1
|
Chuong JN, Ben Nun N, Suresh I, Matthews JC, De T, Avecilla G, Abdul-Rahman F, Brandt N, Ram Y, Gresham D. Template switching during DNA replication is a prevalent source of adaptive gene amplification. eLife 2025; 13:RP98934. [PMID: 39899365 PMCID: PMC11790251 DOI: 10.7554/elife.98934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Copy number variants (CNVs) are an important source of genetic variation underlying rapid adaptation and genome evolution. Whereas point mutation rates vary with genomic location and local DNA features, the role of genome architecture in the formation and evolutionary dynamics of CNVs is poorly understood. Previously, we found the GAP1 gene in Saccharomyces cerevisiae undergoes frequent amplification and selection in glutamine-limitation. The gene is flanked by two long terminal repeats (LTRs) and proximate to an origin of DNA replication (autonomously replicating sequence, ARS), which likely promote rapid GAP1 CNV formation. To test the role of these genomic elements on CNV-mediated adaptive evolution, we evolved engineered strains lacking either the adjacent LTRs, ARS, or all elements in glutamine-limited chemostats. Using a CNV reporter system and neural network simulation-based inference (nnSBI) we quantified the formation rate and fitness effect of CNVs for each strain. Removal of local DNA elements significantly impacts the fitness effect of GAP1 CNVs and the rate of adaptation. In 177 CNV lineages, across all four strains, between 26% and 80% of all GAP1 CNVs are mediated by Origin Dependent Inverted Repeat Amplification (ODIRA) which results from template switching between the leading and lagging strand during DNA synthesis. In the absence of the local ARS, distal ones mediate CNV formation via ODIRA. In the absence of local LTRs, homologous recombination can mediate gene amplification following de novo retrotransposon events. Our study reveals that template switching during DNA replication is a prevalent source of adaptive CNVs.
Collapse
Affiliation(s)
- Julie N Chuong
- Department of Biology, Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Nadav Ben Nun
- School of Zoology, Faculty of Life Sciences, Tel Aviv UniversityTel AvivIsrael
- Edmond J. Safra Center for Bioinformatics, Tel Aviv UniversityTel AvivIsrael
| | - Ina Suresh
- Department of Biology, Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Julia Cano Matthews
- Department of Biology, Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Titir De
- Department of Biology, Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Grace Avecilla
- Department of Natural Sciences, Baruch College CUNYNew YorkUnited States
| | - Farah Abdul-Rahman
- Department of Ecology and Evolutionary Biology, Yale UniversityNew HavenUnited States
- Microbial Sciences Institute, Yale UniversityNew HavenUnited States
| | - Nathan Brandt
- Department of Biological Sciences, North Carolina State UniversityRaleighUnited States
| | - Yoav Ram
- School of Zoology, Faculty of Life Sciences, Tel Aviv UniversityTel AvivIsrael
- Edmond J. Safra Center for Bioinformatics, Tel Aviv UniversityTel AvivIsrael
| | - David Gresham
- Department of Biology, Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| |
Collapse
|
2
|
Chuong JN, Nun NB, Suresh I, Matthews JC, De T, Avecilla G, Abdul-Rahman F, Brandt N, Ram Y, Gresham D. Template switching during DNA replication is a prevalent source of adaptive gene amplification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.589936. [PMID: 39464144 PMCID: PMC11507740 DOI: 10.1101/2024.05.03.589936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Copy number variants (CNVs)-gains and losses of genomic sequences-are an important source of genetic variation underlying rapid adaptation and genome evolution. However, despite their central role in evolution little is known about the factors that contribute to the structure, size, formation rate, and fitness effects of adaptive CNVs. Local genomic sequences are likely to be an important determinant of these properties. Whereas it is known that point mutation rates vary with genomic location and local DNA sequence features, the role of genome architecture in the formation, selection, and the resulting evolutionary dynamics of CNVs is poorly understood. Previously, we have found that the GAP1 gene in Saccharomyces cerevisiae undergoes frequent and repeated amplification and selection under long-term experimental evolution in glutamine-limiting conditions. The GAP1 gene has a unique genomic architecture consisting of two flanking long terminal repeats (LTRs) and a proximate origin of DNA replication (autonomously replicating sequence, ARS), which are likely to promote rapid GAP1 CNV formation. To test the role of these genomic elements on CNV-mediated adaptive evolution, we performed experimental evolution in glutamine-limited chemostats using engineered strains lacking either the adjacent LTRs, ARS, or all elements. Using a CNV reporter system and neural network simulation-based inference (nnSBI) we quantified the formation rate and fitness effect of CNVs for each strain. We find that although GAP1 CNVs repeatedly form and sweep to high frequency in strains with modified genome architecture, removal of local DNA elements significantly impacts the rate and fitness effect of CNVs and the rate of adaptation. We performed genome sequence analysis to define the molecular mechanisms of CNV formation for 177 CNV lineages. We find that across all four strain backgrounds, between 26% and 80% of all GAP1 CNVs are mediated by Origin Dependent Inverted Repeat Amplification (ODIRA) which results from template switching between the leading and lagging strand during DNA synthesis. In the absence of the local ARS, a distal ARS can mediate CNV formation via ODIRA. In the absence of local LTRs, homologous recombination mechanisms still mediate gene amplification following de novo insertion of retrotransposon elements at the locus. Our study demonstrates the remarkable plasticity of the genome and reveals that template switching during DNA replication is a frequent source of adaptive CNVs.
Collapse
Affiliation(s)
- Julie N Chuong
- Department of Biology, Center for Genomics and Systems Biology, New York University
| | - Nadav Ben Nun
- School of Zoology, Faculty of Life Sciences, Tel Aviv University
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University
| | - Ina Suresh
- Department of Biology, Center for Genomics and Systems Biology, New York University
| | - Julia Cano Matthews
- Department of Biology, Center for Genomics and Systems Biology, New York University
| | - Titir De
- Department of Biology, Center for Genomics and Systems Biology, New York University
| | | | - Farah Abdul-Rahman
- Department of Ecology and Evolutionary Biology, Yale University
- Microbial Sciences Institute, Yale University
| | - Nathan Brandt
- Department of Biological Sciences, North Carolina State University
| | - Yoav Ram
- School of Zoology, Faculty of Life Sciences, Tel Aviv University
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University
| | - David Gresham
- Department of Biology, Center for Genomics and Systems Biology, New York University
- Correspondence:
| |
Collapse
|
3
|
Andrzejewska-Romanowska A, Gumna J, Tykwińska E, Pachulska-Wieczorek K. Mapping the structural landscape of the yeast Ty3 retrotransposon RNA genome. Nucleic Acids Res 2024; 52:9821-9837. [PMID: 38864374 PMCID: PMC11381356 DOI: 10.1093/nar/gkae494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/30/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024] Open
Abstract
Long terminal repeat (LTR)-retrotransposons are significant contributors to the evolution and diversity of eukaryotic genomes. Their RNA genomes (gRNA) serve as a template for protein synthesis and reverse transcription to a DNA copy, which can integrate into the host genome. Here, we used the SHAPE-MaP strategy to explore Ty3 retrotransposon gRNA structure in yeast and under cell-free conditions. Our study reveals the structural dynamics of Ty3 gRNA and the well-folded core, formed independently of the cellular environment. Based on the detailed map of Ty3 gRNA structure, we characterized the structural context of cis-acting sequences involved in reverse transcription and frameshifting. We also identified a novel functional sequence as a potential initiator for Ty3 gRNA dimerization. Our data indicate that the dimer is maintained by direct interaction between short palindromic sequences at the 5' ends of the two Ty3 gRNAs, resembling the model characteristic for other retroelements like HIV-1 and Ty1. This work points out a range of cell-dependent and -independent Ty3 gRNA structural changes that provide a solid background for studies on RNA structure-function relationships important for retroelement biology.
Collapse
Affiliation(s)
- Angelika Andrzejewska-Romanowska
- Department of RNA Structure and Function, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Julita Gumna
- Department of RNA Structure and Function, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Ewa Tykwińska
- Department of RNA Structure and Function, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Katarzyna Pachulska-Wieczorek
- Department of RNA Structure and Function, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
4
|
Hays M. Genetic conflicts in budding yeast: The 2μ plasmid as a model selfish element. Semin Cell Dev Biol 2024; 161-162:31-41. [PMID: 38598944 DOI: 10.1016/j.semcdb.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024]
Abstract
Antagonistic coevolution, arising from genetic conflict, can drive rapid evolution and biological innovation. Conflict can arise both between organisms and within genomes. This review focuses on budding yeasts as a model system for exploring intra- and inter-genomic genetic conflict, highlighting in particular the 2-micron (2μ) plasmid as a model selfish element. The 2μ is found widely in laboratory strains and industrial isolates of Saccharomyces cerevisiae and has long been known to cause host fitness defects. Nevertheless, the plasmid is frequently ignored in the context of genetic, fitness, and evolution studies. Here, I make a case for further exploring the evolutionary impact of the 2μ plasmid as well as other selfish elements of budding yeasts, discuss recent advances, and, finally, future directions for the field.
Collapse
Affiliation(s)
- Michelle Hays
- Department of Genetics, Stanford University, Stanford, CA, United States.
| |
Collapse
|
5
|
Kawakami K, Maeda SI, Tanimoto Y, Shimizu M, Kato H. A budding yeast CAGE dataset comprising two cell types. Genes Genet Syst 2024; 99:n/a. [PMID: 38447993 DOI: 10.1266/ggs.24-00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
The budding yeast Saccharomyces cerevisiae is an excellent model organism for studying chromatin regulation with high-resolution genome-wide analyses. Since newly generated genome-wide data are often compared with publicly available datasets, expanding our dataset repertoire will be beneficial for the field. Information on transcription start sites (TSSs) determined at base pair resolution is essential for elucidating mechanisms of transcription and related chromatin regulation, yet no datasets that cover two different cell types are available. Here, we present a CAGE (cap analysis of gene expression) dataset for a-cells and α-cells grown in defined and rich media. Cell type-specific genes were differentially expressed as expected, ensuring the reliability of the data. Some of the differentially expressed TSSs were medium-specific or detected due to unrecognized chromosome rearrangement. By comparing the CAGE data with a high-resolution nucleosome map, major TSSs were primarily found in +1 nucleosomes, with a peak approximately 30 bp from the promoter-proximal end of the nucleosome. The dataset is available at DDBJ/GEA.
Collapse
Affiliation(s)
- Kei Kawakami
- Department of Life Sciences, Shimane University School of Medicine
| | - Shin-Ichi Maeda
- Department of Life Sciences, Shimane University School of Medicine
| | - Yoshiko Tanimoto
- Department of Life Sciences, Shimane University School of Medicine
| | | | - Hiroaki Kato
- Department of Life Sciences, Shimane University School of Medicine
| |
Collapse
|
6
|
Westerberg I, Ament-Velásquez SL, Vogan AA, Johannesson H. Evolutionary dynamics of the LTR-retrotransposon crapaud in the Podospora anserina species complex and the interaction with repeat-induced point mutations. Mob DNA 2024; 15:1. [PMID: 38218923 PMCID: PMC10787394 DOI: 10.1186/s13100-023-00311-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/22/2023] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND The genome of the filamentous ascomycete Podospora anserina shows a relatively high abundance of retrotransposons compared to other interspersed repeats. The LTR-retrotransposon family crapaud is particularly abundant in the genome, and consists of multiple diverged sequence variations specifically localized in the 5' half of both long terminal repeats (LTRs). P. anserina is part of a recently diverged species-complex, which makes the system ideal to classify the crapaud family based on the observed LTR variation and to study the evolutionary dynamics, such as the diversification and bursts of the elements over recent evolutionary time. RESULTS We developed a sequence similarity network approach to classify the crapaud repeats of seven genomes representing the P. anserina species complex into 14 subfamilies. This method does not utilize a consensus sequence, but instead it connects any copies that share enough sequence similarity over a set sequence coverage. Based on phylogenetic analyses, we found that the crapaud repeats likely diversified in the ancestor of the complex and have had activity at different time points for different subfamilies. Furthermore, while we hypothesized that the evolution into multiple subfamilies could have been a direct effect of escaping the genome defense system of repeat induced point mutations, we found this not to be the case. CONCLUSIONS Our study contributes to the development of methods to classify transposable elements in fungi, and also highlights the intricate patterns of retrotransposon evolution over short timescales and under high mutational load caused by nucleotide-altering genome defense.
