1
|
Pelle MC, Provenzano M, Busutti M, Porcu CV, Zaffina I, Stanga L, Arturi F. Up-Date on Diabetic Nephropathy. Life (Basel) 2022; 12:1202. [PMID: 36013381 PMCID: PMC9409996 DOI: 10.3390/life12081202] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 12/11/2022] Open
Abstract
Diabetes is one of the leading causes of kidney disease. Diabetic kidney disease (DKD) is a major cause of end-stage kidney disease (ESKD) worldwide, and it is linked to an increase in cardiovascular (CV) risk. Diabetic nephropathy (DN) increases morbidity and mortality among people living with diabetes. Risk factors for DN are chronic hyperglycemia and high blood pressure; the renin-angiotensin-aldosterone system blockade improves glomerular function and CV risk in these patients. Recently, new antidiabetic drugs, including sodium-glucose transport protein 2 inhibitors and glucagon-like peptide-1 agonists, have demonstrated additional contribution in delaying the progression of kidney disease and enhancing CV outcomes. The therapeutic goal is regression of albuminuria, but an atypical form of non-proteinuric diabetic nephropathy (NP-DN) is also described. In this review, we provide a state-of-the-art evaluation of current treatment strategies and promising emerging treatments.
Collapse
Affiliation(s)
- Maria Chiara Pelle
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Michele Provenzano
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Marco Busutti
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Clara Valentina Porcu
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Isabella Zaffina
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Lucia Stanga
- Oncology Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Franco Arturi
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
- Research Centre for the Prevention and Treatment of Metabolic Diseases (CR METDIS), University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
2
|
Pérez-López L, Boronat M, Melián C, Brito-Casillas Y, Wägner AM. Animal Models and Renal Biomarkers of Diabetic Nephropathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1307:521-551. [PMID: 32329028 DOI: 10.1007/5584_2020_527] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diabetes mellitus (DM) is the first cause of end stage chronic kidney disease (CKD). Animal models of the disease can shed light on the pathogenesis of the diabetic nephropathy (DN) and novel and earlier biomarkers of the condition may help to improve diagnosis and prognosis. This review summarizes the most important features of animal models used in the study of DN and updates the most recent progress in biomarker research.
Collapse
Affiliation(s)
- Laura Pérez-López
- Institute of Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Mauro Boronat
- Institute of Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
- Department of Endocrinology and Nutrition, Complejo Hospitalario Universitario Insular Materno-Infantil, Las Palmas de Gran Canaria, Spain
| | - Carlos Melián
- Institute of Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
- Department of Animal Pathology, Veterinary Faculty, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Arucas, Las Palmas, Spain
| | - Yeray Brito-Casillas
- Institute of Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Ana M Wägner
- Institute of Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain.
- Department of Endocrinology and Nutrition, Complejo Hospitalario Universitario Insular Materno-Infantil, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
3
|
How Acute Kidney Injury Contributes to Renal Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:117-142. [PMID: 31399964 DOI: 10.1007/978-981-13-8871-2_7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acute kidney injury (AKI) is a widespread clinical syndrome directly associated with patient short-term and long-term morbidity and mortality. During the last decade, the incidence rate of AKI has been increasing, the repeated and severe episodes of AKI have been recognized as a major risk factor chronic kidney diseases (CKD) and end-stage kidney disease (ESRD) leading to global disease burden. Proposed pathological processes and risk factors that add to the transition of AKI to CKD and ESRD include severity and frequency of kidney injury, older age, gender, genetics and chronic health conditions like diabetes, hypertension, and obesity. Therefore, there is a great interest in learning about the mechanism of AKI leading to renal fibrosis, the ultimate renal lesions of CKD. Over the last several years, a significant attention has been given to the field of renal fibrosis with impressive progression in knowing the mechanism of renal fibrosis to detailed cellular characterization and molecular pathways implicated in tubulointerstitial fibrosis. Research and clinical trial are underway for emerging biomarkers detecting early kidney injury, predicting kidney disease progression and developing strategies to efficiently treat AKI and to minimize AKI progression to CKD and ESRD. Specific interventions to prevent renal fibrosis are still experimental. Potential therapeutic advances based on those molecular mechanisms will hopefully offer promising insights into the development of new therapeutic interventions for patients in the near future.
