1
|
Cronin TW, Porter ML, Bok MJ, Caldwell RL, Marshall J. Colour vision in stomatopod crustaceans. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210278. [PMID: 36058241 PMCID: PMC9441230 DOI: 10.1098/rstb.2021.0278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/18/2021] [Accepted: 12/15/2021] [Indexed: 11/12/2022] Open
Abstract
The stomatopod crustaceans, or mantis shrimps, are colourful marine invertebrate predators. Their unusual compound eyes have dorsal and ventral regions resembling typical crustacean apposition designs separated by a unique region called the midband that consists of from two to six parallel rows of ommatidia. In species with six-row midbands, the dorsal four rows are themselves uniquely specialized for colour analysis. Rhabdoms of ommatidia in these rows are longitudinally divided into three distinct regions: an apical ultraviolet (UV) receptor, a shorter-wavelength middle tier receptor and a longer-wavelength proximal tier receptor. Each of the total of 12 photoreceptors has a different spectral sensitivity, potentially contributing to a colour-vision system with 12 channels. Mantis shrimps can discriminate both human-visible and UV colours, but with limited precision compared to other colour-vision systems. Here, we review the structure and function of stomatopod colour vision, examining the types of receptors present in a species, the spectral tuning of photoreceptors both within and across species, the neural analysis of colour and the genetics underlying the multiple visual pigments used for colour vision. Even today, after many decades of research into the colour vision of stomatopods, much of its operation and its use in nature remain a mystery. This article is part of the theme issue 'Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods'.
Collapse
Affiliation(s)
- Thomas W. Cronin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 20250, USA
| | - Megan L. Porter
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Michael J. Bok
- Department of Biology, Lund Vision Group, Lund University, Lund 22362, Sweden
| | - Roy L. Caldwell
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Justin Marshall
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
2
|
Garm A, Simonsen SH, Mendoza-González P, Worsaae K. Have the eyes of bioluminescent scale worms adapted to see their own light? A comparative study of eyes and vision in Harmothoe imbricata and Lepidonotus squamatus. J Exp Biol 2021; 224:271041. [PMID: 34308994 DOI: 10.1242/jeb.242501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/04/2021] [Accepted: 06/07/2021] [Indexed: 11/20/2022]
Abstract
Annelids constitute a diverse phylum with more than 19,000 species, which exhibit greatly varying morphologies and lifestyles ranging from sessile detritivores to fast swimming active predators. The lifestyle of an animal is closely linked to its sensory systems, not least the visual equipment. Interestingly, many errantian annelid species from different families, such as the scale worms (Polynoidae), have two pairs of eyes on their prostomium. These eyes are typically 100-200 µm in diameter and structurally similar judged from their gross morphology. The polynoids Harmothoe imbricata and Lepidonotus squamatus from the North Atlantic are both benthic predators preying on small invertebrates but only H. imbricata can produce bioluminescence in its scales. Here, we examined the eye morphology, photoreceptor physiology and light-guided behaviour in these two scale worms to assess their visual capacity and visual ecology. The structure and physiology of the two pairs of eyes are remarkably similar within each species, with the only difference being the gaze direction. The photoreceptor physiology, however, differs between species. Both species express a single opsin in their eyes, but in H. imbricata the peak sensitivity is green shifted and the temporal resolution is lower, suggesting that the eyes of H. imbricata are adapted to detect their own bioluminescence. The behavioural experiments showed that both species are strictly night active but yielded no support for the hypothesis that H. imbricata is repelled by its own bioluminescence.
Collapse
Affiliation(s)
- Anders Garm
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Sidsel H Simonsen
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Paula Mendoza-González
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Katrine Worsaae
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
3
|
Temple SE, How MJ, Powell SB, Gruev V, Marshall NJ, Roberts NW. Thresholds of polarization vision in octopuses. J Exp Biol 2021; 224:238090. [PMID: 33602676 PMCID: PMC8077535 DOI: 10.1242/jeb.240812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/16/2020] [Accepted: 02/11/2021] [Indexed: 12/16/2022]
Abstract
Polarization vision is widespread in nature, mainly among invertebrates, and is used for a range of tasks including navigation, habitat localization and communication. In marine environments, some species such as those from the Crustacea and Cephalopoda that are principally monochromatic, have evolved to use this adaptation to discriminate objects across the whole visual field, an ability similar to our own use of colour vision. The performance of these polarization vision systems varies, and the few cephalopod species tested so far have notably acute thresholds of discrimination. However, most studies to date have used artificial sources of polarized light that produce levels of polarization much higher than found in nature. In this study, the ability of octopuses to detect polarization contrasts varying in angle of polarization (AoP) was investigated over a range of different degrees of linear polarization (DoLP) to better judge their visual ability in more ecologically relevant conditions. The ‘just-noticeable-differences’ (JND) of AoP contrasts varied consistently with DoLP. These JND thresholds could be largely explained by their ‘polarization distance’, a neurophysical model that effectively calculates the level of activity in opposing horizontally and vertically oriented polarization channels in the cephalopod visual system. Imaging polarimetry from the animals’ natural environment was then used to illustrate the functional advantage that these polarization thresholds may confer in behaviourally relevant contexts. Summary: Octopuses are highly sensitive to small changes in the angle of polarization (<1 deg contrast), even when the degree of polarization is low, which may confer a functional advantage in behaviourally relevant contexts.