Collapse
Affiliation(s)
- Ivar Westerberg
- Department of Ecology, environmental and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden
| | - S Lorena Ament-Velásquez
- Division of Population Genetics, Department of Zoology, Stockholm University, Stockholm, 106 91, Sweden
| | - Aaron A Vogan
- Systematic Biology, Department of Organismal Biology, Uppsala University, Norbyvägen 18D, Uppsala, 752 36, Sweden.
| | - Hanna Johannesson
- Department of Ecology, environmental and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden.
- The Royal Swedish Academy of Sciences, Stockholm, 114 18, Sweden.
| |
Collapse
|
7
|
Zhai B, Zhang S, Li B, Zhang J, Yang X, Tan Y, Wang Y, Tan T, Yang X, Chen B, Tian Z, Cao Y, Huang Q, Gao J, Wang S, Zhang L. Dna2 removes toxic ssDNA-RPA filaments generated from meiotic recombination-associated DNA synthesis. Nucleic Acids Res 2023; 51:7914-7935. [PMID: 37351599 PMCID: PMC10450173 DOI: 10.1093/nar/gkad537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
During the repair of DNA double-strand breaks (DSBs), de novo synthesized DNA strands can displace the parental strand to generate single-strand DNAs (ssDNAs). Many programmed DSBs and thus many ssDNAs occur during meiosis. However, it is unclear how these ssDNAs are removed for the complete repair of meiotic DSBs. Here, we show that meiosis-specific depletion of Dna2 (dna2-md) results in an abundant accumulation of RPA and an expansion of RPA from DSBs to broader regions in Saccharomyces cerevisiae. As a result, DSB repair is defective and spores are inviable, although the levels of crossovers/non-crossovers seem to be unaffected. Furthermore, Dna2 induction at pachytene is highly effective in removing accumulated RPA and restoring spore viability. Moreover, the depletion of Pif1, an activator of polymerase δ required for meiotic recombination-associated DNA synthesis, and Pif1 inhibitor Mlh2 decreases and increases RPA accumulation in dna2-md, respectively. In addition, blocking DNA synthesis during meiotic recombination dramatically decreases RPA accumulation in dna2-md. Together, our findings show that meiotic DSB repair requires Dna2 to remove ssDNA-RPA filaments generated from meiotic recombination-associated DNA synthesis. Additionally, we showed that Dna2 also regulates DSB-independent RPA distribution.
Collapse
Affiliation(s)
- Binyuan Zhai
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Shuxian Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Bo Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Jiaming Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xuan Yang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yingjin Tan
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ying Wang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Taicong Tan
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiao Yang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong 250001, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Beiyi Chen
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China
| | - Zhongyu Tian
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China
| | - Yanding Cao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qilai Huang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Jinmin Gao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Shunxin Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong 250001, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Liangran Zhang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
8
|
Chakrabarty P, Sen R, Sengupta S. From parasites to partners: exploring the intricacies of host-transposon dynamics and coevolution. Funct Integr Genomics 2023; 23:278. [PMID: 37610667 DOI: 10.1007/s10142-023-01206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
Transposable elements, often referred to as "jumping genes," have long been recognized as genomic parasites due to their ability to integrate and disrupt normal gene function and induce extensive genomic alterations, thereby compromising the host's fitness. To counteract this, the host has evolved a plethora of mechanisms to suppress the activity of the transposons. Recent research has unveiled the host-transposon relationships to be nuanced and complex phenomena, resulting in the coevolution of both entities. Transposition increases the mutational rate in the host genome, often triggering physiological pathways such as immune and stress responses. Current gene transfer technologies utilizing transposable elements have potential drawbacks, including off-target integration, induction of mutations, and modifications of cellular machinery, which makes an in-depth understanding of the host-transposon relationship imperative. This review highlights the dynamic interplay between the host and transposable elements, encompassing various factors and components of the cellular machinery. We provide a comprehensive discussion of the strategies employed by transposable elements for their propagation, as well as the mechanisms utilized by the host to mitigate their parasitic effects. Additionally, we present an overview of recent research identifying host proteins that act as facilitators or inhibitors of transposition. We further discuss the evolutionary outcomes resulting from the genetic interactions between the host and the transposable elements. Finally, we pose open questions in this field and suggest potential avenues for future research.
Collapse
Affiliation(s)
- Prayas Chakrabarty
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India
| | - Raneet Sen
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India
- Institute of Bioorganic Chemistry, Department of RNA Metabolism, Polish Academy of Sciences, Poznan, Poland
| | - Sugopa Sengupta
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India.
| |
Collapse
|
9
|
Hays M, Schwartz K, Schmidtke DT, Aggeli D, Sherlock G. Paths to adaptation under fluctuating nitrogen starvation: The spectrum of adaptive mutations in Saccharomyces cerevisiae is shaped by retrotransposons and microhomology-mediated recombination. PLoS Genet 2023; 19:e1010747. [PMID: 37192196 PMCID: PMC10218751 DOI: 10.1371/journal.pgen.1010747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/26/2023] [Accepted: 04/14/2023] [Indexed: 05/18/2023] Open
Abstract
There are many mechanisms that give rise to genomic change: while point mutations are often emphasized in genomic analyses, evolution acts upon many other types of genetic changes that can result in less subtle perturbations. Changes in chromosome structure, DNA copy number, and novel transposon insertions all create large genomic changes, which can have correspondingly large impacts on phenotypes and fitness. In this study we investigate the spectrum of adaptive mutations that arise in a population under consistently fluctuating nitrogen conditions. We specifically contrast these adaptive alleles and the mutational mechanisms that create them, with mechanisms of adaptation under batch glucose limitation and constant selection in low, non-fluctuating nitrogen conditions to address if and how selection dynamics influence the molecular mechanisms of evolutionary adaptation. We observe that retrotransposon activity accounts for a substantial number of adaptive events, along with microhomology-mediated mechanisms of insertion, deletion, and gene conversion. In addition to loss of function alleles, which are often exploited in genetic screens, we identify putative gain of function alleles and alleles acting through as-of-yet unclear mechanisms. Taken together, our findings emphasize that how selection (fluctuating vs. non-fluctuating) is applied also shapes adaptation, just as the selective pressure (nitrogen vs. glucose) does itself. Fluctuating environments can activate different mutational mechanisms, shaping adaptive events accordingly. Experimental evolution, which allows a wider array of adaptive events to be assessed, is thus a complementary approach to both classical genetic screens and natural variation studies to characterize the genotype-to-phenotype-to-fitness map.
Collapse
Affiliation(s)
- Michelle Hays
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Katja Schwartz
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Danica T. Schmidtke
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Dimitra Aggeli
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Gavin Sherlock
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
10
|
Cao J, Yu T, Xu B, Hu Z, Zhang XO, Theurkauf W, Weng Z. Epigenetic and chromosomal features drive transposon insertion in Drosophila melanogaster. Nucleic Acids Res 2023; 51:2066-2086. [PMID: 36762470 PMCID: PMC10018349 DOI: 10.1093/nar/gkad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/12/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Transposons are mobile genetic elements prevalent in the genomes of most species. The distribution of transposons within a genome reflects the actions of two opposing processes: initial insertion site selection, and selective pressure from the host. By analyzing whole-genome sequencing data from transposon-activated Drosophila melanogaster, we identified 43 316 de novo and 237 germline insertions from four long-terminal-repeat (LTR) transposons, one LINE transposon (I-element), and one DNA transposon (P-element). We found that all transposon types favored insertion into promoters de novo, but otherwise displayed distinct insertion patterns. De novo and germline P-element insertions preferred replication origins, often landing in a narrow region around transcription start sites and in regions of high chromatin accessibility. De novo LTR transposon insertions preferred regions with high H3K36me3, promoters and exons of active genes; within genes, LTR insertion frequency correlated with gene expression. De novo I-element insertion density increased with distance from the centromere. Germline I-element and LTR transposon insertions were depleted in promoters and exons, suggesting strong selective pressure to remove transposons from functional elements. Transposon movement is associated with genome evolution and disease; therefore, our results can improve our understanding of genome and disease biology.
Collapse
Affiliation(s)
- Jichuan Cao
- The School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Tianxiong Yu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Bo Xu
- The School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhongren Hu
- The School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiao-ou Zhang
- The School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - William E Theurkauf
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
11
|
Multifarious Translational Regulation during Replicative Aging in Yeast. J Fungi (Basel) 2022; 8:jof8090938. [PMID: 36135663 PMCID: PMC9500732 DOI: 10.3390/jof8090938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
Protein synthesis is strictly regulated during replicative aging in yeast, but global translational regulation during replicative aging is poorly characterized. To conduct ribosome profiling during replicative aging, we collected a large number of dividing aged cells using a miniature chemostat aging device. Translational efficiency, defined as the number of ribosome footprints normalized to transcript abundance, was compared between young and aged cells for each gene. We identified more than 700 genes with changes greater than twofold during replicative aging. Increased translational efficiency was observed in genes involved in DNA repair and chromosome organization. Decreased translational efficiency was observed in genes encoding ribosome components, transposon Ty1 and Ty2 genes, transcription factor HAC1 gene associated with the unfolded protein response, genes involved in cell wall synthesis and assembly, and ammonium permease genes. Our results provide a global view of translational regulation during replicative aging, in which the pathways involved in various cell functions are translationally regulated and cause diverse phenotypic changes.
Collapse
|
12
|
Bonnet A, Lesage P. [Restriction of transposable elements and genome evolution: A fine balance to set up]. Med Sci (Paris) 2022; 38:18-20. [PMID: 35060878 DOI: 10.1051/medsci/2021231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Amandine Bonnet
- Université de Paris, Institut de recherche Saint-Louis, Inserm U944, CNRS UMR 7212, 75010 Paris, France
| | - Pascale Lesage
- Université de Paris, Institut de recherche Saint-Louis, Inserm U944, CNRS UMR 7212, 75010 Paris, France
| |
Collapse
|
13
|
Bonnet A, Chaput C, Palmic N, Palancade B, Lesage P. A nuclear pore sub-complex restricts the propagation of Ty retrotransposons by limiting their transcription. PLoS Genet 2021; 17:e1009889. [PMID: 34723966 PMCID: PMC8585004 DOI: 10.1371/journal.pgen.1009889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 11/11/2021] [Accepted: 10/18/2021] [Indexed: 11/19/2022] Open
Abstract
Beyond their canonical function in nucleocytoplasmic exchanges, nuclear pore complexes (NPCs) regulate the expression of protein-coding genes. Here, we have implemented transcriptomic and molecular methods to specifically address the impact of the NPC on retroelements, which are present in multiple copies in genomes. We report a novel function for the Nup84 complex, a core NPC building block, in specifically restricting the transcription of LTR-retrotransposons in yeast. Nup84 complex-dependent repression impacts both Copia and Gypsy Ty LTR-retrotransposons, all over the S. cerevisiae genome. Mechanistically, the Nup84 complex restricts the transcription of Ty1, the most active yeast retrotransposon, through the tethering of the SUMO-deconjugating enzyme Ulp1 to NPCs. Strikingly, the modest accumulation of Ty1 RNAs caused by Nup84 complex loss-of-function is sufficient to trigger an important increase of Ty1 cDNA levels, resulting in massive Ty1 retrotransposition. Altogether, our study expands our understanding of the complex interactions between retrotransposons and the NPC, and highlights the importance for the cells to keep retrotransposons under tight transcriptional control.