Collapse
|
4
|
Liu BC, Tang TT, Lv LL, Lan HY. Renal tubule injury: a driving force toward chronic kidney disease. Kidney Int 2018; 93:568-579. [DOI: 10.1016/j.kint.2017.09.033] [Citation(s) in RCA: 260] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/17/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022]
|
5
|
Afsar B, Afsar RE, Dagel T, Kaya E, Erus S, Ortiz A, Covic A, Kanbay M. Capillary rarefaction from the kidney point of view. Clin Kidney J 2017; 11:295-301. [PMID: 29988260 PMCID: PMC6007395 DOI: 10.1093/ckj/sfx133] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/04/2017] [Indexed: 12/18/2022] Open
Abstract
Capillary rarefaction is broadly defined as a reduction in vascular density. Capillary rarefaction in the kidneys is thought to promote hypoxia, impair hemodynamic responses and predispose to chronic kidney disease (CKD) progression and hypertension development. Various mechanisms have been suggested to play a role in the development of capillary rarefaction, including inflammation, an altered endothelial-tubular epithelial cell crosstalk, a relative deficiency in angiogenic growth factors, loss of pericytes, increased activity of Transforming growth factor -β1 and thrombospondin-1, vitamin D deficiency, a link to lymphatic neoangiogenesis and INK4a/ARF (Cylin-dependent kinase inhibitor 2a; CDKN2A). In this review, we summarize the tools available to monitor capillary rarefaction noninvasively in the clinic, the contribution of capillary rarefaction to CKD and hypertension, the known mechanisms of capillary rarefaction, and potential future strategies to attenuate capillary rarefaction and reduce its negative impact. Therapeutic strategies to be explored in more detail include optimization of antihypertensive therapy, vitamin D receptor activators, sirtuin 1 activators, Hypoxia inducible factor prolyl hydroxylase inhibitors and stem cell therapy.
Collapse
Affiliation(s)
- Baris Afsar
- Division of Nephrology, Department of Internal Medicine, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - Rengin E Afsar
- Division of Nephrology, Department of Internal Medicine, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - Tuncay Dagel
- Department of Nephrology, Koc University Hospital, Istanbul, Turkey
| | - Ege Kaya
- Koc University School of Medicine, Istanbul, Turkey
| | - Suat Erus
- Department of Thoracic Surgery, Koc University Hospital, Istanbul, Turkey
| | - Alberto Ortiz
- Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Fundación Renal Iñigo Alvarez de Toledo, Madrid, Spain
| | - Adrian Covic
- Department of Nephrology, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
6
|
Gewin L, Zent R, Pozzi A. Progression of chronic kidney disease: too much cellular talk causes damage. Kidney Int 2016; 91:552-560. [PMID: 27773427 DOI: 10.1016/j.kint.2016.08.025] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/31/2016] [Accepted: 08/16/2016] [Indexed: 01/10/2023]
Abstract
Tubulointerstitial fibrosis, tubular atrophy, and peritubular capillary rarefaction are major hallmarks of chronic kidney disease. The tubulointerstitium consists of multiple cell components including tubular epithelial, mesenchymal (fibroblasts and pericytes), endothelial, and inflammatory cells. Crosstalk among these cell components is a key component in the pathogenesis of this complex disease. After severe or recurrent injury, the renal tubular epithelial cells undergo changes in structure and cell cycle that are accompanied by altered expression and production of cytokines. These cytokines contribute to the initiation of the fibrotic response by favoring activation of fibroblasts, recruitment of inflammatory cells, and loss of endothelial cells. This review focuses on how augmented growth factor and cytokine production induces epithelial crosstalk with cells in the interstitium to promote progressive tubulointerstitial fibrosis after renal injury.
Collapse
Affiliation(s)
- Leslie Gewin
- Division of Nephrology, Department of Medicine, Vanderbilt Medical Center, Nashville, Tennessee, USA; Department of Cell and Developmental Biology, Vanderbilt Medical Center, Nashville, Tennessee, USA; Veterans Affairs Medical Center, Nashville, Tennessee, USA
| | - Roy Zent
- Division of Nephrology, Department of Medicine, Vanderbilt Medical Center, Nashville, Tennessee, USA; Department of Cell and Developmental Biology, Vanderbilt Medical Center, Nashville, Tennessee, USA; Veterans Affairs Medical Center, Nashville, Tennessee, USA; Department of Cancer Biology, Vanderbilt Medical Center, Nashville, Tennessee, USA.
