1
|
Fay RR, Coombs S, Popper AN. The career and research contributions of Richard R. Fay. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:761. [PMID: 36859129 DOI: 10.1121/10.0017098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
For over 50 years, Richard R. (Dick) Fay made major contributions to our understanding of vertebrate hearing. Much of Dick's work focused on hearing in fishes and, particularly, goldfish, as well as a few other species, in a substantial body of work on sound localization mechanisms. However, Dick's focus was always on using his studies to try and understand bigger issues of vertebrate hearing and its evolution. This article is slightly adapted from an article that Dick wrote in 2010 on the closure of the Parmly Hearing Institute at Loyola University Chicago. Except for small modifications and minor updates, the words and ideas herein are those of Dick.
Collapse
Affiliation(s)
- Richard R Fay
- Department of Psychology, Loyola University Chicago, Chicago, Illinois 60660, USA
| | - Sheryl Coombs
- Department of Biology, Bowling Green State University, Bowling Green, Ohio 43403, USA
| | - Arthur N Popper
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
2
|
Curthoys I, Burgess AM, Goonetilleke SC. Phase-locking of irregular guinea pig primary vestibular afferents to high frequency (>250 Hz) sound and vibration. Hear Res 2019; 373:59-70. [DOI: 10.1016/j.heares.2018.12.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/07/2018] [Accepted: 12/21/2018] [Indexed: 12/28/2022]
|
3
|
Hawkins AD, Popper AN. Directional hearing and sound source localization by fishes. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 144:3329. [PMID: 30599653 DOI: 10.1121/1.5082306] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
Directional hearing may enable fishes to seek out prey, avoid predators, find mates, and detect important spatial cues. Early sound localization experiments gave negative results, and it was thought unlikely that fishes utilized the same direction-finding mechanisms as terrestrial vertebrates. However, fishes swim towards underwater sound sources, and some can discriminate between sounds from different directions and distances. The otolith organs of the inner ear detect the particle motion components of sound, acting as vector detectors through the presence of sensory hair cells with differing orientation. However, many questions remain on inner ear functioning. There are problems in understanding the actual mechanisms involved in determining sound direction and distance. Moreover, very little is still known about the ability of fishes to locate sound sources in three-dimensional space. Do fishes swim directly towards a source, or instead "sample" sound levels while moving towards the source? To what extent do fishes utilize other senses and especially vision in locating the source? Further behavioral studies of free-swimming fishes are required to provide better understanding of how fishes might actually locate sound sources. In addition, more experiments are required on the auditory mechanism that fishes may utilize.
Collapse
Affiliation(s)
| | - Arthur N Popper
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
4
|
Walton PL, Christensen-Dalsgaard J, Carr C. Evolution of Sound Source Localization Circuits in the Nonmammalian Vertebrate Brainstem. BRAIN, BEHAVIOR AND EVOLUTION 2017; 90:131-153. [PMID: 28988244 PMCID: PMC5691234 DOI: 10.1159/000476028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 04/25/2017] [Indexed: 12/31/2022]
Abstract
The earliest vertebrate ears likely subserved a gravistatic function for orientation in the aquatic environment. However, in addition to detecting acceleration created by the animal's own movements, the otolithic end organs that detect linear acceleration would have responded to particle movement created by external sources. The potential to identify and localize these external sources may have been a major selection force in the evolution of the early vertebrate ear and in the processing of sound in the central nervous system. The intrinsic physiological polarization of sensory hair cells on the otolith organs confers sensitivity to the direction of stimulation, including the direction of particle motion at auditory frequencies. In extant fishes, afferents from otolithic end organs encode the axis of particle motion, which is conveyed to the dorsal regions of first-order octaval nuclei. This directional information is further enhanced by bilateral computations in the medulla and the auditory midbrain. We propose that similar direction-sensitive neurons were present in the early aquatic tetrapods and that selection for sound localization in air acted upon preexisting brain stem circuits like those in fishes. With movement onto land, the early tetrapods may have retained some sensitivity to particle motion, transduced by bone conduction, and later acquired new auditory papillae and tympanic hearing. Tympanic hearing arose in parallel within each of the major tetrapod lineages and would have led to increased sensitivity to a broader frequency range and to modification of the preexisting circuitry for sound source localization.