Collapse
Affiliation(s)
- Amandine Bonnet
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U944, CNRS UMR 7212, Paris, France
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Carole Chaput
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U944, CNRS UMR 7212, Paris, France
| | - Noé Palmic
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U944, CNRS UMR 7212, Paris, France
| | - Benoit Palancade
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Pascale Lesage
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U944, CNRS UMR 7212, Paris, France
| |
Collapse
|
14
|
Nguyen PQ, Conesa C, Rabut E, Bragagnolo G, Gouzerh C, Fernández-Tornero C, Lesage P, Reguera J, Acker J. Ty1 integrase is composed of an active N-terminal domain and a large disordered C-terminal module dispensable for its activity in vitro. J Biol Chem 2021; 297:101093. [PMID: 34416236 PMCID: PMC8487063 DOI: 10.1016/j.jbc.2021.101093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/05/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
Long-terminal repeat (LTR) retrotransposons are genetic elements that, like retroviruses, replicate by reverse transcription of an RNA intermediate into a complementary DNA (cDNA) that is next integrated into the host genome by their own integrase. The Ty1 LTR retrotransposon has proven to be a reliable working model to investigate retroelement integration site preference. However, the low yield of recombinant Ty1 integrase production reported so far has been a major obstacle for structural studies. Here we analyze the biophysical and biochemical properties of a stable and functional recombinant Ty1 integrase highly expressed in E.coli. The recombinant protein is monomeric and has an elongated shape harboring the three-domain structure common to all retroviral integrases at the N-terminal half, an extra folded region, and a large intrinsically disordered region at the C-terminal half. Recombinant Ty1 integrase efficiently catalyzes concerted integration in vitro, and the N-terminal domain displays similar activity. These studies that will facilitate structural analyses may allow elucidating the molecular mechanisms governing Ty1 specific integration into safe places in the genome.
Collapse
Affiliation(s)
| | - Christine Conesa
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Elise Rabut
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | - Célia Gouzerh
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | - Pascale Lesage
- INSERM U944, CNRS UMR 7212, Genomes and Cell Biology of Disease Unit, Institut de Recherche Saint-Louis, Université de Paris, Hôpital Saint-Louis, Paris, France
| | - Juan Reguera
- Aix-Marseille Université, CNRS, AFMB UMR 7257, Marseille, France; INSERM, AFMB UMR7257, Marseille, France.
| | - Joël Acker
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
15
|
Structure of a Ty1 restriction factor reveals the molecular basis of transposition copy number control. Nat Commun 2021; 12:5590. [PMID: 34552077 PMCID: PMC8458377 DOI: 10.1038/s41467-021-25849-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/06/2021] [Indexed: 11/30/2022] Open
Abstract
Excessive replication of Saccharomyces cerevisiae Ty1 retrotransposons is regulated by Copy Number Control, a process requiring the p22/p18 protein produced from a sub-genomic transcript initiated within Ty1 GAG. In retrotransposition, Gag performs the capsid functions required for replication and re-integration. To minimize genomic damage, p22/p18 interrupts virus-like particle function by interaction with Gag. Here, we present structural, biophysical and genetic analyses of p18m, a minimal fragment of Gag that restricts transposition. The 2.8 Å crystal structure of p18m reveals an all α-helical protein related to mammalian and insect ARC proteins. p18m retains the capacity to dimerise in solution and the crystal structures reveal two exclusive dimer interfaces. We probe our findings through biophysical analysis of interface mutants as well as Ty1 transposition and p18m restriction in vivo. Our data provide insight into Ty1 Gag structure and suggest how p22/p18 might function in restriction through a blocking-of-assembly mechanism. In Saccharomyces cerevisiae, unchecked proliferation of Ty1 retrotransposons is controlled by the process of copy number control (CNC), which requires the p22/p18 protein, translated from an internal transcript within the Ty1 GAG gene. Here, the authors present the 2.8 Å crystal structure of a minimal p18 from Ty1-Gag that is able to restrict Ty1 transposition and identify two dimer interfaces in p18, whose roles were probed by mutagenesis both in vitro and in vivo. As p22/p18 contains only one of two conserved domains required for retroelement Gag assembly, they propose that p22/p18-Gag interactions block the Ty1 virus-like particle assembly pathway, resulting in defective particles incapable of supporting retrotransposition.
Collapse
|
16
|
Bleykasten-Grosshans C, Fabrizio R, Friedrich A, Schacherer J. Species-wide transposable element repertoires retrace the evolutionary history of the Saccharomyces cerevisiae host. Mol Biol Evol 2021; 38:4334-4345. [PMID: 34115140 PMCID: PMC8476168 DOI: 10.1093/molbev/msab171] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Transposable elements (TE) are an important source of genetic variation with a dynamic and content that greatly differ in a wide range of species. The origin of the intraspecific content variation is not always clear and little is known about the precise nature of it. Here, we surveyed the species-wide content of the Ty LTR-retrotransposons in a broad collection of 1,011 Saccharomyces cerevisiae natural isolates to understand what can stand behind the variation of the repertoire that is the type and number of Ty elements. We have compiled an exhaustive catalog of all the TE sequence variants present in the S. cerevisiae species by identifying a large set of new sequence variants. The characterization of the TE content in each isolate clearly highlighted that each subpopulation exhibits a unique and specific repertoire, retracing the evolutionary history of the species. Most interestingly, we have shown that ancient interspecific hybridization events had a major impact in the birth of new sequence variants and therefore in the shaping of the TE repertoires. We also investigated the transpositional activity of these elements in a large set of natural isolates, and we found a broad variability related to the level of ploidy as well as the genetic background. Overall, our results pointed out that the evolution of the Ty content is deeply impacted by clade-specific events such as introgressions and therefore follows the population structure. In addition, our study lays the foundation for future investigations to better understand the transpositional regulation and more broadly the TE–host interactions.
Collapse
Affiliation(s)
| | - Romeo Fabrizio
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Anne Friedrich
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France.,Institut Universitaire de France (IUF)
| |
Collapse
|
17
|
Menees TM. Saccharomyces cerevisiae RNA lariat debranching enzyme, Dbr1p, is required for completion of reverse transcription by the retrovirus-like element Ty1 and cleaves branched Ty1 RNAs. Mol Genet Genomics 2021; 296:409-422. [PMID: 33464395 DOI: 10.1007/s00438-020-01753-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/14/2020] [Indexed: 11/25/2022]
Abstract
RNA debranching enzymes are 2'-5' phosphodiesterases found in all eukaryotes. Their main role is cleavage of intron RNA lariat branch points, promoting RNA turnover via exonucleases. Consistent with this role, cells with reduced RNA debranching enzyme activity accumulate intron RNA lariats. The Saccharomyces cerevisiae RNA debranching enzyme Dbr1p is also a host factor for the yeast long terminal repeat (LTR) retrotransposon Ty1, a model for many aspects of retroviral replication. Fittingly, the human RNA debranching enzyme Dbr1 is a host factor for the human immunodeficiency virus, HIV-1. The yeast and human RNA debranching enzymes act at the reverse transcription stages for Ty1 and HIV-1, respectively. Although efficient production of full-length Ty1 cDNA requires Dbr1p, the findings reported here indicate that production of the earliest distinct cDNA product, minus strand strong stop DNA (-sssDNA), is equivalent in wild type and dbr1∆ mutant cells. Several branched Ty1 RNAs are shown to accumulate in dbr1∆ cells during retrotransposition. These data are consistent with creation of Ty1 RNA branches prior to Ty1 reverse transcription and their removal by Dbr1p to allow efficient extension of early cDNA products. The data support the possibility that RNA branch formation and cleavage play broadly shared, but unknown roles in retroviral and LTR retrotransposon reverse transcription.
Collapse
Affiliation(s)
- Thomas M Menees
- School of Biological and Chemical Sciences, University of Missouri-Kansas City, Kansas City, MO, USA.
| |
Collapse
|
18
|
Higgins P, Grace CA, Lee SA, Goddard MR. Whole-genome sequencing from the New Zealand Saccharomyces cerevisiae population reveals the genomic impacts of novel microbial range expansion. G3-GENES GENOMES GENETICS 2021; 11:6044130. [PMID: 33561237 PMCID: PMC7849907 DOI: 10.1093/g3journal/jkaa027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/23/2020] [Indexed: 11/14/2022]
Abstract
Saccharomyces cerevisiae is extensively utilized for commercial fermentation, and is also an important biological model; however, its ecology has only recently begun to be understood. Through the use of whole-genome sequencing, the species has been characterized into a number of distinct subpopulations, defined by geographical ranges and industrial uses. Here, the whole-genome sequences of 104 New Zealand (NZ) S. cerevisiae strains, including 52 novel genomes, are analyzed alongside 450 published sequences derived from various global locations. The impact of S. cerevisiae novel range expansion into NZ was investigated and these analyses reveal the positioning of NZ strains as a subgroup to the predominantly European/wine clade. A number of genomic differences with the European group correlate with range expansion into NZ, including 18 highly enriched single-nucleotide polymorphism (SNPs) and novel Ty1/2 insertions. While it is not possible to categorically determine if any genetic differences are due to stochastic process or the operations of natural selection, we suggest that the observation of NZ-specific copy number increases of four sugar transporter genes in the HXT family may reasonably represent an adaptation in the NZ S. cerevisiae subpopulation, and this correlates with the observations of copy number changes during adaptation in small-scale experimental evolution studies.
Collapse
Affiliation(s)
- Peter Higgins
- The School of Life Sciences, College of Science, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Cooper A Grace
- Department of Biology, York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK.,Department of Biological and Geographical Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Soon A Lee
- The School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Matthew R Goddard
- The School of Life Sciences, College of Science, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK.,The School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
19
|
Hénault M, Marsit S, Charron G, Landry CR. The effect of hybridization on transposable element accumulation in an undomesticated fungal species. eLife 2020; 9:e60474. [PMID: 32955438 PMCID: PMC7584455 DOI: 10.7554/elife.60474] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/21/2020] [Indexed: 12/24/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that can profoundly impact the evolution of genomes and species. A long-standing hypothesis suggests that hybridization could deregulate TEs and trigger their accumulation, although it received mixed support from studies mostly in plants and animals. Here, we tested this hypothesis in fungi using incipient species of the undomesticated yeast Saccharomyces paradoxus. Population genomic data revealed no signature of higher transposition in natural hybrids. As we could not rule out the elimination of past transposition increase signatures by natural selection, we performed a laboratory evolution experiment on a panel of artificial hybrids to measure TE accumulation in the near absence of selection. Changes in TE copy numbers were not predicted by the level of evolutionary divergence between the parents of a hybrid genotype. Rather, they were highly dependent on the individual hybrid genotypes, showing that strong genotype-specific deterministic factors govern TE accumulation in yeast hybrids.
