Xia A, Liu X, Raphael PD, Applegate BE, Oghalai JS. Hair cell force generation does not amplify or tune vibrations within the chicken basilar papilla.
Nat Commun 2016;
7:13133. [PMID:
27796310 PMCID:
PMC5095595 DOI:
10.1038/ncomms13133]
[Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 09/07/2016] [Indexed: 12/22/2022] Open
Abstract
Frequency tuning within the auditory papilla of most non-mammalian species is electrical, deriving from ion-channel resonance within their sensory hair cells. In contrast, tuning within the mammalian cochlea is mechanical, stemming from active mechanisms within outer hair cells that amplify the basilar membrane travelling wave. Interestingly, hair cells in the avian basilar papilla demonstrate both electrical resonance and force-generation, making it unclear which mechanism creates sharp frequency tuning. Here, we measured sound-induced vibrations within the apical half of the chicken basilar papilla in vivo and found broadly-tuned travelling waves that were not amplified. However, distortion products were found in live but not dead chickens. These findings support the idea that avian hair cells do produce force, but that their effects on vibration are small and do not sharpen tuning. Therefore, frequency tuning within the apical avian basilar papilla is not mechanical, and likely derives from hair cell electrical resonance.
The avian auditory papilla has many similarities to the mammalian cochlea but whether force generation by hair cells amplifies the travelling wave, as it does in mammals, remains unknown. Here the authors show that the chicken basilar papilla does not have a ‘cochlear amplifier' and that sharp frequency tuning does not derive from mechanical vibrations.
Collapse