1
|
Zeng Y, Wang H, Zhang L, Tang J, Shi J, Xiao D, Qu Y, Mu D. The optimal choices of animal models of white matter injury. Rev Neurosci 2019; 30:245-259. [PMID: 30379639 DOI: 10.1515/revneuro-2018-0044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/16/2018] [Indexed: 12/25/2022]
Abstract
White matter injury, the most common neurological injury in preterm infants, is a major cause of chronic neurological morbidity, including cerebral palsy. Although there has been great progress in the study of the mechanism of white matter injury in newborn infants, its pathogenesis is not entirely clear, and further treatment approaches are required. Animal models are the basis of study in pathogenesis, treatment, and prognosis of white matter injury in preterm infants. Various species have been used to establish white matter injury models, including rodents, rabbits, sheep, and non-human primates. Small animal models allow cost-effective investigation of molecular and cellular mechanisms, while large animal models are particularly attractive for pathophysiological and clinical-translational studies. This review focuses on the features of commonly used white matter injury animal models, including their modelling methods, advantages, and limitations, and addresses some clinically relevant animal models that allow reproduction of the insults associated with clinical conditions that contribute to white matter injury in human infants.
Collapse
Affiliation(s)
- Yan Zeng
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Huiqing Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Li Zhang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Jun Tang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Jing Shi
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Dongqiong Xiao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, section 3, Renmin South Road, Chengdu, Sichuan 610041, China.,Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu 610041, China, Telephone: +86-28-85503226, Fax: +86-28-85559065
| |
Collapse
|
2
|
Pogledic I, Kostovic I, Fallet-Bianco C, Adle-Biassette H, Gressens P, Verney C. Involvement of the subplate zone in preterm infants with periventricular white matter injury. Brain Pathol 2014; 24:128-41. [PMID: 25003178 DOI: 10.1111/bpa.12096] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Studies of periventricular white matter injury (PWMI) in preterm infants suggest the involvement of the transient cortical subplate zone. We studied the cortical wall of noncystic and cystic PWMI cases and controls. Non-cystic PWMI corresponded to diffuse white matter lesions, the predominant injury currently detected by imaging. Glial cell populations were analyzed in post-mortem human frontal lobes from very preterm [24–29 postconceptional weeks (pcw)] and preterm infants (30–34 pcw) using immunohistochemistry for glial fibrillary acidic protein (GFAP), monocarboxylate transporter 1(MCT1), ionized calcium-binding adapter molecule 1 (Iba1), CD68 and oligodendrocyte lineage (Olig2). Glial activation extended into the subplate in non-cystic PWMI but was restricted to the white matter in cystic PWMI. Two major age-related and laminar differences were observed in non-cystic PWMI: in very preterm cases, activated microglial cells were increased and extended into the subplate adjacent to the lesion, whereas in preterm cases, an astroglial reaction was seen not only in the subplate but throughout the cortical plate. There were no differences in Olig2-positive pre-oligodendrocytes in the subplate inPWMI cases compared with controls. The involvement of gliosis in the deep subplate supports the concept of the complex cellular vulnerability of the subplate zone during the preterm period and may explain widespread changes in magnetic resonance signal intensity in early PWMI.