Collapse
Affiliation(s)
- Mathieu Hénault
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université LavalQuébecCanada
- Département de biochimie, microbiologie et bioinformatique, Université LavalQuébecCanada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université LavalQuébecCanada
- Université Laval Big Data Research Center (BDRC_UL)QuébecCanada
| | - Souhir Marsit
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université LavalQuébecCanada
- Département de biochimie, microbiologie et bioinformatique, Université LavalQuébecCanada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université LavalQuébecCanada
- Université Laval Big Data Research Center (BDRC_UL)QuébecCanada
- Département de biologie, Université LavalQuébecCanada
| | - Guillaume Charron
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université LavalQuébecCanada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université LavalQuébecCanada
- Université Laval Big Data Research Center (BDRC_UL)QuébecCanada
- Département de biologie, Université LavalQuébecCanada
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université LavalQuébecCanada
- Département de biochimie, microbiologie et bioinformatique, Université LavalQuébecCanada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université LavalQuébecCanada
- Université Laval Big Data Research Center (BDRC_UL)QuébecCanada
- Département de biologie, Université LavalQuébecCanada
| |
Collapse
|
20
|
Maxwell PH. Diverse transposable element landscapes in pathogenic and nonpathogenic yeast models: the value of a comparative perspective. Mob DNA 2020; 11:16. [PMID: 32336995 PMCID: PMC7175516 DOI: 10.1186/s13100-020-00215-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Genomics and other large-scale analyses have drawn increasing attention to the potential impacts of transposable elements (TEs) on their host genomes. However, it remains challenging to transition from identifying potential roles to clearly demonstrating the level of impact TEs have on genome evolution and possible functions that they contribute to their host organisms. I summarize TE content and distribution in four well-characterized yeast model systems in this review: the pathogens Candida albicans and Cryptococcus neoformans, and the nonpathogenic species Saccharomyces cerevisiae and Schizosaccharomyces pombe. I compare and contrast their TE landscapes to their lifecycles, genomic features, as well as the presence and nature of RNA interference pathways in each species to highlight the valuable diversity represented by these models for functional studies of TEs. I then review the regulation and impacts of the Ty1 and Ty3 retrotransposons from Saccharomyces cerevisiae and Tf1 and Tf2 retrotransposons from Schizosaccharomyces pombe to emphasize parallels and distinctions between these well-studied elements. I propose that further characterization of TEs in the pathogenic yeasts would enable this set of four yeast species to become an excellent set of models for comparative functional studies to address outstanding questions about TE-host relationships.
Collapse
|
21
|
Drinnenberg IA, Berger F, Elsässer SJ, Andersen PR, Ausió J, Bickmore WA, Blackwell AR, Erwin DH, Gahan JM, Gaut BS, Harvey ZH, Henikoff S, Kao JY, Kurdistani SK, Lemos B, Levine MT, Luger K, Malik HS, Martín-Durán JM, Peichel CL, Renfree MB, Rutowicz K, Sarkies P, Schmitz RJ, Technau U, Thornton JW, Warnecke T, Wolfe KH. EvoChromo: towards a synthesis of chromatin biology and evolution. Development 2019; 146:146/19/dev178962. [PMID: 31558570 DOI: 10.1242/dev.178962] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the past few years, interest in chromatin and its evolution has grown. To further advance these interests, we organized a workshop with the support of The Company of Biologists to debate the current state of knowledge regarding the origin and evolution of chromatin. This workshop led to prospective views on the development of a new field of research that we term 'EvoChromo'. In this short Spotlight article, we define the breadth and expected impact of this new area of scientific inquiry on our understanding of both chromatin and evolution.
Collapse
Affiliation(s)
- Ines A Drinnenberg
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique UMR 3664, Paris 75005, France
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Simon J Elsässer
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Peter R Andersen
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada
| | - Wendy A Bickmore
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | | | - Douglas H Erwin
- Department of Paleobiology, MRC-121, National Museum of Natural History, Washington, DC 20013-7012, USA
| | - James M Gahan
- Sars Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt. 55, 5008 Bergen, Norway
| | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Zachary H Harvey
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steven Henikoff
- Division of Basic Sciences and Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Joyce Y Kao
- Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY 10003, USA.,Institute of Molecular Systems Biology, Swiss Federal Institute of Technology (ETH) Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Siavash K Kurdistani
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Bernardo Lemos
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Mia T Levine
- Department of Biology, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karolin Luger
- Howard Hughes Medical Institute and Department of Biochemistry, CU Boulder, Boulder, CO 80303, USA
| | - Harmit S Malik
- Division of Basic Sciences and Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - José M Martín-Durán
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, London E1 4NS, UK
| | - Catherine L Peichel
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Melbourne, 3010 VIC, Australia
| | - Kinga Rutowicz
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, 8092 Zürich, Switzerland
| | - Peter Sarkies
- MRC London Institute of Medical Sciences and Institute of Clinical Sciences, IMperial College London, Du Cane Road, London W12 0NN, UK
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Ulrich Technau
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Vienna A-1090, Austria
| | - Joseph W Thornton
- Department of Human Genetics, and Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637 USA
| | - Tobias Warnecke
- MRC London Institute of Medical Sciences and Institute of Clinical Sciences, IMperial College London, Du Cane Road, London W12 0NN, UK
| | - Kenneth H Wolfe
- Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
22
|
Gier S, Simon M, Nordström K, Khalifa S, Schulz MH, Schmitt MJ, Breinig F. Transcriptome Kinetics of Saccharomyces cerevisiae in Response to Viral Killer Toxin K1. Front Microbiol 2019; 10:1102. [PMID: 31156606 PMCID: PMC6531845 DOI: 10.3389/fmicb.2019.01102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/30/2019] [Indexed: 11/29/2022] Open
Abstract
The K1 A/B toxin secreted by virus-infected Saccharomyces cerevisiae strains kills sensitive cells via disturbance of cytoplasmic membrane functions. Despite decades of research, the mechanisms underlying K1 toxicity and immunity have not been elucidated yet. In a novel approach, this study aimed to characterize transcriptome changes in K1-treated sensitive yeast cells in a time-dependent manner. Global transcriptional profiling revealed substantial cellular adaptations in target cells resulting in 1,189 differentially expressed genes in total. Killer toxin K1 induced oxidative, cell wall and hyperosmotic stress responses as well as rapid down-regulation of transcription and translation. Essential pathways regulating energy metabolism were also significantly affected by the toxin. Remarkably, a futile cycle of the osmolytes trehalose and glycogen was identified probably representing a critical feature of K1 intoxication. In silico analysis suggested several transcription factors involved in toxin-triggered signal transduction. The identified transcriptome changes provide valuable hints to illuminate the still unknown molecular events leading to K1 toxicity and immunity implicating an evolutionarily conserved response at least initially counteracting ionophoric toxin action.
Collapse
Affiliation(s)
- Stefanie Gier
- Department of Molecular and Cell Biology, Saarland University, Saarbrücken, Germany.,Center of Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| | - Martin Simon
- Center of Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany.,Molecular Cell Biology and Microbiology, University of Wuppertal, Wuppertal, Germany.,Molecular Cell Dynamics, Saarland University, Saarbrücken, Germany
| | - Karl Nordström
- Center of Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany.,Department of Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Salem Khalifa
- Cluster of Excellence "Multimodal Computing and Interaction", Max Planck Institute for Informatics, Saarland University, Saarbrücken, Germany
| | - Marcel H Schulz
- Cluster of Excellence "Multimodal Computing and Interaction", Max Planck Institute for Informatics, Saarland University, Saarbrücken, Germany
| | - Manfred J Schmitt
- Department of Molecular and Cell Biology, Saarland University, Saarbrücken, Germany.,Center of Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| | - Frank Breinig
- Department of Molecular and Cell Biology, Saarland University, Saarbrücken, Germany.,Center of Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| |
Collapse
|
23
|
Park SH, Hahn JS. Development of an efficient cytosolic isobutanol production pathway in Saccharomyces cerevisiae by optimizing copy numbers and expression of the pathway genes based on the toxic effect of α-acetolactate. Sci Rep 2019; 9:3996. [PMID: 30850698 PMCID: PMC6408573 DOI: 10.1038/s41598-019-40631-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 02/18/2019] [Indexed: 11/09/2022] Open
Abstract
Isobutanol production in Saccharomyces cerevisiae is limited by subcellular compartmentalization of the pathway enzymes. In this study, we improved isobutanol production in S. cerevisiae by constructing an artificial cytosolic isobutanol biosynthetic pathway consisting of AlsS, α-acetolactate synthase from Bacillus subtilis, and two endogenous mitochondrial enzymes, ketol-acid reductoisomerase (Ilv5) and dihydroxy-acid dehydratase (Ilv3), targeted to the cytosol. B. subtilis AlsS was more active than Ilv2ΔN54, an endogenous α-acetolactate synthase targeted to the cytosol. However, overexpression of alsS led to a growth inhibition, which was alleviated by overexpressing ILV5ΔN48 and ILV3ΔN19, encoding the downstream enzymes targeted to the cytosol. Therefore, accumulation of the intermediate α-acetolactate might be toxic to the cells. Based on these findings, we improved isobutanol production by expressing alsS under the control of a copper-inducible CUP1 promoter, and by increasing translational efficiency of the ILV5ΔN48 and ILV3ΔN19 genes by adding Kozak sequence. Furthermore, strains with multi-copy integration of alsS into the delta-sequences were screened based on growth inhibition upon copper-dependent induction of alsS. Next, the ILV5ΔN48 and ILV3ΔN19 genes were integrated into the rDNA sites of the alsS-integrated strain, and the strains with multi-copy integration were screened based on the growth recovery. After optimizing the induction conditions of alsS, the final engineered strain JHY43D24 produced 263.2 mg/L isobutanol, exhibiting about 3.3-fold increase in production compared to a control strain constitutively expressing ILV2ΔN54, ILV5ΔN48, and ILV3ΔN19 on plasmids.
Collapse
Affiliation(s)
- Seong-Hee Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Ji-Sook Hahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
24
|
Neurohr GE, Terry RL, Lengefeld J, Bonney M, Brittingham GP, Moretto F, Miettinen TP, Vaites LP, Soares LM, Paulo JA, Harper JW, Buratowski S, Manalis S, van Werven FJ, Holt LJ, Amon A. Excessive Cell Growth Causes Cytoplasm Dilution And Contributes to Senescence. Cell 2019; 176:1083-1097.e18. [PMID: 30739799 PMCID: PMC6386581 DOI: 10.1016/j.cell.2019.01.018] [Citation(s) in RCA: 296] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 11/15/2018] [Accepted: 01/09/2019] [Indexed: 11/23/2022]
Abstract
Cell size varies greatly between cell types, yet within a specific cell type and growth condition, cell size is narrowly distributed. Why maintenance of a cell-type specific cell size is important remains poorly understood. Here we show that growing budding yeast and primary mammalian cells beyond a certain size impairs gene induction, cell-cycle progression, and cell signaling. These defects are due to the inability of large cells to scale nucleic acid and protein biosynthesis in accordance with cell volume increase, which effectively leads to cytoplasm dilution. We further show that loss of scaling beyond a certain critical size is due to DNA becoming limiting. Based on the observation that senescent cells are large and exhibit many of the phenotypes of large cells, we propose that the range of DNA:cytoplasm ratio that supports optimal cell function is limited and that ratios outside these bounds contribute to aging.