| | - Ambra Pozzi
- Division of Nephrology, Department of Medicine, Vanderbilt Medical Center, Nashville, Tennessee, USA; Veterans Affairs Medical Center, Nashville, Tennessee, USA; Department of Cancer Biology, Vanderbilt Medical Center, Nashville, Tennessee, USA; Department of Molecular Physiology and Biophysics, Vanderbilt Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
7
|
Pianta TJ, Peake PW, Pickering JW, Kelleher M, Buckley NA, Endre ZH. Evaluation of biomarkers of cell cycle arrest and inflammation in prediction of dialysis or recovery after kidney transplantation. Transpl Int 2015; 28:1392-404. [DOI: 10.1111/tri.12636] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 12/30/2014] [Accepted: 07/07/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Timothy J. Pianta
- Prince of Wales Clinical School; University of New South Wales; Sydney NSW Australia
- Northern Clinical School; Melbourne Medical School; University of Melbourne; Epping Vic Australia
| | - Philip W. Peake
- Prince of Wales Clinical School; University of New South Wales; Sydney NSW Australia
| | - John W. Pickering
- Department of Medicine; University of Otago; Christchurch New Zealand
| | - Michaela Kelleher
- Department of Nephrology; Prince of Wales Hospital; Sydney NSW Australia
| | | | - Zoltan H. Endre
- Prince of Wales Clinical School; University of New South Wales; Sydney NSW Australia
- Department of Medicine; University of Otago; Christchurch New Zealand
| |
Collapse
|
8
|
Tsuboi N, Kanzaki G, Koike K, Kawamura T, Ogura M, Yokoo T. Clinicopathological assessment of the nephron number. Clin Kidney J 2014; 7:107-14. [PMID: 25852857 PMCID: PMC4377791 DOI: 10.1093/ckj/sfu018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 02/14/2014] [Indexed: 02/06/2023] Open
Abstract
Recent studies have demonstrated much larger variability in the total number of nephrons in normal populations than previously suspected. In addition, it has been suggested that individuals with a low nephron number may have an increased lifetime risk of hypertension or renal insufficiency, emphasizing the importance of evaluating the nephron number in each individual. In view of the fact that all previous reports of the nephron number were based on analyses of autopsy kidneys, the identification of surrogate markers detectable in living subjects is needed in order to enhance understanding of the clinical significance of this parameter. In this review, we summarize the clinicopathological factors and findings indicating a reduction in the nephron number, focusing particularly on those found at the time of a preserved renal function.
Collapse
Affiliation(s)
- Nobuo Tsuboi
- Division of Nephrology and Hypertension, Department of Internal Medicine , The Jikei University School of Medicine , Tokyo , Japan
| | - Go Kanzaki
- Division of Nephrology and Hypertension, Department of Internal Medicine , The Jikei University School of Medicine , Tokyo , Japan
| | - Kentaro Koike
- Division of Nephrology and Hypertension, Department of Internal Medicine , The Jikei University School of Medicine , Tokyo , Japan
| | - Tetsuya Kawamura
- Division of Nephrology and Hypertension, Department of Internal Medicine , The Jikei University School of Medicine , Tokyo , Japan
| | - Makoto Ogura
- Division of Nephrology and Hypertension, Department of Internal Medicine , The Jikei University School of Medicine , Tokyo , Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine , The Jikei University School of Medicine , Tokyo , Japan
| |
Collapse
|
9
|
Peritubular capillary rarefaction: a new therapeutic target in chronic kidney disease. Pediatr Nephrol 2014; 29:333-42. [PMID: 23475077 PMCID: PMC3726573 DOI: 10.1007/s00467-013-2430-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 12/24/2012] [Accepted: 01/24/2013] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease (CKD) has reached worldwide epidemic proportions and desperately needs new therapies. Peritubular capillary (PTC) rarefaction, together with interstitial fibrosis and tubular atrophy, is one of the major hallmarks of CKD and predicts renal outcome in patients with CKD. PTC endothelial cells (ECs) undergo apoptosis during CKD, leading to capillary loss, tissue hypoxia, and oxidative stress. Although the mechanisms of PTC rarefaction are not well understood, the process of PTC rarefaction depends on multiple events that occur during CKD. These events, which lead to an antiangiogenic environment, include deprivation of EC survival factors, increased production of vascular growth inhibitors, malfunction of ECs, dysfunction of endothelial progenitor cells, and loss of EC integrity via pericyte detachment from the vasculature. In this review, we focus on major factors regulating angiogenesis and EC survival and describe the roles of these factors in PTC rarefaction during CKD and possible therapeutic applications.