Collapse
Affiliation(s)
| | | | - Catherine Carr
- Department of Biology, University of Maryland, College Park MD, 20742-4415, USA
| |
Collapse
|
5
|
McCormick CA, Gallagher S, Cantu-Hertzler E, Woodrick S. Mechanosensory Lateral Line Nerve Projections to Auditory Neurons in the Dorsal Descending Octaval Nucleus in the Goldfish, Carassius auratus. BRAIN, BEHAVIOR AND EVOLUTION 2016; 88:68-80. [PMID: 27532270 DOI: 10.1159/000447943] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/22/2016] [Indexed: 11/19/2022]
Abstract
The nucleus medialis is the main first-order target of the mechanosensory lateral line (LL) system. This report definitively demonstrates that mechanosensory LL inputs also terminate in the ipsilateral dorsal portion of the descending octaval nucleus (dDO) in the goldfish. The dDO, which is the main first-order auditory nucleus in bony fishes, includes neurons that receive direct input from the otolithic end organs of the inner ear and project to the auditory midbrain. There are two groups of such auditory projection neurons: medial and lateral. The medial and the lateral groups in turn contain several neuronal populations, each of which includes one or more morphological cell types. In goldfish, the exclusively mechanosensory anterior and posterior LL nerves terminate only on specific cell types of auditory projection neurons in the lateral dDO group. Single neurons in the lateral dDO group may receive input from both anterior and posterior LL nerves. It is possible that some of the lateral dDO neurons that receive LL input also receive input from one or more of the otolithic end organs. These results are consistent with functional studies demonstrating low frequency acoustic sensitivity of the mechanosensory LL in teleosts, and they reveal that the anatomical substrate for sensory integration of otolithic and LL inputs is present at the origin of the central ascending auditory pathway in an otophysine fish.
Collapse
|
6
|
Mensinger AF. Multimodal Sensory Input in the Utricle and Lateral Line of the Toadfish, Opsanus tau. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 877:271-89. [PMID: 26515319 DOI: 10.1007/978-3-319-21059-9_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The utricular otolith and the mechanosensory lateral line of the toadfish, Opsanus tau, were investigated for sensitivity to multimodal sensory input by recording neural activity from free swimming fish. The utricle was sensitive to horizontal body movement, and displayed broad sensitivity to low frequency (80-200 Hz) sound. The lateral line was sensitive to water currents, swimming, prey movements, and sound with maximal sensitivity at 100 Hz. Both systems showed directional sensitivity to pure tones and toadfish vocalizations, indicating potential for sound localization. Thus, toadfish possess two hair cell based sensory systems that integrate information from disparate sources. However, swimming movements or predation strikes can saturate each system and it is unclear the effect that self-generated movement has on sensitivity. It is hypothesized that the toadfish's strategy of short distance swim movements allows it to sample the acoustical environment while static. Further study is needed to determine the integration of the two systems and if they are able to segregate and/or integrate multimodal sensory input.
Collapse
Affiliation(s)
- Allen F Mensinger
- Biology Department, University of Minnesota Duluth, Duluth, MN, 55812, USA. .,Marine Biological Laboratory, Woods Hole, MA, 02543, USA.
| |
Collapse
|
7
|
What the Toadfish Ear Tells the Toadfish Brain About Sound. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 877:197-226. [PMID: 26515316 DOI: 10.1007/978-3-319-21059-9_10] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Of the three, paired otolithic endorgans in the ear of teleost fishes, the saccule is the one most often demonstrated to have a major role in encoding frequencies of biologically relevant sounds. The toadfish saccule also encodes sound level and sound source direction in the phase-locked activity conveyed via auditory afferents to nuclei of the ipsilateral octaval column in the medulla. Although paired auditory receptors are present in teleost fishes, binaural processes were believed to be unimportant due to the speed of sound in water and the acoustic transparency of the tissues in water. In contrast, there are behavioral and anatomical data that support binaural processing in fishes. Studies in the toadfish combined anatomical tract-tracing and physiological recordings from identified sites along the ascending auditory pathway to document response characteristics at each level. Binaural computations in the medulla and midbrain sharpen the directional information provided by the saccule. Furthermore, physiological studies in the central nervous system indicated that encoding frequency, sound level, temporal pattern, and sound source direction are important components of what the toadfish ear tells the toadfish brain about sound.