Collapse
Affiliation(s)
- Gabriel E Neurohr
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rachel L Terry
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jette Lengefeld
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Megan Bonney
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Novartis Institute for Biomedical Research, Oncology Department, Cambridge, MA 02139
| | - Gregory P Brittingham
- Institute for Systems Genetics, New York University Langone Health, New York, NY 10016, USA
| | - Fabien Moretto
- Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Teemu P Miettinen
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | | | - Luis M Soares
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Scott Manalis
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Folkert J van Werven
- Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Liam J Holt
- Institute for Systems Genetics, New York University Langone Health, New York, NY 10016, USA
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
25
|
Park SH, Lee K, Jang JW, Hahn JS. Metabolic Engineering of Saccharomyces cerevisiae for Production of Shinorine, a Sunscreen Material, from Xylose. ACS Synth Biol 2019; 8:346-357. [PMID: 30586497 DOI: 10.1021/acssynbio.8b00388] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Shinorine, a mycosporine-like amino acid (MAA), is a small molecule sunscreen produced in some bacteria. In this study, by introducing shinorine biosynthetic genes from cyanobacteria Nostoc punctiform into Saccharomyces cerevisiae, we successfully constructed yeast strains capable of producing shinorine. Sedoheptulose 7-phosphate (S7P), an intermediate of the pentose phosphate pathway, is a key substrate for shinorine biosynthesis. To increase the S7P pool, xylose, which is assimilated via the pentose phosphate pathway, was used as a carbon source after introducing xylose assimilation genes from Scheffersomyces stipitis into the shinorine-producing strain. The resulting xylose-fermenting strain produced a trace amount of shinorine when cells were grown in glucose, but shinorine production was dramatically increased by adding xylose in the medium. Shinorine production was further improved by modulating the pentose phosphate pathway through deleting TAL1 and overexpressing STB5 and TKL1. The final engineered strain JHYS17-4 produced 31.0 mg/L (9.62 mg/g DCW) of shinorine in the optimized medium containing 8 g/L of xylose and 12 g/L of glucose, demonstrating that S. cerevisiae is a promising host to produce this natural sunscreen material.
Collapse
Affiliation(s)
- Seong-Hee Park
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kyusung Lee
- BIO Research Institute, CJ CheilJedang, Suwon 16495, Republic of Korea
| | - Jae Woo Jang
- BIO Research Institute, CJ CheilJedang, Suwon 16495, Republic of Korea
| | - Ji-Sook Hahn
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
26
|
Cheung S, Manhas S, Measday V. Retrotransposon targeting to RNA polymerase III-transcribed genes. Mob DNA 2018; 9:14. [PMID: 29713390 PMCID: PMC5911963 DOI: 10.1186/s13100-018-0119-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/16/2018] [Indexed: 12/20/2022] Open
Abstract
Retrotransposons are genetic elements that are similar in structure and life cycle to retroviruses by replicating via an RNA intermediate and inserting into a host genome. The Saccharomyces cerevisiae (S. cerevisiae) Ty1-5 elements are long terminal repeat (LTR) retrotransposons that are members of the Ty1-copia (Pseudoviridae) or Ty3-gypsy (Metaviridae) families. Four of the five S. cerevisiae Ty elements are inserted into the genome upstream of RNA Polymerase (Pol) III-transcribed genes such as transfer RNA (tRNA) genes. This particular genomic locus provides a safe environment for Ty element insertion without disruption of the host genome and is a targeting strategy used by retrotransposons that insert into compact genomes of hosts such as S. cerevisiae and the social amoeba Dictyostelium. The mechanism by which Ty1 targeting is achieved has been recently solved due to the discovery of an interaction between Ty1 Integrase (IN) and RNA Pol III subunits. We describe the methods used to identify the Ty1-IN interaction with Pol III and the Ty1 targeting consequences if the interaction is perturbed. The details of Ty1 targeting are just beginning to emerge and many unexplored areas remain including consideration of the 3-dimensional shape of genome. We present a variety of other retrotransposon families that insert adjacent to Pol III-transcribed genes and the mechanism by which the host machinery has been hijacked to accomplish this targeting strategy. Finally, we discuss why retrotransposons selected Pol III-transcribed genes as a target during evolution and how retrotransposons have shaped genome architecture.
Collapse
Affiliation(s)
- Stephanie Cheung
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Savrina Manhas
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Vivien Measday
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- Department of Food Science, Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, Room 325-2205 East Mall, Vancouver, British Columbia V6T 1Z4 Canada
| |
Collapse
|
27
|
Abstract
During transcription, the nascent transcript behind an elongating RNA polymerase (RNAP) can invade the DNA duplex and hybridize with the complementary DNA template strand, generating a three-stranded "R-loop" structure, composed of an RNA:DNA duplex and an unpaired non-template DNA strand. R-loops can be strongly associated with actively transcribed loci by all RNAPs including the mitochondrial RNA polymerase (mtRNAP). In this chapter, we describe two protocols for the detection of RNA:DNA hybrids in living budding yeast cells, one that uses conventional chromatin immunoprecipitation (ChIP-qPCR) and one that uses DNA:RNA immunoprecipitation (DRIP-qPCR). Both protocols make use of the S9.6 antibody, which is believed to recognize the intermediate A/B helical RNA:DNA duplex conformation, with no sequence specificity.
Collapse
Affiliation(s)
- Aziz El Hage
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK.
| | - David Tollervey
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK
| |
Collapse
|
28
|
Kishkovskaia SA, Eldarov MA, Dumina MV, Tanashchuk TN, Ravin NV, Mardanov AV. Flor yeast strains from culture collection: Genetic diversity and physiological and biochemical properties. APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817030085] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
van Nues R, Schweikert G, de Leau E, Selega A, Langford A, Franklin R, Iosub I, Wadsworth P, Sanguinetti G, Granneman S. Kinetic CRAC uncovers a role for Nab3 in determining gene expression profiles during stress. Nat Commun 2017; 8:12. [PMID: 28400552 PMCID: PMC5432031 DOI: 10.1038/s41467-017-00025-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 02/20/2017] [Indexed: 02/07/2023] Open
Abstract
RNA-binding proteins play a key role in shaping gene expression profiles during stress, however, little is known about the dynamic nature of these interactions and how this influences the kinetics of gene expression. To address this, we developed kinetic cross-linking and analysis of cDNAs (χCRAC), an ultraviolet cross-linking method that enabled us to quantitatively measure the dynamics of protein-RNA interactions in vivo on a minute time-scale. Here, using χCRAC we measure the global RNA-binding dynamics of the yeast transcription termination factor Nab3 in response to glucose starvation. These measurements reveal rapid changes in protein-RNA interactions within 1 min following stress imposition. Changes in Nab3 binding are largely independent of alterations in transcription rate during the early stages of stress response, indicating orthogonal transcriptional control mechanisms. We also uncover a function for Nab3 in dampening expression of stress-responsive genes. χCRAC has the potential to greatly enhance our understanding of in vivo dynamics of protein-RNA interactions.Protein RNA interactions are dynamic and regulated in response to environmental changes. Here the authors describe 'kinetic CRAC', an approach that allows time resolved analyses of protein RNA interactions with minute time point resolution and apply it to gain insight into the function of the RNA-binding protein Nab3.
Collapse
Affiliation(s)
- Rob van Nues
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh, EH9 3BF, UK.,Institute of Cell Biology, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | | | - Erica de Leau
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh, EH9 3BF, UK.,Institute for Molecular Plant Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Alina Selega
- School of Informatics, University of Edinburgh, Edinburgh, EH8 9AB, UK
| | - Andrew Langford
- UVO3 Ltd, Unit 25 Stephenson Road, St Ives, Cambridgeshire, PE27 3WJ, UK
| | - Ryan Franklin
- UVO3 Ltd, Unit 25 Stephenson Road, St Ives, Cambridgeshire, PE27 3WJ, UK
| | - Ira Iosub
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Peter Wadsworth
- UVO3 Ltd, Unit 25 Stephenson Road, St Ives, Cambridgeshire, PE27 3WJ, UK
| | - Guido Sanguinetti
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh, EH9 3BF, UK.,School of Informatics, University of Edinburgh, Edinburgh, EH8 9AB, UK
| | - Sander Granneman
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
30
|
Abstract
Cells are continuously exposed to both endogenous and exogenous sources of genomic stress. To maintain chromosome stability, a variety of mechanisms have evolved to cope with the multitude of genetic abnormalities that can arise over the life of a cell. Still, failures to repair these lesions are the driving force of cancers and other degenerative disorders. DNA double-strand breaks (DSBs) are among the most toxic genetic lesions, inhibiting cell ability to replicate, and are sites of mutations and chromosomal rearrangements. DSB repair is known to proceed via two major mechanisms: homologous recombination (HR) and non-homologous end joining (NHEJ). HR reliance on the exchange of genetic information between two identical or nearly identical DNA molecules offers increased accuracy. While the preferred substrate for HR in mitotic cells is the sister chromatid, this is limited to the S and G2 phases of the cell cycle. However, abundant amounts of homologous genetic substrate may exist throughout the cell cycle in the form of RNA. Considered an uncommon occurrence, the direct transfer of information from RNA to DNA is thought to be limited to special circumstances. Studies have shown that RNA molecules reverse transcribed into cDNA can be incorporated into DNA at DSB sites via a non-templated mechanism by NHEJ or a templated mechanism by HR. In addition, synthetic RNA molecules can directly template the repair of DSBs in yeast and human cells via an HR mechanism. New work suggests that even endogenous transcript RNA can serve as a homologous template to repair a DSB in chromosomal DNA. In this perspective, we will review and discuss the recent advancements in DSB repair by RNA via non-templated and templated mechanisms. We will provide current findings, models and future challenges investigating RNA and its role in DSB repair.
Collapse
Affiliation(s)
- Chance Meers
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Havva Keskin
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Francesca Storici
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
31
|
Restriction of Retrotransposon Mobilization in Schizosaccharomyces pombe by Transcriptional Silencing and Higher-Order Chromatin Organization. Genetics 2016; 203:1669-78. [PMID: 27343236 PMCID: PMC4981269 DOI: 10.1534/genetics.116.189118] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/20/2016] [Indexed: 12/23/2022] Open
Abstract
Uncontrolled propagation of retrotransposons is potentially detrimental to host genome integrity. Therefore, cells have evolved surveillance mechanisms to restrict the mobility of these elements. In Schizosaccharomyces pombe the Tf2 LTR retrotransposons are transcriptionally silenced and are also clustered in the nucleus into structures termed Tf bodies. Here we describe the impact of silencing and clustering on the mobility of an endogenous Tf2 element. Deletion of genes such as set1+ (histone H3 lysine 4 methyltransferase) or abp1+ (CENP-B homolog) that both alleviate silencing and clustering, result in a corresponding increase in mobilization. Furthermore, expression of constitutively active Sre1, a transcriptional activator of Tf2 elements, also alleviates clustering and induces mobilization. In contrast, clustering is not disrupted by loss of the HIRA histone chaperone, despite high levels of expression, and in this background, mobilization frequency is only marginally increased. Thus, mutations that compromise transcriptional silencing but not Tf bodies are insufficient to drive mobilization. Furthermore, analyses of mutant alleles that separate the transcriptional repression and clustering functions of Set1 are consistent with control of Tf2 propagation via a combination of silencing and spatial organization. Our results indicate that host surveillance mechanisms operate at multiple levels to restrict Tf2 retrotransposon mobilization.