Collapse
Affiliation(s)
- Shelby E Temple
- Ecology of Vision Group, School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK.,Azul Optics Ltd, Henleaze, Bristol BS9 4QG, UK
| | - Martin J How
- Ecology of Vision Group, School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Samuel B Powell
- Sensory Neurobiology Group, Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Viktor Gruev
- Biosensors Lab, Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801, USA
| | - N Justin Marshall
- Sensory Neurobiology Group, Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Nicholas W Roberts
- Ecology of Vision Group, School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
4
|
Franklin AM, Marshall J, Feinstein AD, Bok MJ, Byrd AD, Lewis SM. Differences in signal contrast and camouflage among different colour variations of a stomatopod crustacean, Neogonodactylus oerstedii. Sci Rep 2020; 10:1236. [PMID: 31988305 PMCID: PMC6985165 DOI: 10.1038/s41598-020-57990-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/07/2017] [Accepted: 01/09/2020] [Indexed: 11/09/2022] Open
Abstract
Animal colouration is often a trade-off between background matching for camouflage from predators, and conspicuousness for communication with con- or heterospecifics. Stomatopods are marine crustaceans known to use colour signals during courtship and contests, while their overall body colouration may provide camouflage. However, we have little understanding of how stomatopods perceive these signals in their environment or whether overall body coloration does provide camouflage from predators. Neogonodactylus oerstedii assess meral spot colour during contests, and meral spot colour varies depending on local habitat. By calculating quantum catch for N. oerstedii's 12 photoreceptors associated with chromatic vision, we found that variation in meral spot total reflectance does not function to increase signal contrast in the local habitat. Neogonodactylus oerstedii also show between-habitat variation in dorsal body colouration. We used visual models to predict a trichromatic fish predator's perception of these colour variations. Our results suggest that sandy and green stomatopods are camouflaged from a typical fish predator in rubble fields and seagrass beds, respectively. To our knowledge, this is the first study to investigate signal contrast and camouflage in a stomatopod. These results provide new insight into the function and evolution of colouration in a species with a complex visual system.
Collapse
Affiliation(s)
- Amanda M Franklin
- Biology Department, Tufts University, Medford, MA, 02155, USA. .,School of Biosciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Justin Marshall
- Sensory Neurobiology Group, Queensland Brain Institute, University of Queensland, Brisbane, Queensland, 4072, Australia
| | | | - Michael J Bok
- School of Biological Sciences, University of Bristol, Life Sciences Building, Bristol, BS8 1TQ, UK
| | - Anya D Byrd
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Sara M Lewis
- Biology Department, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
5
|
Bok MJ, Nilsson DE, Garm A. Photoresponses in the radiolar eyes of the fan worm A cromegalomma vesiculosum. ACTA ACUST UNITED AC 2019; 222:jeb.212779. [PMID: 31727758 DOI: 10.1242/jeb.212779] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/12/2019] [Accepted: 11/06/2019] [Indexed: 01/28/2023]
Abstract
Fan worms (Annelida: Sabellidae) possess compound eyes and other photoreceptors on their radiolar feeding tentacles. These eyes putatively serve as an alarm system that alerts the worm to encroaching threats, eliciting a rapid defensive retraction into their protective tube. The structure and independent evolutionary derivation of these radiolar eyes make them a fascinating target for exploring the emergence of new sensory systems and visually guided behaviours. However, little is known about their physiology and how this impacts their function. Here, we present electroretinogram recordings from the radiolar eyes of the fan worm Acromegalomma vesiculosum We examine their spectral sensitivity along with their dynamic range and temporal resolution. Our results show that they possess one class of photoreceptors with a single visual pigment peaking in the blue-green part of the spectrum around 510 nm, which matches the dominant wavelengths in their shallow coastal habitats. We found the eyes to have a rather high temporal resolution with a critical flicker fusion frequency around 35 Hz. The high temporal resolution of this response is ideally suited for detecting rapidly moving predators but also necessitates downstream signal processing to filter out caustic wave flicker. This study provides a fundamental understanding of how these eyes function. Furthermore, these findings emphasise a set of dynamic physiological principles that are well suited for governing a multi-eyed startle response in coastal aquatic habitats.