Collapse
|
10
|
Angiopoietins modulate endothelial adaptation, glomerular and podocyte hypertrophy after uninephrectomy. PLoS One 2013; 8:e82592. [PMID: 24367525 PMCID: PMC3867364 DOI: 10.1371/journal.pone.0082592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 11/05/2013] [Indexed: 01/08/2023] Open
Abstract
Glomerular capillary remodeling is an essential process in the development of glomerular hypertrophy. Angiopoietins, which are important regulators in angiogenesis, plays a role in the development of glomerulus during embryogenesis. Here, we evaluated the influence of angiopoietin on glomerular components and hypertrophy after uninephrectomy in adult male BALB/c mice. The actions of angiopoietin 1 or 2 were systemically antagonized by the subcutaneous administration of antagonists. We observed that the angiopoietin system was activated after uninephrectomy, and that the blockade of angiopoietin 1 or 2 decreased the activation of the angiopoietin receptor--tyrosine kinase with Ig and EGF homology domains-2--and attenuated the development of glomerular and podocyte hypertrophy. The increase in endothelial density staining (anti-CD31) following uninephrectomy was also reversed by angiopoietin 1 or 2 blockades. Glomerular basement thickness and foot process width were observed to decrease in the angiopoietin blockade groups. These changes were associated with the down regulation of the expression of genes for the glomerular matrix and basement membrane, including collagen type IV α1, collagen type IV α2, collagen type IV α5, and laminin α5. Thus, angiopoietin 1 or 2 may play an important role in the development of glomerular hypertrophy after uninephrectomy. A blockade of the angiopoietin system not only influenced the endothelium but also the podocyte, leading to diminished gene expression and morphological changes after uninephrectomy.
Collapse
|
11
|
Machado FG, Kuriki PS, Fujihara CK, Fanelli C, Arias SCA, Malheiros DMAC, Camara NOS, Zatz R. Chronic VEGF blockade worsens glomerular injury in the remnant kidney model. PLoS One 2012; 7:e39580. [PMID: 22745791 PMCID: PMC3382123 DOI: 10.1371/journal.pone.0039580] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 05/23/2012] [Indexed: 11/18/2022] Open
Abstract
VEGF inhibition can promote renal vascular and parenchymal injury, causing proteinuria, hypertension and thrombotic microangiopathy. The mechanisms underlying these side effects are unclear. We investigated the renal effects of the administration, during 45 days, of sunitinib (Su), a VEGF receptor inhibitor, to rats with 5/6 renal ablation (Nx). Adult male Munich-Wistar rats were distributed among groups S+V, sham-operated rats receiving vehicle only; S+Su, S rats given Su, 4 mg/kg/day; Nx+V, Nx rats receiving V; and Nx+Su, Nx rats receiving Su. Su caused no change in Group S. Seven and 45 days after renal ablation, renal cortical interstitium was expanded, in association with rarefaction of peritubular capillaries. Su did not worsen hypertension, proteinuria or interstitial expansion, nor did it affect capillary rarefaction, suggesting little angiogenic activity in this model. Nx animals exhibited glomerulosclerosis (GS), which was aggravated by Su. This effect could not be explained by podocyte damage, nor could it be ascribed to tuft hypertrophy or hyperplasia. GS may have derived from organization of capillary microthrombi, frequently observed in Group Nx+Su. Treatment with Su did not reduce the fractional glomerular endothelial area, suggesting functional rather than structural cell injury. Chronic VEGF inhibition has little effect on normal rats, but can affect glomerular endothelium when renal damage is already present.
Collapse
Affiliation(s)
- Flavia G. Machado
- Laboratory of Renal Pathophysiology (LIM-16), Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Patrícia Semedo Kuriki
- Laboratory of Immunology, Nephrology Division, Faculty of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Clarice K. Fujihara
- Laboratory of Renal Pathophysiology (LIM-16), Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Camilla Fanelli
- Laboratory of Renal Pathophysiology (LIM-16), Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Simone C. A. Arias
- Laboratory of Renal Pathophysiology (LIM-16), Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Denise M. A. C. Malheiros
- Laboratory of Renal Pathophysiology (LIM-16), Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Niels O. S. Camara
- Laboratory of Immunology, Nephrology Division, Faculty of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Roberto Zatz
- Laboratory of Renal Pathophysiology (LIM-16), Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
12
|
Abstract
Chronic kidney disease is characterized by progressive loss of the renal microvasculature, which leads to local areas of hypoxia and induction of profibrotic responses, scarring and deterioration of renal function. Revascularization alone might be sufficient to restore kidney function and regenerate the structure of the diseased kidney. For revascularization to be successful, however, the underlying disease process needs to be halted or alleviated and there must remain a sufficient number of surviving nephron units that can serve as a scaffold for kidney regeneration. This Perspectives article describes how revascularization might be achieved using vascular growth factors or adoptive transfer of endothelial progenitor cells and provides a brief outline of the studies performed to date. An overview of how therapeutic strategies targeting the microvasculature could be enhanced in the future is also presented.