Collapse
Affiliation(s)
- Ivana Pogledic
- Inserm U676, Paris; Croatian Institute for Brain Research, Medical School, University of Zagreb, Zagreb
| | | | | | | | | | | |
Collapse
|
3
|
Sartor A, Arthurs O, Alberti C, Belarbi N, Tilea B, Boizeau P, Oury JF, Elmaleh-Berges M, Gressens P, Sebag G, Alison M. Apparent diffusion coefficient measurements of the fetal brain during the third trimester of pregnancy: how reliable are they in clinical practice? Prenat Diagn 2014; 34:357-66. [DOI: 10.1002/pd.4309] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 12/11/2013] [Accepted: 12/16/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Agnès Sartor
- Service de Gynécologie-Obstétrique, Hôpital Robert Debré; AP-HP, Inserm UMR 676, Université Paris Diderot - Sorbonne Paris Cité; Paris France
| | - Owen Arthurs
- Service d'Imagerie Pédiatrique et Foetale; Hôpital Robert Debré, AP-HP; Paris France
| | - Corinne Alberti
- Unité d'Epidémiologie Clinique; Hôpital Robert Debré, AP-HP, Inserm CIE 5, Université Paris Diderot - Sorbonne Paris Cité; Paris France
| | - Nadia Belarbi
- Service d'Imagerie Pédiatrique et Foetale; Hôpital Robert Debré, AP-HP; Paris France
| | - Bogdana Tilea
- Service d'Imagerie Pédiatrique et Foetale; Hôpital Robert Debré, AP-HP; Paris France
| | - Priscilla Boizeau
- Unité d'Epidémiologie Clinique; Hôpital Robert Debré, AP-HP; Paris France
| | - Jean-Francois Oury
- Service de Gynécologie-Obstétrique, Hôpital Robert Debré; AP-HP, Inserm UMR 676, Université Paris Diderot - Sorbonne Paris Cité; Paris France
| | - Monique Elmaleh-Berges
- Service d'Imagerie pédiatrique et foetale; Hôpital Robert Debré, AP-HP, Inserm UMR 676; Paris France
| | - Pierre Gressens
- Inserm UMR 676; Hôpital Robert Debré, AP-HP, Université Paris Diderot - Sorbonne Paris Cité; Paris France
| | - Guy Sebag
- Service d'Imagerie Pédiatrique et Foetale; Hôpital Robert Debré, AP-HP, Inserm UMR 676, Université Paris Diderot - Sorbonne Paris Cité; Paris France
| | - Marianne Alison
- Service d'Imagerie Pédiatrique et Foetale; Hôpital Robert Debré, AP-HP, Inserm UMR 676, Université Paris Diderot - Sorbonne Paris Cité; Paris France
| |
Collapse
|
4
|
Volpe JJ, Kinney HC, Jensen FE, Rosenberg PA. Reprint of "The developing oligodendrocyte: key cellular target in brain injury in the premature infant". Int J Dev Neurosci 2011; 29:565-82. [PMID: 21802506 DOI: 10.1016/j.ijdevneu.2011.07.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Brain injury in the premature infant, a problem of enormous importance, is associated with a high risk of neurodevelopmental disability. The major type of injury involves cerebral white matter and the principal cellular target is the developing oligodendrocyte. The specific phase of the oligodendroglial lineage affected has been defined from study of both human brain and experimental models. This premyelinating cell (pre-OL) is vulnerable because of a series of maturation-dependent events. The pathogenesis of pre-OL injury relates to operation of two upstream mechanisms, hypoxia-ischemia and systemic infection/inflammation, both of which are common occurrences in premature infants. The focus of this review and of our research over the past 15-20 years has been the cellular and molecular bases for the maturation-dependent vulnerability of the pre-OL to the action of the two upstream mechanisms. Three downstream mechanisms have been identified, i.e., microglial activation, excitotoxicity and free radical attack. The work in both experimental models and human brain has identified a remarkable confluence of maturation-dependent factors that render the pre-OL so exquisitely vulnerable to these downstream mechanisms. Most importantly, elucidation of these factors has led to delineation of a series of potential therapeutic interventions, which in experimental models show marked protective properties. The critical next step, i.e., clinical trials in the living infant, is now on the horizon.
Collapse
Affiliation(s)
- Joseph J Volpe
- Department of Neurology, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
5
|
Volpe JJ, Kinney HC, Jensen FE, Rosenberg PA. The developing oligodendrocyte: key cellular target in brain injury in the premature infant. Int J Dev Neurosci 2011; 29:423-40. [PMID: 21382469 DOI: 10.1016/j.ijdevneu.2011.02.012] [Citation(s) in RCA: 258] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/10/2011] [Accepted: 02/27/2011] [Indexed: 01/16/2023] Open
Abstract
Brain injury in the premature infant, a problem of enormous importance, is associated with a high risk of neurodevelopmental disability. The major type of injury involves cerebral white matter and the principal cellular target is the developing oligodendrocyte. The specific phase of the oligodendroglial lineage affected has been defined from study of both human brain and experimental models. This premyelinating cell (pre-OL) is vulnerable because of a series of maturation-dependent events. The pathogenesis of pre-OL injury relates to operation of two upstream mechanisms, hypoxia-ischemia and systemic infection/inflammation, both of which are common occurrences in premature infants. The focus of this review and of our research over the past 15-20 years has been the cellular and molecular bases for the maturation-dependent vulnerability of the pre-OL to the action of the two upstream mechanisms. Three downstream mechanisms have been identified, i.e., microglial activation, excitotoxicity and free radical attack. The work in both experimental models and human brain has identified a remarkable confluence of maturation-dependent factors that render the pre-OL so exquisitely vulnerable to these downstream mechanisms. Most importantly, elucidation of these factors has led to delineation of a series of potential therapeutic interventions, which in experimental models show marked protective properties. The critical next step, i.e., clinical trials in the living infant, is now on the horizon.