Collapse
|
32
|
Cheung S, Ma L, Chan PHW, Hu HL, Mayor T, Chen HT, Measday V. Ty1 Integrase Interacts with RNA Polymerase III-specific Subcomplexes to Promote Insertion of Ty1 Elements Upstream of Polymerase (Pol) III-transcribed Genes. J Biol Chem 2016; 291:6396-411. [PMID: 26797132 DOI: 10.1074/jbc.m115.686840] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Indexed: 01/01/2023] Open
Abstract
Retrotransposons are eukaryotic mobile genetic elements that transpose by reverse transcription of an RNA intermediate and are derived from retroviruses. The Ty1 retrotransposon of Saccharomyces cerevisiae belongs to the Ty1/Copia superfamily, which is present in every eukaryotic genome. Insertion of Ty1 elements into the S. cerevisiae genome, which occurs upstream of genes transcribed by RNA Pol III, requires the Ty1 element-encoded integrase (IN) protein. Here, we report that Ty1-IN interacts in vivo and in vitro with RNA Pol III-specific subunits to mediate insertion of Ty1 elements upstream of Pol III-transcribed genes. Purification of Ty1-IN from yeast cells followed by mass spectrometry (MS) analysis identified an enrichment of peptides corresponding to the Rpc82/34/31 and Rpc53/37 Pol III-specific subcomplexes. GFP-Trap purification of multiple GFP-tagged RNA Pol III subunits from yeast extracts revealed that the majority of Pol III subunits co-purify with Ty1-IN but not two other complexes required for Pol III transcription, transcription initiation factors (TF) IIIB and IIIC. In vitro binding studies with bacterially purified RNA Pol III proteins demonstrate that Rpc31, Rpc34, and Rpc53 interact directly with Ty1-IN. Deletion of the N-terminal 280 amino acids of Rpc53 abrogates insertion of Ty1 elements upstream of the hot spot SUF16 tRNA locus and abolishes the interaction of Ty1-IN with Rpc37. The Rpc53/37 complex therefore has an important role in targeting Ty1-IN to insert Ty1 elements upstream of Pol III-transcribed genes.
Collapse
Affiliation(s)
- Stephanie Cheung
- From the Department of Biochemistry and Molecular Biology, Wine Research Centre, and
| | | | - Patrick H W Chan
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada and
| | - Hui-Lan Hu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115
| | - Thibault Mayor
- From the Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada and
| | - Hung-Ta Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115
| | - Vivien Measday
- From the Department of Biochemistry and Molecular Biology, Wine Research Centre, and
| |
Collapse
|
33
|
Turner TL, Zhang GC, Oh EJ, Subramaniam V, Adiputra A, Subramaniam V, Skory CD, Jang JY, Yu BJ, Park I, Jin YS. Lactic acid production from cellobiose and xylose by engineeredSaccharomyces cerevisiae. Biotechnol Bioeng 2015; 113:1075-83. [DOI: 10.1002/bit.25875] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/29/2015] [Accepted: 10/29/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Timothy L. Turner
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana; Illinois
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana 61801; Illinois
| | - Guo-Chang Zhang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana; Illinois
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana 61801; Illinois
| | - Eun Joong Oh
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana; Illinois
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana 61801; Illinois
| | - Vijay Subramaniam
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana 61801; Illinois
| | - Andrew Adiputra
- Department of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana; Illinois
| | - Vimal Subramaniam
- Department of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana; Illinois
| | - Christopher D. Skory
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Renewable Product Technology (RPT) Research Unit, Peoria; Illinois
| | - Ji Yeon Jang
- IT Convergence Materials R&D Group, Research Institute of Sustainable Manufacturing System, Korea Institute of Industrial Technology (KITECH), Cheonan; Korea
| | - Byung Jo Yu
- IT Convergence Materials R&D Group, Research Institute of Sustainable Manufacturing System, Korea Institute of Industrial Technology (KITECH), Cheonan; Korea
| | - In Park
- IT Convergence Materials R&D Group, Research Institute of Sustainable Manufacturing System, Korea Institute of Industrial Technology (KITECH), Cheonan; Korea
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana; Illinois
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana 61801; Illinois
| |
Collapse
|
34
|
Aristizabal MJ, Negri GL, Kobor MS. The RNAPII-CTD Maintains Genome Integrity through Inhibition of Retrotransposon Gene Expression and Transposition. PLoS Genet 2015; 11:e1005608. [PMID: 26496706 PMCID: PMC4619828 DOI: 10.1371/journal.pgen.1005608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 09/27/2015] [Indexed: 12/14/2022] Open
Abstract
RNA polymerase II (RNAPII) contains a unique C-terminal domain that is composed of heptapeptide repeats and which plays important regulatory roles during gene expression. RNAPII is responsible for the transcription of most protein-coding genes, a subset of non-coding genes, and retrotransposons. Retrotransposon transcription is the first step in their multiplication cycle, given that the RNA intermediate is required for the synthesis of cDNA, the material that is ultimately incorporated into a new genomic location. Retrotransposition can have grave consequences to genome integrity, as integration events can change the gene expression landscape or lead to alteration or loss of genetic information. Given that RNAPII transcribes retrotransposons, we sought to investigate if the RNAPII-CTD played a role in the regulation of retrotransposon gene expression. Importantly, we found that the RNAPII-CTD functioned to maintaining genome integrity through inhibition of retrotransposon gene expression, as reducing CTD length significantly increased expression and transposition rates of Ty1 elements. Mechanistically, the increased Ty1 mRNA levels in the rpb1-CTD11 mutant were partly due to Cdk8-dependent alterations to the RNAPII-CTD phosphorylation status. In addition, Cdk8 alone contributed to Ty1 gene expression regulation by altering the occupancy of the gene-specific transcription factor Ste12. Loss of STE12 and TEC1 suppressed growth phenotypes of the RNAPII-CTD truncation mutant. Collectively, our results implicate Ste12 and Tec1 as general and important contributors to the Cdk8, RNAPII-CTD regulatory circuitry as it relates to the maintenance of genome integrity.
Collapse
Affiliation(s)
- Maria J. Aristizabal
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gian Luca Negri
- Department of Molecular Oncology, BC Cancer Research Center, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael S. Kobor
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
35
|
Single-Nucleotide-Specific Targeting of the Tf1 Retrotransposon Promoted by the DNA-Binding Protein Sap1 of Schizosaccharomyces pombe. Genetics 2015; 201:905-24. [PMID: 26358720 DOI: 10.1534/genetics.115.181602] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/03/2015] [Indexed: 11/18/2022] Open
Abstract
Transposable elements (TEs) constitute a substantial fraction of the eukaryotic genome and, as a result, have a complex relationship with their host that is both adversarial and dependent. To minimize damage to cellular genes, TEs possess mechanisms that target integration to sequences of low importance. However, the retrotransposon Tf1 of Schizosaccharomyces pombe integrates with a surprising bias for promoter sequences of stress-response genes. The clustering of integration in specific promoters suggests that Tf1 possesses a targeting mechanism that is important for evolutionary adaptation to changes in environment. We report here that Sap1, an essential DNA-binding protein, plays an important role in Tf1 integration. A mutation in Sap1 resulted in a 10-fold drop in Tf1 transposition, and measures of transposon intermediates support the argument that the defect occurred in the process of integration. Published ChIP-Seq data on Sap1 binding combined with high-density maps of Tf1 integration that measure independent insertions at single-nucleotide positions show that 73.4% of all integration occurs at genomic sequences bound by Sap1. This represents high selectivity because Sap1 binds just 6.8% of the genome. A genome-wide analysis of promoter sequences revealed that Sap1 binding and amounts of integration correlate strongly. More important, an alignment of the DNA-binding motif of Sap1 revealed integration clustered on both sides of the motif and showed high levels specifically at positions +19 and -9. These data indicate that Sap1 contributes to the efficiency and position of Tf1 integration.
Collapse
|
36
|
Abstract
Maintenance of genome integrity is a fundamental requirement of all organisms. To address this, organisms have evolved extremely faithful modes of replication, DNA repair and chromosome segregation to combat the deleterious effects of an unstable genome. Nonetheless, a small amount of genome instability is the driver of evolutionary change and adaptation, and thus a low level of instability is permitted in populations. While defects in genome maintenance almost invariably reduce fitness in the short term, they can create an environment where beneficial mutations are more likely to occur. The importance of this fact is clearest in the development of human cancer, where genome instability is a well-established enabling characteristic of carcinogenesis. This raises the crucial question: what are the cellular pathways that promote genome maintenance and what are their mechanisms? Work in model organisms, in particular the yeast Saccharomyces cerevisiae, has provided the global foundations of genome maintenance mechanisms in eukaryotes. The development of pioneering genomic tools inS. cerevisiae, such as the systematic creation of mutants in all nonessential and essential genes, has enabled whole-genome approaches to identifying genes with roles in genome maintenance. Here, we review the extensive whole-genome approaches taken in yeast, with an emphasis on functional genomic screens, to understand the genetic basis of genome instability, highlighting a range of genetic and cytological screening modalities. By revealing the biological pathways and processes regulating genome integrity, these analyses contribute to the systems-level map of the yeast cell and inform studies of human disease, especially cancer.
Collapse
|
37
|
Wallace-Salinas V, Brink DP, Ahrén D, Gorwa-Grauslund MF. Cell periphery-related proteins as major genomic targets behind the adaptive evolution of an industrial Saccharomyces cerevisiae strain to combined heat and hydrolysate stress. BMC Genomics 2015; 16:514. [PMID: 26156140 PMCID: PMC4496855 DOI: 10.1186/s12864-015-1737-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 06/29/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Laboratory evolution is an important tool for developing robust yeast strains for bioethanol production since the biological basis behind combined tolerance requires complex alterations whose proper regulation is difficult to achieve by rational metabolic engineering. Previously, we reported on the evolved industrial Saccharomyces cerevisiae strain ISO12 that had acquired improved tolerance to grow and ferment in the presence of lignocellulose-derived inhibitors at high temperature (39 °C). In the current study, we used comparative genomics to uncover the extent of the genomic alterations that occurred during the evolution process and investigated possible associations between the mutations and the phenotypic traits in ISO12. RESULTS Through whole-genome sequencing and variant calling we identified a high number of strain-unique SNPs and INDELs in both ISO12 and the parental strain Ethanol Red. The variants were predicted to have 760 non-synonymous effects in both strains combined and were significantly enriched in Gene Ontology terms related to cell periphery, membranes and cell wall. Eleven genes, including MTL1, FLO9/FLO11, and CYC3 were found to be under positive selection in ISO12. Additionally, the FLO genes exhibited changes in copy number, and the alterations to this gene family were correlated with experimental results of multicellularity and invasive growth in the adapted strain. An independent lipidomic analysis revealed further differences between the strains in the content of nine lipid species. Finally, ISO12 displayed improved viability in undiluted spruce hydrolysate that was unrelated to reduction of inhibitors and changes in cell wall integrity, as shown by HPLC and lyticase assays. CONCLUSIONS Together, the results of the sequence comparison and the physiological characterisations indicate that cell-periphery proteins (e.g. extracellular sensors such as MTL1) and peripheral lipids/membranes are important evolutionary targets in the process of adaptation to the combined stresses. The capacity of ISO12 to develop complex colony formation also revealed multicellularity as a possible evolutionary strategy to improve competitiveness and tolerance to environmental stresses (also reflected by the FLO genes). Although a panel of altered genes with high relevance to the novel phenotype was detected, this study also demonstrates that the observed long-term molecular effects of thermal and inhibitor stress have polygenetic basis.
Collapse
Affiliation(s)
- Valeria Wallace-Salinas
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, Lund, SE-22100, Sweden.
| | - Daniel P Brink
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, Lund, SE-22100, Sweden.
| | - Dag Ahrén
- Microbial Ecology Group, Department of Biology, Lund University, Ecology Building, Lund, Sweden.
| | - Marie F Gorwa-Grauslund
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, Lund, SE-22100, Sweden.
| |
Collapse
|
38
|
Abstract
Long-terminal repeat (LTR)-retrotransposons generate a copy of their DNA (cDNA) by reverse transcription of their RNA genome in cytoplasmic nucleocapsids. They are widespread in the eukaryotic kingdom and are the evolutionary progenitors of retroviruses [1]. The Ty1 element of the budding yeast Saccharomyces cerevisiae was the first LTR-retrotransposon demonstrated to mobilize through an RNA intermediate, and not surprisingly, is the best studied. The depth of our knowledge of Ty1 biology stems not only from the predominance of active Ty1 elements in the S. cerevisiae genome but also the ease and breadth of genomic, biochemical and cell biology approaches available to study cellular processes in yeast. This review describes the basic structure of Ty1 and its gene products, the replication cycle, the rapidly expanding compendium of host co-factors known to influence retrotransposition and the nature of Ty1's elaborate symbiosis with its host. Our goal is to illuminate the value of Ty1 as a paradigm to explore the biology of LTR-retrotransposons in multicellular organisms, where the low frequency of retrotransposition events presents a formidable barrier to investigations of retrotransposon biology.