Collapse
|
13
|
Affiliation(s)
- Peter Boor
- Department of Nephrology Institute of Pathology, RWTH University of Aachen, Aachen, Germany.
| | | |
Collapse
|
14
|
Villa L, Boor P, Konieczny A, Kunter U, van Roeyen CR, Denecke B, Gan L, Kupper MB, Hoffmann K, Eitner F, Ostendorf T, Floege J. Effects and mechanisms of angiotensin II receptor blockade with telmisartan in a normotensive model of mesangioproliferative nephritis. Nephrol Dial Transplant 2011; 26:3131-43. [DOI: 10.1093/ndt/gfr096] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
15
|
Mayer G. Capillary rarefaction, hypoxia, VEGF and angiogenesis in chronic renal disease. Nephrol Dial Transplant 2011; 26:1132-7. [PMID: 21330358 PMCID: PMC3070072 DOI: 10.1093/ndt/gfq832] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Tubulointerstitial hypoxia and peritubular capillary rarefaction are typical features of chronic progressive renal disease. In response to low oxygen supply, hypoxia-inducible factors (HIFs) are activated but until now, it is unclear if this increased expression leads to a stabilization of the disease process and thus is nephroprotective or contributes to interstitial fibrosis and/or tubular atrophy. This duality has also been described as far as vascular endothelial growth factor (VEGF), one of the major target genes of HIFs, is concerned. On the one hand, neoangiogenesis driven by VEGF, if intact, ameliorates hypoxia, on the other, VEGF is a potent pro-inflammatory mediator and neoangiogenesis, if defective because interference by other pathologies exaggerates injury. In summary, experimental data support the idea that dependent on timing and predominant pathology, hypoxia counter-regulatory factors exert beneficial or undesirable effects. Thus, before their therapeutic potential can be fully explored, a better way to characterize the clinical and pathophysiological situation in an individual patient is mandatory.
Collapse
Affiliation(s)
- Gert Mayer
- Department of Internal Medicine IV, Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
16
|
Yuan L, Wu MJ, Sun HY, Xiong J, Zhang Y, Liu CY, Fu LL, Liu DM, Liu HQ, Mei CL. VEGF-modified human embryonic mesenchymal stem cell implantation enhances protection against cisplatin-induced acute kidney injury. Am J Physiol Renal Physiol 2010; 300:F207-18. [PMID: 20943766 DOI: 10.1152/ajprenal.00073.2010] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The implantation of mesenchymal stem cells (MSC) has been reported as a new technique to restore renal tubular structure and improve renal function in acute kidney injury (AKI). Vascular endothelial growth factor (VEGF) plays an important role in the renoprotective function of MSC. Whether upregulation of VEGF by a combination of MSC and VEGF gene transfer could enhance the protective effect of MSC in AKI is not clear. We investigated the effects of VEGF-modified human embryonic MSC (VEGF-hMSC) in healing cisplatin-injured renal tubular epithelial cells (TCMK-1) with a coculture system. We found that TCMK-1 viability declined 3 days after cisplatin pretreatment and that coculture with VEGF-hMSC enhanced cell protection via mitogenic and antiapoptotic actions. In addition, administration of VEGF-hMSC in a nude mouse model of cisplatin-induced kidney injury offered better protective effects on renal function, tubular structure, and survival as represented by increased cell proliferation, decreased cellular apoptosis, and improved peritubular capillary density. These data suggest that VEGF-modified hMSC implantation could provide advanced benefits in the protection against AKI by increasing antiapoptosis effects and improving microcirculation and cell proliferation.
Collapse
Affiliation(s)
- Li Yuan
- Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lee SR, Lee SH, Moon JY, Park JY, Lee D, Lim SJ, Jeong KH, Park JK, Lee TW, Ihm CG. Repeated administration of bone marrow-derived mesenchymal stem cells improved the protective effects on a remnant kidney model. Ren Fail 2010; 32:840-8. [DOI: 10.3109/0886022x.2010.494803] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
18
|
Nephron-deficient Fvb mice develop rapidly progressive renal failure and heavy albuminuria involving excess glomerular GLUT1 and VEGF. J Transl Med 2010; 90:83-97. [PMID: 19918242 PMCID: PMC4150870 DOI: 10.1038/labinvest.2009.95] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Reduced nephron numbers may predispose to renal failure. We hypothesized that glucose transporters (GLUTs) may contribute to progression of the renal disease, as GLUTs have been implicated in diabetic glomerulosclerosis and hypertensive renal disease with mesangial cell (MC) stretch. The Os (oligosyndactyly) allele that typically reduces nephron number by approximately 50%, was repeatedly backcrossed from ROP (Ra/+ (ragged), Os/+ (oligosyndactyly), and Pt/+ (pintail)) Os/+ mice more than six times into the Fvb mouse background to obtain Os/+ and +/+ mice with the Fvb background for study. Glomerular function, GLUT1, signaling, albumin excretion, and structural and ultrastructural changes were assessed. The FvbROP Os/+ mice (Fvb background) exhibited increased glomerular GLUT1, glucose uptake, VEGF, glomerular hypertrophy, hyperfiltration, extensive podocyte foot process effacement, marked albuminuria, severe extracellular matrix (ECM) protein deposition, and rapidly progressive renal failure leading to their early demise. Glomerular GLUT1 was increased 2.7-fold in the FvbROP Os/+ mice vs controls at 4 weeks of age, and glucose uptake was increased 2.7-fold. These changes were associated with the activation of glomerular PKCbeta1 and NF-kappaB p50 which contribute to ECM accumulation. The cyclic mechanical stretch of MCs in vitro, used as a model for increased MC stretch in vivo, reproduced increased GLUT1 at 48 h, a stimulus for increased VEGF expression which followed at 72 h. VEGF was also shown to act in a positive feedback manner on MC GLUT1, increasing GLUT1 expression, glucose uptake and fibronectin (FN) accumulation in vitro, whereas antisense suppression of GLUT1 largely blocked FN upregulation by VEGF. The FvbROP Os/+ mice exhibited an early increase in glomerular GLUT1 leading to increased glomerular glucose uptake PKCbeta1, and NF-kappaB activation, with excess ECM accumulation. A GLUT1-VEGF-GLUT1 positive feedback loop may play a key role in contributing to renal disease in this model of nondiabetic glomerulosclerosis.