Collapse
Affiliation(s)
- Michael J Bok
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Dan-Eric Nilsson
- Department of Biology, Lund Vision Group, Lund University, 223 62 Lund, Sweden
| | - Anders Garm
- Section of Marine Biology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
6
|
Franklin AM, Donatelli CM, Culligan CR, Tytell ED. Meral-Spot Reflectance Signals Weapon Performance in the Mantis Shrimp Neogonodactylus oerstedii (Stomatopoda). THE BIOLOGICAL BULLETIN 2019; 236:43-54. [PMID: 30707606 DOI: 10.1086/700836] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/09/2023]
Abstract
During animal contests over resources, opponents often signal their fighting ability in an attempt to avoid escalating to physical attack. A reliable signal is beneficial to receivers because it allows them to avoid injuries from engaging in contests they are unlikely to win. However, a signaler could benefit from deceiving an opponent by signaling greater fighting ability or greater aggressive intent than the signaler possesses. Therefore, the reliability of agonistic signals has long intrigued researchers. We investigated whether a colored patch, the meral spot, signals weapon performance in the stomatopod Neogonodactylus oerstedii. During fights over possession of refuges, stomatopods can injure or even kill opponents with their ultrafast strike. We found that darker meral spots correlate with higher strike impulse, which reflects the total force integrated over time. Furthermore, we demonstrate that stomatopods that strike more often with both appendages have darker meral spots and that the first hit in a two-appendage strike has a greater mean strike impulse than that of a single-appendage strike. This indicates that stomatopods with darker meral spots tend to invest more energy in each strike. Our results provide evidence that stomatopods use total reflectance as an honest signal of weapon performance or aggressive intent. This improves our understanding of the evolution of agonistic signals.
Collapse
|
7
|
Thoen HH, Chiou TH, Marshall NJ. Intracellular Recordings of Spectral Sensitivities in Stomatopods: a Comparison across Species. Integr Comp Biol 2017; 57:1117-1129. [PMID: 28992286 DOI: 10.1093/icb/icx111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/13/2023] Open
Abstract
Stomatopods (mantis shrimps) possess one of the most complex eyes in the world with photoreceptors detecting up to 12 different colors. It is not yet understood why stomatopods have almost four times the number of spectral photoreceptors compared with most other animals. It has, however, been suggested that these seemingly redundant photoreceptors could encode color through a new mechanism. Here we compare the spectral sensitivities across five species of stomatopods within the superfamily Gonodactyloidea using intracellular electrophysiological recordings. The results show that the spectral sensitivities across species of stomatopods are remarkably similar apart from some variation in the long-wavelength receptors. We relate these results to spectral sensitivity estimates previously obtained using microspectrophotometry and discuss the variation in the spectral sensitivity maxima (λmax) of the long-wavelength receptors in regard to the previous findings that stomatopods are able to tune their spectral sensitivities according to their respective light environment. We further discuss the similarities of the spectral sensitivities across species of stomatopods in regard to how color information might be processed by their visual systems.
Collapse
Affiliation(s)
- Hanne H Thoen
- Sensory Neurobiology Group, Queensland Brain Institute, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Tsyr-Huei Chiou
- Department of Life Sciences, National Cheng Kung University, Tainan City 70101, Taiwan, ROC
| | - N Justin Marshall
- Sensory Neurobiology Group, Queensland Brain Institute, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| |
Collapse
|
8
|
Ciccotto PJ, Mendelson TC. The ecological drivers of nuptial color evolution in darters (Percidae: Etheostomatinae). Evolution 2016; 70:745-56. [PMID: 27003224 DOI: 10.1111/evo.12901] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/26/2015] [Revised: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 12/29/2022]
Abstract
Closely related animal lineages often vary in male coloration, and ecological selection is hypothesized to shape this variation. The role of ecological selection in inhibiting male color has been documented extensively at the population level, but relatively few studies have investigated the evolution of male coloration across a clade of closely related species. Darters are a diverse group of fishes that vary in the presence of elaborate male nuptial coloration, with some species exhibiting vivid color patterns and others mostly or entirely achromatic. We used phylogenetic logistic regression to test for correlations between the presence/absence of color traits across darter species and the ecological conditions in which these species occur. Environmental variables were correlated with the presence of nuptial color in darters with colorful species tending to inhabit environments that would support fewer predators and potentially transmit a broader spectrum of natural light compared to species lacking male coloration. We also tested the color preferences of a common darter predator, largemouth bass, and found that it exhibits a strong preference for red, providing further evidence of predation as a source of selection on color evolution in darters. Ecological selection therefore appears to be an important factor in dictating the presence or absence of male coloration in this group of fishes.