Collapse
|
8
|
Does the magnocellular octaval nucleus process auditory information in the toadfish, Opsanus tau? J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:353-63. [PMID: 23411503 DOI: 10.1007/s00359-013-0799-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/15/2013] [Accepted: 01/30/2013] [Indexed: 10/27/2022]
Abstract
Previous work on auditory processing in Opsanus tau has focused on the descending octaval nucleus; however, the magnocellular octaval nucleus receives similar inputs from the otolithic endorgans. The purpose of this study was to assess whether cells in any of the three subdivisions of the magnocellular nucleus respond to auditory frequencies and encode sound source direction. Extracellular recording sites were chosen based on anatomical landmarks, and neurobiotin injections confirmed the location of auditory sites in subdivisions of the magnocellular nucleus. In general, the auditory cells in M2 and M3 responded best to frequencies at or below 100 Hz. Most auditory cells responded well to directional stimuli presented along axes in the horizontal plane. Cells in M3 (not M2) also responded to lateral line stimulation, consistent with otolithic endorgan and lateral line inputs to M3. The convergence of auditory and lateral line inputs in M3, the lack of Mauthner cells in this species, and previous evidence that the magnocellular nucleus does not contribute to ascending auditory pathways suggest to us that the large cells of M3 may play a role in rapid behavioral responses to particle motion stimuli in oyster toadfish.
Collapse
|
9
|
Functional Overlap and Nonoverlap Between Lateral Line and Auditory Systems. SPRINGER HANDBOOK OF AUDITORY RESEARCH 2013. [DOI: 10.1007/2506_2013_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
10
|
Edds-Walton PL, Holstein GR, Fay RR. Gamma-aminobutyric acid is a neurotransmitter in the auditory pathway of oyster toadfish, Opsanus tau. Hear Res 2010; 262:45-55. [PMID: 20097279 DOI: 10.1016/j.heares.2010.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 01/14/2010] [Accepted: 01/15/2010] [Indexed: 10/19/2022]
Abstract
Binaural computations involving the convergence of excitatory and inhibitory inputs have been proposed to explain directional sharpening and frequency tuning documented in the brainstem of a teleost fish, the oyster toadfish (Opsanus tau). To assess the presence of inhibitory neurons in the ascending auditory circuit, we used a monoclonal antibody to GABA to evaluate immunoreactivity at three levels of the circuit: the first order descending octaval nucleus (DON), the secondary octaval population (dorsal division), and the midbrain torus semicircularis. We observed a subset of immunoreactive (IR) cells and puncta distributed throughout the neuropil at all three locations. To assess whether contralateral inhibition is present, fluorescent dextran crystals were inserted into dorsal DON to fill contralateral, commissural inputs retrogradely prior to GABA immunohistochemistry. GABA-IR somata and puncta co-occurred with retrogradely filled, GABA-negative auditory projection cells. GABA-IR projection cells were more common in the dorsolateral DON than in the dorsomedial DON, but GABA-IR puncta were common in both dorsolateral and dorsomedial divisions. Our findings demonstrate that GABA is present in the ascending auditory circuit in the brainstem of the toadfish, indicating that GABA-mediated inhibition participates in shaping auditory response characteristics in a teleost fish as in other vertebrates.