Collapse
|
19
|
Alexandre CS, Volpini RA, Shimizu MH, Sanches TR, Semedo P, di Jura VL, Câmara NO, Seguro AC, Andrade L. Lineage-negative bone marrow cells protect against chronic renal failure. Stem Cells 2009; 27:682-92. [PMID: 19096042 DOI: 10.1634/stemcells.2008-0496] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Progressive renal failure continues to be a challenge. The use of bone marrow cells represents a means of meeting that challenge. We used lineage-negative (Lin(-)) cells to test the hypothesis that Lin(-) cell treatment decreases renal injury. Syngeneic Fischer 344 rats were divided into four groups: sham (laparotomy only, untreated); Nx (five-sixth nephrectomy and untreated); NxLC1 (five-sixth nephrectomy and receiving 2 x 10(6) Lin(-) cells on postnephrectomy day 15); and NxLC3 (five-sixth nephrectomy and receiving 2 x 10(6) Lin(-) cells on postnephrectomy days 15, 30, and 45). On postoperative day 16, renal mRNA expression of interleukin (IL)-1beta, tumor necrosis factor-alpha, and IL-6 was lower in NxLC rats than in Nx rats. On postnephrectomy day 60, NxLC rats presented less proteinuria, glomerulosclerosis, anemia, renal infiltration of immune cells, and protein expression of monocyte chemoattractant protein-1, as well as decreased interstitial area. Immunostaining for proliferating cell nuclear antigen showed that, in comparison with sham rats, Nx rats presented greater cell proliferation, whereas NxLC1 rats and NxLC3 rats presented less cell proliferation than did Nx rats. Protein expression of the cyclin-dependent kinase inhibitor p21 and of vascular endothelial growth factor increased after nephrectomy and decreased after Lin(-) cell treatment. On postnephrectomy day 120, renal function (inulin clearance) was significantly better in Lin(-) cell-treated rats than in untreated rats. Lin(-) cell treatment significantly improved survival. These data suggest that Lin(-) cell treatment protects against chronic renal failure.