Collapse
Affiliation(s)
- Joseph J Volpe
- Department of Neurology, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
6
|
Fraser M, Bennet L, Van Zijl PL, Mocatta TJ, Williams CE, Gluckman PD, Winterbourn CC, Gunn AJ. Extracellular amino acids and lipid peroxidation products in periventricular white matter during and after cerebral ischemia in preterm fetal sheep. J Neurochem 2010; 105:2214-23. [PMID: 18315562 DOI: 10.1111/j.1471-4159.2008.05313.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is widely hypothesized that accumulation of excitatory amino acids, and oxygen free radicals during or after exposure to hypoxia-ischemia play a pivotal role in preterm periventricular white matter injury; however, there is limited evidence in the intact brain. In preterm fetal sheep (0.65 gestation; term 147 days) we found no significant increase in extracellular levels of excitatory amino acids measured by microdialysis in the periventricular white matter during cerebral ischemia induced by bilateral carotid occlusion. There was no significant change in 8-isoprostane or malondialdehyde levels in the early phase of recovery after occlusion. In contrast, there was a significant delayed increase in most amino acids and in malondialdehyde (but not 8-isoprostane) that was maximal approximately 2-3 days after occlusion. The increase in glutamate was significantly correlated with a secondary increase in cortical impedance, an index of cytotoxic edema, and with white matter damage 3 days post-insult. In conclusion, no significant accumulation of cytotoxins was found within immature white matter during cerebral ischemia. Although a minority of fetuses showed a delayed increase in some cytotoxins, this occurred many days after ischemia, in association with secondary cytotoxic edema, strongly suggesting that these changes are mainly a consequence of evolving cell death.
Collapse
Affiliation(s)
- Mhoyra Fraser
- Liggins Institute, University of Auckland, Auckland, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Degos V, Loron G, Mantz J, Gressens P. Neuroprotective Strategies for the Neonatal Brain. Anesth Analg 2008; 106:1670-80. [DOI: 10.1213/ane.0b013e3181733f6f] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
Abstract
Cerebral white matter injury, characterised by loss of premyelinating oligodendrocytes (pre-OLs), is the most common form of injury to the preterm brain and is associated with a high risk of neurodevelopmental impairment. The unique cerebrovascular anatomy and physiology of the premature baby underlies the exquisite sensitivity of white matter to the abnormal milieu of preterm extrauterine life, in particular ischaemia and inflammation. These two upstream mechanisms can coexist and amplify their effects, leading to activation of two principal downstream mechanisms: excitotoxicity and free radical attack. Upstream mechanisms trigger generation of reactive oxygen and nitrogen species. The pre-OL is intrinsically vulnerable to free radical attack due to immaturity of antioxidant enzyme systems and iron accumulation. Ischaemia and inflammation trigger glutamate receptor-mediated injury leading to maturation-dependent cell death and loss of cellular processes. This review looks at recent evidence for pathogenetic mechanisms in white matter injury with emphasis on targets for prevention and treatment of injury.
Collapse
Affiliation(s)
- O Khwaja
- Department of Neurology, Children's Hospital Boston, 300 Longwood Ave, Boston, MA 02115, USA
| | | |
Collapse
|
9
|
Leviton A, Gressens P. Neuronal damage accompanies perinatal white-matter damage. Trends Neurosci 2007; 30:473-8. [PMID: 17765331 DOI: 10.1016/j.tins.2007.05.009] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 05/22/2007] [Accepted: 05/29/2007] [Indexed: 02/07/2023]
Abstract
Extremely low-gestational-age newborns have a prominently increased risk of brain dysfunctions attributed to white-matter damage, which is thought to result from the vulnerability of the oligodendrocyte. This white-matter damage now appears to be accompanied by cerebral-cortex and deep-gray-matter abnormalities, including excess apoptosis without replacement and the impairment of surviving neurons and resulting interference with synaptogenesis and connectivity. Recent advances in corticogenesis suggest that neurons migrate from the germinative zones through the white matter to the cortex when the white matter is most vulnerable and perhaps is being injured. Advances in developmental neuroscience also suggest that the excitotoxic and inflammatory processes that probably contribute to white-matter damage are also able to damage developing neurons. Together, these advances support the untested hypothesis that white-matter damage in the preterm newborn is accompanied by the death of neurons as they migrate through the dangerous minefield of white matter undergoing injury.