Collapse
Affiliation(s)
- Peggy L Edds-Walton
- Neuroscience Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | | | | |
Collapse
|
11
|
Edds-Walton PL, Fay RR. Physiological evidence for binaural directional computations in the brainstem of the oyster toadfish, Opsanus tau (L.). J Exp Biol 2009; 212:1483-93. [PMID: 19411542 PMCID: PMC2675961 DOI: 10.1242/jeb.026898] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2009] [Indexed: 11/20/2022]
Abstract
Comparisons of left and right auditory input are required for sound source localization in most terrestrial vertebrates. Previous physiological and neuroanatomical studies have indicated that binaural convergence is present in the ascending auditory system of the toadfish. In this study, we introduce a new technique, otolith tipping, to reversibly alter directional auditory input to the central nervous system of a fish. The normal directional response pattern (DRP) was recorded extracellularly for auditory cells in the first-order descending octaval nucleus (DON) or the midbrain torus semicircularis (TS) using particle motion stimuli in the horizontal and mid-sagittal planes. The same stimuli were used during tipping of the saccular otolith to evaluate changes in the DRPs. Post-tipping DRPs were generated and compared with the pre-tipping DRPs to ensure that the data had been collected consistently from the same unit. In the DON, ipsilateral or contralateral tipping most often eliminated spike activity, but changes in spike rate (+/-) and DRP shape were also documented. In the TS, tipping most often caused a change in spike rate (+/-) and altered the shape or best axis of the DRP. The data indicate that there are complex interactions of excitatory and inhibitory inputs in the DON and TS resulting from the convergence of binaural inputs. As in anurans, but unlike other terrestrial vertebrates, binaural processing associated with encoding the direction of a sound source begins in the first-order auditory nucleus of this teleost.
Collapse
Affiliation(s)
- Peggy L Edds-Walton
- Parmly Hearing Institute, Loyola University Chicago, Chicago, IL 60626, USA.
| | | |
Collapse
|
12
|
Edds-Walton PL, Fay RR. Directional and frequency response characteristics in the descending octaval nucleus of the toadfish (Opsanus tau). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2008; 194:1013-29. [PMID: 18855001 DOI: 10.1007/s00359-008-0373-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 09/04/2008] [Accepted: 09/13/2008] [Indexed: 11/24/2022]
Abstract
This study is a continuation of a long-term investigation of the auditory circuit in the oyster toadfish, Opsanus tau. Input from the auditory periphery projects to the ipsilateral descending octaval nucleus (DON). Ipsilateral and contralateral DONs project to the auditory midbrain, where a previous study indicated that both frequency tuning and directional sharpening are present. To better understand the transformation of auditory information along the auditory pathway, we have examined over 400 units in the DON to characterize frequency and directional information encoded in the dorsolateral division of the nucleus. Background activity was primarily low (<10 spikes/s) or absent. The maximum coefficient of synchronization was equivalent to the periphery (R = 0.9) and substantially better than in the midbrain. The majority of DON units (79%) responded best to stimulus frequencies of 84-141 Hz and were broadly tuned. DON cells retain or enhance the directional character of their peripheral input (s); however, characteristic axes were distributed in all quadrants around the fish, providing further evidence that binaural computations may first occur in the DON of this species.
Collapse
Affiliation(s)
- Peggy L Edds-Walton
- Parmly Hearing Institute, Loyola University Chicago, Chicago, IL, 60626, USA.
| | | |
Collapse
|
13
|
Edds-Walton PL, Fay RR. Sharpening of directional responses along the auditory pathway of the oyster toadfish, Opsanus tau. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2005; 191:1079-86. [PMID: 16172891 DOI: 10.1007/s00359-005-0051-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 04/28/2005] [Accepted: 05/10/2005] [Indexed: 10/25/2022]
Abstract
Our previous studies have shown that the peripheral auditory system of the toadfish encodes the direction of a sound source. Here, we compare directional responses of peripheral saccular afferents, cells in the descending octaval nucleus (DON) of the medulla, and the torus semicircularis (TS) of the midbrain. Recording locations in the brain were labeled with neurobiotin to confirm the site. To compare directional responses among cells, we calculated an index [sharpening ratio (SR)] that weights the relative strength of responses to the best direction for that cell and to the adjacent stimulus angles tested. Unsharpened saccular afferents tend to have a cosinusoidal directional response pattern (DRP) with an expected SR of 0.87. In DON, more than 60% of the cells exhibited directional sharpening (defined as SR <0.8). In TS, more than 80% of the cells exhibited directional sharpening. We conclude that directional auditory sharpening first occurs in DON and some additional sharpening occurs in the ascending pathway to the midbrain, particularly in azimuth. The sharpening of directional selectivity is likely to be an important component of the neural computations underlying directional hearing.
Collapse
Affiliation(s)
- Peggy L Edds-Walton
- Neuroscience Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | | |
Collapse
|