Collapse
|
20
|
A combination of Chinese herbs, Astragalus membranaceus var. mongholicus and Angelica sinensis, improved renal microvascular insufficiency in 5/6 nephrectomized rats. Vascul Pharmacol 2009; 50:185-93. [DOI: 10.1016/j.vph.2009.01.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2008] [Revised: 01/14/2009] [Accepted: 01/21/2009] [Indexed: 11/23/2022]
|
21
|
Freundlich M, Quiroz Y, Zhang Z, Zhang Y, Bravo Y, Weisinger JR, Li YC, Rodriguez-Iturbe B. Suppression of renin–angiotensin gene expression in the kidney by paricalcitol. Kidney Int 2008; 74:1394-402. [DOI: 10.1038/ki.2008.408] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
Ardura JA, Berruguete R, Rámila D, Alvarez-Arroyo MV, Esbrit P. Parathyroid hormone-related protein interacts with vascular endothelial growth factor to promote fibrogenesis in the obstructed mouse kidney. Am J Physiol Renal Physiol 2008; 295:F415-25. [PMID: 18550647 DOI: 10.1152/ajprenal.00018.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Parathyroid hormone-related protein (PTHrP) interacts with vascular endothelial growth factor (VEGF) in osteoblasts. Since both PTHrP and VEGF have both proinflammatory and profibrogenic features, we assessed here whether these factors might act in concert to promote fibrogenesis in the obstructed kidney. VEGF receptor (VEGFR)-1 was upregulated, while VEGFR-2 was downregulated (at both mRNA and protein levels) in the mouse kidney within 2-6 days after ureteral obstruction. VEGF protein levels also increased in the obstructed kidney at the latter time. Moreover, this VEGF and VEGFR-1 upregulation was higher in mice overexpressing PTHrP in the proximal tubule than in control littermates. These changes were associated with higher fibronectin mRNA expression and alpha-smooth muscle actin (alpha-SMA) and integrin-linked kinase (ILK) immunostaining and lower apoptotic tubulointerstitial cells in the mouse obstructed kidney than in control littermates. Pretreatment with a neutralizing anti-VEGF antibody reversed these responses in the obstructed kidney of both types of mice. In vitro, PTHrP-(1-36) increased (maximal 2-fold vs. basal, at 100 nM) alpha-SMA and ILK protein expression and decreased E-cadherin protein levels in renal tubuloepithelial mouse cortical tubule and normal rat kidney (NRK) 52E cells. PTHrP-(1-36) also decreased cyclosporine A- and/or osmotic stress-induced apoptosis in these cells and in renal fibroblastic NRK 49F cells. These effects elicited by PTHrP-(1-36) were associated with both VEGF and VEGFR-1 upregulation, and abolished by the anti-VEGF antibody. Collectively, these findings strongly suggest that VEGF acts as an important mediator of PTHrP to promote fibrogenesis in the obstructed kidney.
Collapse
Affiliation(s)
- Juan A Ardura
- Bone and Mineral Metabolism Laboratory, Fundación Jiménez Díaz, Madrid, Spain
| | | | | | | | | |
Collapse
|
23
|
Constantinides CA, Tyritzis SI, Evangelou C, Kyroudi A, Liatsikos E, Karamessinis P, Zervas A, Pavlakis K. Vascular endothelial growth factor protein expression in a renal ablation rabbit model under prolonged warm and cold ischemia. Am J Nephrol 2007; 28:438-45. [PMID: 18097136 DOI: 10.1159/000112809] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 11/16/2007] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS To establish a potential correlation between renal and systemic production of vascular endothelial growth factor (VEGF) protein after prolonged ischemia in a renal ablation model under normothermic and hypothermic conditions. METHODS 38 uninephrectomized New Zealand rabbits were divided into 5 groups. The rabbits of each group underwent partial nephrectomy under 90 and 60 min of warm and 90 and 120 min of cold ischemia, except for the sham group (S), which served as control. Serum creatinine (SCr) and blood-urea-nitrogen (BUN) levels were assessed. On the 15th postoperative day (POD), the animals were euthanized and the remaining kidneys were evaluated. VEGF immunohistochemistry and serum Western blot analysis were performed. RESULTS In comparison to the control group, groups 60W, 90C and 120C showed 1.6-, 1.14- and 1.75-fold decreases, respectively, while the production of VEGF was significantly declined by 7.4-fold in group 90W (p < 0.05). Immunohistochemistry revealed prominent VEGF staining in the above-mentioned three groups, while in group 90W staining was negative. Serum biochemistry and microscopic evaluation verified the same differentiation. CONCLUSION Renal and serum VEGF seem to have an analogous expression under conditions of prolonged ischemia. VEGF is overexpressed in hypothermic conditions compared to warm ischemia exceeding 60 min. Hypothermia can be more advantageous in a procedure applying prolonged ischemia.
Collapse
|
24
|
Diekmann F, Rovira J, Carreras J, Arellano EM, Bañón-Maneus E, Ramírez-Bajo MJ, Gutiérrez-Dalmau A, Brunet M, Campistol JM. Mammalian Target of Rapamycin Inhibition Halts the Progression of Proteinuria in a Rat Model of Reduced Renal Mass. J Am Soc Nephrol 2007; 18:2653-60. [PMID: 17804674 DOI: 10.1681/asn.2007010087] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Many kidney transplant patients experience an increase in proteinuria when converted from a calcineurin inhibitor-based regimen to one based on a mammalian target of rapamycin (mTOR) inhibitor, and preexisting proteinuria and poor renal function have been identified as risk factors for this increase. Our aim was to evaluate the effect of sirolimus, an mTOR inhibitor, on renal function and histology in a proteinuric model of reduced renal mass. Sirolimus-treated animals had approximately half as much proteinuria as vehicle-treated animals (P < 0.05), and had less glomerulosclerosis, tubular atrophy, interstitial fibrosis, and inflammation. Immunohistochemistry showed that sirolimus attenuated the increased expression of renal vascular endothelial growth factor (VEGF), as well as the expression of VEGF receptors 1 and 2. In conclusion, sirolimus halted the progression of proteinuria and structural damage in a rat model of reduced renal mass, possibly through a reduction in renal VEGF activity.