Collapse
Affiliation(s)
- Alan Leviton
- Department of Neurology, Children's Hospital Boston, Boston, MA, USA.
| | | |
Collapse
|
10
|
Shouman B, Fontaine RH, Baud O, Schwendimann L, Keller M, Spedding M, Lelièvre V, Gressens P. Endocannabinoids potently protect the newborn brain against AMPA-kainate receptor-mediated excitotoxic damage. Br J Pharmacol 2006; 148:442-51. [PMID: 16682966 PMCID: PMC1751782 DOI: 10.1038/sj.bjp.0706755] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Brain lesions induced in newborn mice or rats by the glutamatergic agonists ibotenate (acting on NMDA and metabotropic receptors) or S-bromowillardiine (acting on AMPA-kainate receptors) mimic some aspects of white matter cysts and transcortical necrosis observed in human perinatal brain damage associated with cerebral palsy. Exogenous and endogenous cannabinoids have received increasing attention as potential neuroprotective agents in a number of neurodegenerative disorders of the adult. One recent study showed neuroprotection by the cannabinoid agonist WIN-55212 in a newborn rat model of acute severe asphyxia. The present study was designed to assess the neuroprotective effects of the endogenous cannabinoid anandamide using a well-defined rodent model of neonatal excitotoxic brain lesions. In this model, anandamide provided dose-dependent and long-lasting protection of developing white matter and cortical plate reducing the size of lesions induced by S-bromowillardiine. Anandamide had only marginal neuroprotective effect against ibotenate-induced cortical grey matter lesions. Anandamide-induced neuroprotection against AMPA-kainate receptor-mediated brain lesions were blocked by a CB1 antagonist but not by a CB2 antagonist. Furthermore, anandamide effects were mimicked by a CB1 agonist but not by a CB2 agonist. Real-time PCR confirmed the expression of CB1 receptors, but not CB2 receptors, in the untreated newborn neocortex. Finally, neuroprotective effects of anandamide in white matter involved increased survival of preoligodendrocytes and better preservation of myelination. The present study provides experimental support for the role of endocannabinoids as a candidate therapy for excitotoxic perinatal brain lesions.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Arachidonic Acids/pharmacology
- Brain/drug effects
- Cannabinoid Receptor Modulators/pharmacology
- Dose-Response Relationship, Drug
- Endocannabinoids
- Female
- Humans
- Ibotenic Acid/pharmacology
- Male
- Mice
- Neuroprotective Agents/pharmacology
- Polyunsaturated Alkamides
- RNA, Messenger/analysis
- Rats
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB2/genetics
- Receptors, AMPA/physiology
- Receptors, Kainic Acid/physiology
Collapse
Affiliation(s)
- Basma Shouman
- Inserm, U676, Paris, Hôpital Robert Debré, 48 Blvd Sérurier, F-75019, Paris, France
- Université Paris 7, Faculté de Médecine Denis Diderot, IFR02, Paris, France
| | - Romain H Fontaine
- Inserm, U676, Paris, Hôpital Robert Debré, 48 Blvd Sérurier, F-75019, Paris, France
- Université Paris 7, Faculté de Médecine Denis Diderot, IFR02, Paris, France
| | - Olivier Baud
- Inserm, U676, Paris, Hôpital Robert Debré, 48 Blvd Sérurier, F-75019, Paris, France
- Université Paris 7, Faculté de Médecine Denis Diderot, IFR02, Paris, France
- AP HP, Hôpital Robert Debré, Service de Réanimation Néonatale, Paris, France
| | - Leslie Schwendimann
- Inserm, U676, Paris, Hôpital Robert Debré, 48 Blvd Sérurier, F-75019, Paris, France
- Université Paris 7, Faculté de Médecine Denis Diderot, IFR02, Paris, France
| | - Matthias Keller
- Department of Neonatology, Medical University Innsbruck, Innsbruck, Austria
| | - Michael Spedding
- Institut de Recherches Internationales Servier (I.R.I.S.), Neuilly sur Seine, France
| | - Vincent Lelièvre
- Inserm, U676, Paris, Hôpital Robert Debré, 48 Blvd Sérurier, F-75019, Paris, France
- Université Paris 7, Faculté de Médecine Denis Diderot, IFR02, Paris, France
| | - Pierre Gressens
- Inserm, U676, Paris, Hôpital Robert Debré, 48 Blvd Sérurier, F-75019, Paris, France
- Université Paris 7, Faculté de Médecine Denis Diderot, IFR02, Paris, France
- AP HP, Hôpital Robert Debré, Service de Neurologie Pédiatrique, Paris, France
- Author for correspondence:
| |
Collapse
|