Collapse
Affiliation(s)
- Patrick J Ciccotto
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611.
| | - Tamra C Mendelson
- Department of Biological Sciences, University of Maryland, Baltimore, Maryland, 21250
| |
Collapse
|
9
|
Porter ML, Zhang Y, Desai S, Caldwell RL, Cronin TW. Evolution of anatomical and physiological specialization in the compound eyes of stomatopod crustaceans. J Exp Biol 2010; 213:3473-86. [DOI: 10.1242/jeb.046508] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Stomatopod crustaceans have complex and diverse visual systems. Among their many unique features are a specialized ommatidial region (the midband) that enables the eye to have multiple overlapping visual fields, as well as sets of spectral filters that are intercalated at two levels between tiers of photoreceptors involved in polychromatic color vision. Although the physiology and visual function of stomatopod eyes have been studied for many years, how these unique visual features originated and diversified is still an open question. In order to investigate how stomatopods have attained the current complexity in visual function, we have combined physiological and morphological information (e.g. number of midband rows, number of filters in the retina, and the spectral properties of filters) with new phylogenetic analyses of relationships among species based on nucleotide sequence data from two nuclear (18S and 28S rDNA) and two mitochondrial [16S and cytochrome oxidase I (COI)] genes. Based on our recovered phylogenetic relationships among species, we propose two new superfamilies within the Stomatopoda: Hemisquilloidea and Pseudosquillodea. Maximum likelihood ancestral state reconstructions indicate that ancestral stomatopod eyes contained six midband rows and four intrarhabdomal filters, illustrating that the visual physiological complexity originated early in stomatopod evolutionary history. While the two distal filters contain conservative sets of filter pigments, the proximal filters show more spectral diversity in filter types, particularly in midband row 2, and are involved in tuning the color vision system to the photic environment. In particular, a set of related gonodactyloid families (Gonodactylidae, Protosquillidae, Takuidae) inhabiting shallow, brightly lit coral reef waters contain the largest diversity of filter pigments, which are spectrally placed relative to the underlying photoreceptors to take advantage of the broad spectrum of light available in the environment.
Collapse
Affiliation(s)
- Megan L. Porter
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Yunfei Zhang
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Shivani Desai
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Roy L. Caldwell
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Thomas W. Cronin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
10
|
Phelps SM. Sensory ecology and perceptual allocation: new prospects for neural networks. Philos Trans R Soc Lond B Biol Sci 2007; 362:355-67. [PMID: 17255022 PMCID: PMC2323554 DOI: 10.1098/rstb.2006.1963] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022] Open
Abstract
Sensory ecology provides a conceptual framework for considering how animals ought to design sensory systems to capture meaningful information from their environments. The framework has been particularly successful at describing how one should allocate sensory receptors to maximize performance on a given task. Neural networks, in contrast, have made unique contributions to understanding how 'hidden preferences' can emerge as a by-product of sensory design. The two frameworks comprise complementary techniques for understanding the design and the evolution of sensation. This article reviews empirical literature from multiple modalities and levels of sensory processing, considering vision, audition and touch from the viewpoints of sensory ecology and neuroethology. In the process, it presents modifications of extant neural network algorithms that would allow a more effective integration of these diverse approaches. Together, the reviewed literature suggests important advances that can be made by explicitly formulating neural network models in terms of sensory ecology, by incorporating neural costs into models of perceptual evolution and by exploring how such demands interact with historical forces.
Collapse
Affiliation(s)
- Steven M Phelps
- Department of Zoology, University of Florida, PO Box 118525, Gainesville, FL 32611, USA.
| |
Collapse
|
11
|
Hemmi JM, Marshall J, Pix W, Vorobyev M, Zeil J. The variable colours of the fiddler crab Uca vomeris and their relation to background and predation. ACTA ACUST UNITED AC 2007; 209:4140-53. [PMID: 17023607 DOI: 10.1242/jeb.02483] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
Abstract
Colour changes in fiddler crabs have long been noted, but a functional interpretation is still lacking. Here we report that neighbouring populations of Uca vomeris in Australia exhibit different degrees of carapace colours, which range from dull mottled to brilliant blue and white. We determined the spectral characteristics of the mud substratum and of the carapace colours of U. vomeris and found that the mottled colours of crabs are cryptic against this background, while display colours provide strong colour contrast for both birds and crabs, but luminance contrast only for a crab visual system. We tested whether crab populations may become cryptic under the influence of bird predation by counting birds overflying or feeding on differently coloured colonies. Colonies with cryptically coloured crabs indeed experience a much higher level of bird presence, compared to colourful colonies. We show in addition that colourful crab individuals subjected to dummy bird predation do change their body colouration over a matter of days. The crabs thus appear to modify their social signalling system depending on their assessment of predation risk.
Collapse
Affiliation(s)
- Jan M Hemmi
- ARC Centre of Excellence in Vision Science, Australian National University, Canberra ACT 2601, Australia
| | | | | | | | | |
Collapse
|