Collapse
|
39
|
Ho KL, Ma L, Cheung S, Manhas S, Fang N, Wang K, Young B, Loewen C, Mayor T, Measday V. A role for the budding yeast separase, Esp1, in Ty1 element retrotransposition. PLoS Genet 2015; 11:e1005109. [PMID: 25822502 PMCID: PMC4378997 DOI: 10.1371/journal.pgen.1005109] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 02/27/2015] [Indexed: 12/18/2022] Open
Abstract
Separase/Esp1 is a protease required at the onset of anaphase to cleave cohesin and thereby enable sister chromatid separation. Esp1 also promotes release of the Cdc14 phosphatase from the nucleolus to enable mitotic exit. To uncover other potential roles for separase, we performed two complementary genome-wide genetic interaction screens with a strain carrying the budding yeast esp1-1 separase mutation. We identified 161 genes that when mutated aggravate esp1-1 growth and 44 genes that upon increased dosage are detrimental to esp1-1 viability. In addition to the expected cell cycle and sister chromatid segregation genes that were identified, 24% of the genes identified in the esp1-1 genetic screens have a role in Ty1 element retrotransposition. Retrotransposons, like retroviruses, replicate through reverse transcription of an mRNA intermediate and the resultant cDNA product is integrated into the genome by a conserved transposon or retrovirus encoded integrase protein. We purified Esp1 from yeast and identified an interaction between Esp1 and Ty1 integrase using mass spectrometry that was subsequently confirmed by co-immunoprecipitation analysis. Ty1 transposon mobility and insertion upstream of the SUF16 tRNA gene are both reduced in an esp1-1 strain but increased in cohesin mutant strains. Securin/Pds1, which is required for efficient localization of Esp1 to the nucleus, is also required for efficient Ty1 transposition. We propose that Esp1 serves two roles to mediate Ty1 transposition - one to remove cohesin and the second to target Ty1-IN to chromatin.
Collapse
Affiliation(s)
- Krystina L. Ho
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Wine Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lina Ma
- Wine Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephanie Cheung
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Wine Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Savrina Manhas
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Wine Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nancy Fang
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kaiqian Wang
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Wine Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Barry Young
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher Loewen
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Thibault Mayor
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vivien Measday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Wine Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
40
|
Sarilar V, Bleykasten-Grosshans C, Neuvéglise C. Evolutionary dynamics of hAT DNA transposon families in Saccharomycetaceae. Genome Biol Evol 2014; 7:172-90. [PMID: 25532815 PMCID: PMC4316626 DOI: 10.1093/gbe/evu273] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Transposable elements (TEs) are widespread in eukaryotes but uncommon in yeasts of the Saccharomycotina subphylum, in terms of both host species and genome fraction. The class II elements are especially scarce, but the hAT element Rover is a noteworthy exception that deserves further investigation. Here, we conducted a genome-wide analysis of hAT elements in 40 ascomycota. A novel family, Roamer, was found in three species, whereas Rover was detected in 15 preduplicated species from Kluyveromyces, Eremothecium, and Lachancea genera, with up to 41 copies per genome. Rover acquisition seems to have occurred by horizontal transfer in a common ancestor of these genera. The detection of remote Rover copies in Naumovozyma dairenensis and in the sole Saccharomyces cerevisiae strain AWRI1631, without synteny, suggests that two additional independent horizontal transfers took place toward these genomes. Such patchy distribution of elements prevents any anticipation of TE presence in incoming sequenced genomes, even closely related ones. The presence of both putative autonomous and defective Rover copies, as well as their diversification into five families, indicate particular dynamics of Rover elements in the Lachancea genus. Especially, we discovered the first miniature inverted-repeat transposable elements (MITEs) to be described in yeasts, together with their parental autonomous copies. Evidence of MITE insertion polymorphism among Lachancea waltii strains suggests their recent activity. Moreover, 40% of Rover copies appeared to be involved in chromosome rearrangements, showing the large structural impact of TEs on yeast genome and opening the door to further investigations to understand their functional and evolutionary consequences.
Collapse
Affiliation(s)
- Véronique Sarilar
- INRA, UMR 1319 Micalis, Jouy-en-Josas, France AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - Claudine Bleykasten-Grosshans
- CNRS, UMR 7156, Laboratoire de Génétique Moléculaire, Génomique et Microbiologie, Université de Strasbourg, Strasbourg, France
| | - Cécile Neuvéglise
- INRA, UMR 1319 Micalis, Jouy-en-Josas, France AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| |
Collapse
|
41
|
El Hage A, Webb S, Kerr A, Tollervey D. Genome-wide distribution of RNA-DNA hybrids identifies RNase H targets in tRNA genes, retrotransposons and mitochondria. PLoS Genet 2014; 10:e1004716. [PMID: 25357144 PMCID: PMC4214602 DOI: 10.1371/journal.pgen.1004716] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 08/27/2014] [Indexed: 01/08/2023] Open
Abstract
During transcription, the nascent RNA can invade the DNA template, forming extended RNA-DNA duplexes (R-loops). Here we employ ChIP-seq in strains expressing or lacking RNase H to map targets of RNase H activity throughout the budding yeast genome. In wild-type strains, R-loops were readily detected over the 35S rDNA region, transcribed by Pol I, and over the 5S rDNA, transcribed by Pol III. In strains lacking RNase H activity, R-loops were elevated over other Pol III genes, notably tRNAs, SCR1 and U6 snRNA, and were also associated with the cDNAs of endogenous TY1 retrotransposons, which showed increased rates of mobility to the 5′-flanking regions of tRNA genes. Unexpectedly, R-loops were also associated with mitochondrial genes in the absence of RNase H1, but not of RNase H2. Finally, R-loops were detected on actively transcribed protein-coding genes in the wild-type, particularly over the second exon of spliced ribosomal protein genes. R-loops (RNA-DNA hybrids) are potentially deleterious for gene expression and genome stability, but can be beneficial, for example, during immunoglobulin gene class-switch recombination. Here we made use of antibody S9.6, with specificity for RNA-DNA duplexes independently of their sequence. The genome-wide distribution of R-loops in wild-type yeast showed association with the highly transcribed ribosomal DNA, and protein-coding genes, particularly the second exon of spliced genes. On RNA polymerase III loci such as the highly transcribed transfer RNA genes (tRNAs), R-loop accumulation was strongly detected in the absence of both ribonucleases H1 and H2 (RNase H1 and H2), indicating that R-loops are inherently formed but rapidly cleared by RNase H. Importantly, stable R-loops lead to reduced synthesis of tRNA precursors in mutants lacking RNase H and DNA topoisomerase activities. RNA-DNA hybrids associated with TY1 cDNA retrotransposition intermediates were elevated in the absence of RNase H, and this was accompanied by increased retrotransposition, in particular to 5′-flanking regions of tRNAs. Our findings show that RNase H participates in silencing of TY1 life cycle. Surprisingly, R-loops associated with mitochondrial transcription units were suppressed specifically by RNase H1. These findings have potentially important implications for understanding human diseases caused by mutations in RNase H.
Collapse
Affiliation(s)
- Aziz El Hage
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (AEH); (DT)
| | - Shaun Webb
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Alastair Kerr
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (AEH); (DT)
| |
Collapse
|
42
|
Extension of Saccharomyces paradoxus chronological lifespan by retrotransposons in certain media conditions is associated with changes in reactive oxygen species. Genetics 2014; 198:531-45. [PMID: 25106655 DOI: 10.1534/genetics.114.168799] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Retrotransposons are mobile DNA elements present throughout eukaryotic genomes that can cause mutations and genome rearrangements when they replicate through reverse transcription. Increased expression and/or mobility of retrotransposons has been correlated with aging in yeast, Caenorhabditis elegans, Drosophila melanogaster, and mammals. The many copies of retrotransposons in humans and various model organisms complicate further pursuit of this relationship. The Saccharomyces cerevisiae Ty1 retrotransposon was introduced into a strain of S. paradoxus that completely lacks retrotransposons to compare chronological lifespans (CLSs) of yeast strains with zero, low, or high Ty1 copy number. Yeast chronological lifespan reflects the progressive loss of cell viability in a nondividing state. Chronological lifespans for the strains were not different in rich medium, but were extended in high Ty1 copy-number strains in synthetic medium and in rich medium containing a low dose of hydroxyurea (HU), an agent that depletes deoxynucleoside triphosphates. Lifespan extension was not strongly correlated with Ty1 mobility or mutation rates for a representative gene. Buffering deoxynucleoside triphosphate levels with threonine supplementation did not substantially affect this lifespan extension, and no substantial differences in cell cycle arrest in the nondividing cells were observed. Lifespan extension was correlated with reduced reactive oxygen species during early stationary phase in high Ty1 copy strains, and antioxidant treatment allowed the zero Ty1 copy strain to live as long as high Ty1 copy-number strains in rich medium with hydroxyurea. This exceptional yeast system has identified an unexpected longevity-promoting role for retrotransposons that may yield novel insights into mechanisms regulating lifespan.
Collapse
|
43
|
Zhang T, Jiang Y, Dong W. A novel monopartite dsRNA virus isolated from the phytopathogenic fungus Ustilaginoidea virens and ancestrally related to a mitochondria-associated dsRNA in the green alga Bryopsis. Virology 2014; 462-463:227-35. [DOI: 10.1016/j.virol.2014.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 04/20/2014] [Accepted: 06/04/2014] [Indexed: 01/19/2023]
|
44
|
Alzohairy AM, Sabir JSM, Gyulai GB, Younis RAA, Jansen RK, Bahieldin A. Environmental stress activation of plant long-terminal repeat retrotransposons. FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:557-567. [PMID: 32481013 DOI: 10.1071/fp13339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/23/2014] [Indexed: 06/11/2023]
Abstract
Genomic retrotransposons (RTs) are major components of most plant genomes. They spread throughout the genomes by a process termed retrotransposition, which consists of reverse transcription and reinsertion of the copied element into a new genomic location (a copy-and-paste system). Abiotic and biotic stresses activate long-terminal repeat (LTR) RTs in photosynthetic eukaryotes from algae to angiosperms. LTR RTs could represent a threat to the integrity of host genomes because of their activity and mutagenic potential by epigenetic regulation. Host genomes have developed mechanisms to control the activity of the retroelements and their mutagenic potential. Some LTR RTs escape these defense mechanisms, and maintain their ability to be activated and transpose as a result of biotic or abiotic stress stimuli. These stimuli include pathogen infection, mechanical damage, in vitro tissue culturing, heat, drought and salt stress, generation of doubled haploids, X-ray irradiation and many others. Reactivation of LTR RTs differs between different plant genomes. The expression levels of reactivated RTs are influenced by the transcriptional and post-transcriptional gene silencing mechanisms (e.g. DNA methylation, heterochromatin formation and RNA interference). Moreover, the insertion of RTs (e.g. Triticum aestivum L. Wis2-1A) into or next to coding regions of the host genome can generate changes in the expression of adjacent host genes of the host. In this paper, we review the ways that plant genomic LTR RTs are activated by environmental stimuli to affect restructuring and diversification of the host genome.