Collapse
Affiliation(s)
- Fritz Diekmann
- Department of Nephrology and Renal Transplantation, Hospital Clínic, Villarroel, 170, E-08036 Barcelona, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ngai HHY, Sit WH, Jiang PP, Xu RJ, Wan JMF, Thongboonkerd V. Serial changes in urinary proteome profile of membranous nephropathy: implications for pathophysiology and biomarker discovery. J Proteome Res 2007; 5:3038-47. [PMID: 17081055 DOI: 10.1021/pr060122b] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Membranous nephropathy is one of the most common causes of primary glomerular diseases worldwide. The present study adopted a gel-based proteomics approach to better understand the pathophysiology and define biomarker candidates of human membranous nephropathy using an animal model of passive Heymann nephritis (PHN). Clinical characteristics of Sprague-Dawley rats injected with rabbit anti-Fx1A antiserum mimicked those of human membranous nephropathy. Serial urine samples were collected at Days 0, 10, 20, 30, 40, and 50 after the injection with anti-Fx1A (number of rats = 6; total number of gels = 36). Urinary proteome profiles were examined using 2D-PAGE and SYPRO Ruby staining. Quantitative intensity analysis and ANOVA with Tukey post-hoc multiple comparisons revealed 37 differentially expressed proteins among 6 different time-points. These altered proteins were successfully identified by MALDI-TOF MS and classified into 6 categories: (i) proteins with decreased urinary excretion during PHN; (ii) proteins with increased urinary excretion during PHN; (iii) proteins with increased urinary excretion during PHN, but which finally returned to basal levels; (iv) proteins with increased urinary excretion during PHN, but which finally declined below basal levels; (v) proteins with undetectable levels in the urine during PHN; and (vi) proteins that were detectable in the urine only during PHN. Most of these altered proteins have functional significance in signaling pathways, glomerular trafficking, and controlling the glomerular permeability. The ones in categories (v) and (vi) may serve as biomarkers for detecting or monitoring membranous nephropathy. After normalization of the data with 24-h urine creatinine excretion, changes in 34 of initially 37 differentially expressed proteins remained statistically significant. These data underscore the significant impact of urinary proteomics in unraveling disease pathophysiology and biomarker discovery.
Collapse
|
26
|
Current World Literature. Curr Opin Nephrol Hypertens 2007; 16:52-7. [PMID: 17143072 DOI: 10.1097/mnh.0b013e32801271d6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Zhang SX, Wang JJ, Lu K, Mott R, Longeras R, Ma JX. Therapeutic potential of angiostatin in diabetic nephropathy. J Am Soc Nephrol 2006; 17:475-86. [PMID: 16394111 DOI: 10.1681/asn.2005020217] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Angiostatin is a proteolytic fragment of plasminogen and a potent angiogenic inhibitor. Previous studies have shown that angiostatin inhibits retinal neovascularization and reduces retinal vascular permeability in diabetic retinopathy. Here, it is reported for the first time that angiostatin is also implicated in diabetic nephropathy (DN). Angiostatin levels are dramatically decreased in the kidney of streptozotocin-induced diabetic rats. Consistently, diabetic kidneys also showed decreased expression and proteolytic activities of matrix metalloproteinase-2, an enzyme that releases angiostatin from plasminogen. Adenovirus-mediated delivery of angiostatin significantly alleviated albuminuria and attenuated the glomerular hypertrophy in diabetic rats. Moreover, angiostatin treatment downregulated the expression of vascular endothelial growth factor and TGF-beta1, two major pathogenic factors of DN, in diabetic kidneys. In cultured human mesangial cells, angiostatin blocked the overexpression of vascular endothelial growth factor and TGF-beta1 that were induced by high glucose while increasing the levels of pigment epithelium-derived factor, an endogenous inhibitor of DN. Moreover, angiostatin effectively inhibited the high-glucose-and TGF-beta1-induced overproduction of proinflammatory factors and extracellular matrix proteins via blockade of the Smad signaling pathway. These findings suggest that the decrease of angiostatin levels in diabetic kidney may contribute to the pathologic changes such as inflammation and fibrosis in DN. Therefore, angiostatin has therapeutic potential in DN as a result of its anti-inflammatory and antifibrosis activities.
Collapse
Affiliation(s)
- Sarah X Zhang
- Department of Medicine Endocrinology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | | | | | | | | |
Collapse
|