendocrinology 2007; 85:177-85. [PMID: 17389778 DOI: 10.1159/000101434] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Accepted: 02/22/2007] [Indexed: 11/19/2022]
Abstract
Melanotrope cells of the amphibian pituitary pars intermedia produce alpha-melanophore-stimulating hormone (alpha-MSH), a peptide which causes skin darkening during adaptation to a dark background. The secretory activity of the melanotrope of the South African clawed toad Xenopus laevis is regulated by multiple factors, both classical neurotransmitters and neuropeptides from the brain. This review concerns the plasticity displayed in this intermediate lobe neuroendocrine interface during physiological adaptation to the environment. The plasticity includes dramatic morphological plasticity in both pre- and post-synaptic elements of the interface. Inhibitory neurons in the suprachiasmatic nucleus, designated suprachiasmatic melanotrope-inhibiting neurons (SMINs), possess more and larger synapses on the melanotrope cells in white than in black-background adapted animals; in the latter animals the melanotropes are larger and produce more proopiomelanocortin (POMC), the precursor of alpha-MSH. On a white background, pre-synaptic SMIN plasticity is reflected by a higher expression of inhibitory neuropeptide Y (NPY) and is closely associated with postsynaptic melanotrope plasticity, namely a higher expression of the NPY Y1 receptor. Interestingly, melanotrope cells in such animals also display higher expression of the receptors for thyrotropin-releasing hormone (TRH) and urocortin 1, two neuropeptides that stimulate alpha-MSH secretion. Possibly, in white-adapted animals melanotropes are sensitized to neuropeptide stimulation so that, when the toad moves to a black background, they can immediately initiate alpha-MSH secretion to achieve rapid adaptation to the new background condition. The melanotrope cell also produces brain-derived neurotrophic factor (BDNF), which is co-sequestered with alpha-MSH in secretory granules within the cells. The neurotrophin seems to control melanotrope cell plasticity in an autocrine way and we speculate that it may also control presynaptic SMIN plasticity.
Collapse
Affiliation(s)
- Bruce G Jenks
- Department of Cellular Animal Physiology, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
8
|
Zhang H, Roubos EW, Jenks BG, Scheenen WJJM. Receptors for neuropeptide Y, gamma-aminobutyric acid and dopamine differentially regulate Ca2+ currents in Xenopus melanotrope cells via the G(i) protein beta/gamma-subunit. Gen Comp Endocrinol 2006; 145:140-7. [PMID: 16214143 DOI: 10.1016/j.ygcen.2005.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 07/25/2005] [Accepted: 08/19/2005] [Indexed: 10/25/2022]
Abstract
Secretion of alpha-melanophore-stimulating hormone (alphaMSH) from pituitary melanotrope cells of the amphibian Xenopus laevis is under inhibitory synaptic control by three neurotransmitters produced by the suprachiasmatic nucleus: gamma-aminobutyric acid (GABA), neuropeptide Y (NPY) and dopamine (DA). These inhibitory effects occur through G(i)-protein-coupled receptors (G(i)PCR), and differ in strength: GABA(B)-receptor-induced inhibition is the weakest, whereas DA (via a D2-receptor) and NPY (via a Y1-receptor) strongly inhibit, with NPY having a long-lasting effect. Previously it was shown that DA inhibits two (R- and N-type channel) of the four voltage-operated Ca2+ channels in the melanotrope, and that only part of this inhibition is mediated by beta/gamma-subunits of the G(i) protein. We here demonstrate that also the Y1- and GABA(B)-receptor inhibit only part of the total Ca2+ current (I(Ca)), with fast activation and inactivation kinetics. However, GABA(B)-mediated inhibition is weaker than the inhibitions induced via Y1- and D2-receptors (-21 versus -27% and -30%, respectively). Using a depolarizing pre-pulse protocol it was demonstrated that GABA(B)-induced inhibition of I(Ca) most likely depends on Gbeta/gamma-subunit activation whereas Y1- and D2- induced inhibitions are only partially mediated by Gbeta/gamma-subunits. No differences were found between the Y1- and D2-induced inhibitions. These results imply that activation of different G(i)PCR inhibits the I(Ca) through different mechanisms, a phenomenon that may underlie the different potencies of the suprachiasmatic neurotransmitters to inhibit alphaMSH secretion.
Collapse
Affiliation(s)
- Hongyan Zhang
- Department of Cellular Animal Physiology, Institute for Neuroscience, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | | | | | | |
Collapse
|