Collapse
Affiliation(s)
- Ahmed M Alzohairy
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Jamal S M Sabir
- King Abdulaziz University, Faculty of Science, Department of Biological Sciences, Genomics and Biotechnology Section, Jeddah 21589, Saudi Arabia
| | - G Bor Gyulai
- Institute of Genetics and Biotechnology, St. Stephanus University, Gödöll? H-2103, Hungary
| | - Rania A A Younis
- Genetics Department, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Robert K Jansen
- King Abdulaziz University, Faculty of Science, Department of Biological Sciences, Genomics and Biotechnology Section, Jeddah 21589, Saudi Arabia
| | - Ahmed Bahieldin
- King Abdulaziz University, Faculty of Science, Department of Biological Sciences, Genomics and Biotechnology Section, Jeddah 21589, Saudi Arabia
| |
Collapse
|
45
|
Shi S, Valle-Rodríguez JO, Siewers V, Nielsen J. Engineering of chromosomal wax ester synthase integrated Saccharomyces cerevisiae mutants for improved biosynthesis of fatty acid ethyl esters. Biotechnol Bioeng 2014; 111:1740-7. [PMID: 24752598 DOI: 10.1002/bit.25234] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/13/2014] [Indexed: 01/03/2023]
Abstract
In recent years, significant advances have been made to engineer robust microbes for overproducing biochemical products from renewable resources. These accomplishments have to a large extend been based on plasmid based methods. However, plasmid maintenance may cause a metabolic burden on the host cell and plasmid-based overexpression of genes can result in genetically unstable strains, which contributes to loss in productivity. Here, a chromosome engineering method based on delta integration was applied in Saccharomyces cerevisiae for the production of fatty acid ethyl esters (FAEEs), which can be directly used as biodiesel and would be a possible substitute for conventional petroleum-based diesel. An integration construct was designed and integrated into chromosomal delta sequences by repetitive transformation, which resulted in 1-6 copies of the integration construct per genome. The corresponding FAEE production increased up to 34 mg/L, which is an about sixfold increase compared to the equivalent plasmid-based producer. The integrated cassette in the yeast genome was stably maintained in nonselective medium after deletion of RAD52 which is essential for efficient homologous recombination. To obtain a further increase of FAEE production, genes encoding endogenous acyl-CoA binding protein (ACB1) and a bacterial NADP(+)-dependent glyceraldehyde-3-phosphate dehydrogenase (gapN) were overexpressed in the final integration strain, which resulted in another 40% percent increase in FAEE production. Our integration strategy enables easy engineering of strains with adjustable gene copy numbers integrated into the genome and this allows for an easy evaluation of the effect of the gene copy number on pathway flux. It therefore represents a valuable tool for introducing and expressing a heterologous pathway in yeast.
Collapse
Affiliation(s)
- Shuobo Shi
- Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96, Göteborg, Sweden
| | | | | | | |
Collapse
|
46
|
de Boer CG, van Bakel H, Tsui K, Li J, Morris QD, Nislow C, Greenblatt JF, Hughes TR. A unified model for yeast transcript definition. Genome Res 2013; 24:154-66. [PMID: 24170600 PMCID: PMC3875857 DOI: 10.1101/gr.164327.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Identifying genes in the genomic context is central to a cell's ability to interpret the genome. Yet, in general, the signals used to define eukaryotic genes are poorly described. Here, we derived simple classifiers that identify where transcription will initiate and terminate using nucleic acid sequence features detectable by the yeast cell, which we integrate into a Unified Model (UM) that models transcription as a whole. The cis-elements that denote where transcription initiates function primarily through nucleosome depletion, and, using a synthetic promoter system, we show that most of these elements are sufficient to initiate transcription in vivo. Hrp1 binding sites are the major characteristic of terminators; these binding sites are often clustered in terminator regions and can terminate transcription bidirectionally. The UM predicts global transcript structure by modeling transcription of the genome using a hidden Markov model whose emissions are the outputs of the initiation and termination classifiers. We validated the novel predictions of the UM with available RNA-seq data and tested it further by directly comparing the transcript structure predicted by the model to the transcription generated by the cell for synthetic DNA segments of random design. We show that the UM identifies transcription start sites more accurately than the initiation classifier alone, indicating that the relative arrangement of promoter and terminator elements influences their function. Our model presents a concrete description of how the cell defines transcript units, explains the existence of nongenic transcripts, and provides insight into genome evolution.
Collapse
|
47
|
Dynamics of the Saccharomyces cerevisiae transcriptome during bread dough fermentation. Appl Environ Microbiol 2013; 79:7325-33. [PMID: 24056467 DOI: 10.1128/aem.02649-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The behavior of yeast cells during industrial processes such as the production of beer, wine, and bioethanol has been extensively studied. In contrast, our knowledge about yeast physiology during solid-state processes, such as bread dough, cheese, or cocoa fermentation, remains limited. We investigated changes in the transcriptomes of three genetically distinct Saccharomyces cerevisiae strains during bread dough fermentation. Our results show that regardless of the genetic background, all three strains exhibit similar changes in expression patterns. At the onset of fermentation, expression of glucose-regulated genes changes dramatically, and the osmotic stress response is activated. The middle fermentation phase is characterized by the induction of genes involved in amino acid metabolism. Finally, at the latest time point, cells suffer from nutrient depletion and activate pathways associated with starvation and stress responses. Further analysis shows that genes regulated by the high-osmolarity glycerol (HOG) pathway, the major pathway involved in the response to osmotic stress and glycerol homeostasis, are among the most differentially expressed genes at the onset of fermentation. More importantly, deletion of HOG1 and other genes of this pathway significantly reduces the fermentation capacity. Together, our results demonstrate that cells embedded in a solid matrix such as bread dough suffer severe osmotic stress and that a proper induction of the HOG pathway is critical for optimal fermentation.
Collapse
|
48
|
Schulman AH. Retrotransposon replication in plants. Curr Opin Virol 2013; 3:604-14. [PMID: 24035277 DOI: 10.1016/j.coviro.2013.08.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/16/2013] [Accepted: 08/19/2013] [Indexed: 12/31/2022]
Abstract
Retrotransposons comprise the bulk of large plant genomes, replicating via an RNA intermediate whereby the original, integrated element remains in place. Of the two main orders, the LTR retrotransposons considerably outnumber the LINEs. LINEs integrate into target sites simultaneously with the RNA transcript being copied into cDNA by target-primed reverse transcription. LTR retrotransposon replication is basically equivalent to the intracellular phase of retroviral life cycles. The envelope gene giving extracellular mobility to retroviruses is in fact widespread in plants and their retrotransposons. Evolutionary analyses of the retrotransposons and retroviruses suggest that both form an ancient monophyletic group. The particular adaptations of LTR retrotransposons to plant life cycles enabling their success remain to be clarified.
Collapse
Affiliation(s)
- Alan H Schulman
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, P.O. Box 65, Helsinki FIN-00014, Finland; Biotechnology and Food Research, MTT Agrifood Research Finland, Jokioinen FIN-31600, Finland.
| |
Collapse
|
49
|
Meiotic recombination initiation in and around retrotransposable elements in Saccharomyces cerevisiae. PLoS Genet 2013; 9:e1003732. [PMID: 24009525 PMCID: PMC3757047 DOI: 10.1371/journal.pgen.1003732] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 07/05/2013] [Indexed: 11/30/2022] Open
Abstract
Meiotic recombination is initiated by large numbers of developmentally programmed DNA double-strand breaks (DSBs), ranging from dozens to hundreds per cell depending on the organism. DSBs formed in single-copy sequences provoke recombination between allelic positions on homologous chromosomes, but DSBs can also form in and near repetitive elements such as retrotransposons. When they do, they create a risk for deleterious genome rearrangements in the germ line via recombination between non-allelic repeats. A prior study in budding yeast demonstrated that insertion of a Ty retrotransposon into a DSB hotspot can suppress meiotic break formation, but properties of Ty elements in their most common physiological contexts have not been addressed. Here we compile a comprehensive, high resolution map of all Ty elements in the rapidly and efficiently sporulating S. cerevisiae strain SK1 and examine DSB formation in and near these endogenous retrotransposable elements. SK1 has 30 Tys, all but one distinct from the 50 Tys in S288C, the source strain for the yeast reference genome. From whole-genome DSB maps and direct molecular assays, we find that DSB levels and chromatin structure within and near Tys vary widely between different elements and that local DSB suppression is not a universal feature of Ty presence. Surprisingly, deletion of two Ty elements weakened adjacent DSB hotspots, revealing that at least some Ty insertions promote rather than suppress nearby DSB formation. Given high strain-to-strain variability in Ty location and the high aggregate burden of Ty-proximal DSBs, we propose that meiotic recombination is an important component of host-Ty interactions and that Tys play critical roles in genome instability and evolution in both inbred and outcrossed sexual cycles. Meiosis is the cell division that generates gametes for sexual reproduction. During meiosis, homologous recombination occurs frequently, initiated by DNA double-strand breaks (DSBs) made by Spo11. Meiotic recombination usually occurs between sequences at allelic positions on homologous chromosomes, but a DSB within a repetitive element (e.g., a retrotransposon) can provoke recombination between non-allelic sequences instead. This can create genomic havoc in the form of gross chromosomal rearrangements, which underlie many recurrent human mutations. It has been thought that cells minimize this risk by disfavoring DSB formation in repetitive elements, partly based on studies showing that presence of a Ty element (a yeast retrotransposon) can suppress nearby DSB activity. Whether this is a general feature of Tys has not been evaluated, however. Here, we generated a comprehensive map of Tys in the rapidly sporulating SK1 strain and examined DSB formation in and around all of these endogenous Ty elements. Remarkably, most natural Ty elements do not appear to suppress DSB formation nearby, and at least some of them increase local DSBs. These findings have implications for understanding the relationship between host and transposon, and for understanding the impact of retrotransposons on genome stability and evolution during sexual reproduction.
Collapse
|
50
|
Bleykasten-Grosshans C, Friedrich A, Schacherer J. Genome-wide analysis of intraspecific transposon diversity in yeast. BMC Genomics 2013; 14:399. [PMID: 23768249 PMCID: PMC4022208 DOI: 10.1186/1471-2164-14-399] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 06/06/2013] [Indexed: 02/02/2023] Open
Abstract
Background In the model organism Saccharomyces cerevisiae, the transposable elements (TEs) consist of LTR (Long Terminal Repeat) retrotransposons called Ty elements belonging to five families, Ty1 to Ty5. They take the form of either full-length coding elements or non-coding solo-LTRs corresponding to remnants of former transposition events. Although the biological features of Ty elements have been studied in detail in S. cerevisiae and the Ty content of the reference strain (S288c) was accurately annotated, the Ty-related intra-specific diversity has not been closely investigated so far. Results In this study, we investigated the Ty contents of 41 available genomes of isolated S. cerevisiae strains of diverse geographical and ecological origins. The strains were compared in terms of the number of Ty copies, the content of the potential transpositionally active elements and the genomic insertion maps. The strain repertoires were also investigated in the closely related Ty1 and Ty2 families and subfamilies. Conclusions This is the first genome-wide analysis of the diversity associated to the Ty elements, carried out for a large set of S. cerevisiae strains. The results of the present analyses suggest that the current Ty-related polymorphism has resulted from multiple causes such as differences between strains, between Ty families and over time, in the recent transpositional activity of Ty elements. Some new Ty1 variants were also identified, and we have established that Ty1 variants have different patterns of distribution among strains, which further contributes to the strain diversity.
Collapse
Affiliation(s)
- Claudine Bleykasten-Grosshans
- CNRS, Department of Genetics, Genomics and Microbiology, University of Strasbourg, UMR 7156, 28, rue Goethe, Strasbourg, 67083, France.
| | | | | |
Collapse
|