1
|
Beng H, Su H, Wang S, Kuai Y, Hu J, Zhang R, Liu F, Tan W. Differential effects of inhaled R- and S-terbutaline in ovalbumin-induced asthmatic mice. Int Immunopharmacol 2019; 73:581-589. [PMID: 31234092 DOI: 10.1016/j.intimp.2019.04.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/05/2019] [Accepted: 04/17/2019] [Indexed: 12/15/2022]
Abstract
Inhaled terbutaline is commercially available β2-agonist which consists of equivalent amount of R- and S-enantiomer. In this study, we aimed to investigate the effects of single enantiomers of terbutaline and its racemate in an ovalbumin (OVA)-induced mouse model of asthma via. seven days inhalation and the potential mechanisms involved. In a standard experimental asthma model, BALB/c mice were sensitized and challenged with OVA. R-terbutaline (R-ter), S-terbutaline (S-ter) or racemic terbutaline (rac-ter) was given via. nose-only inhalation for one week. Airway responsiveness to methacholine was measured by the plethysmography in conscious mice. Eosinophils counts in blood and bronchoalveolar (BAL) fluid were determined. The OVA-sIgE in plasma and inflammatory cytokines and mediators in BAL fluid or lung tissue were analyzed by ELISA, qRT-PCR or western blotting. Airway inflammation and remodeling were evaluated with hematoxylin and eosin (HE), periodic acid-Schiff (PAS), and Masson staining. Drug distribution and deposition after inhalation were determined by LC-MS/MS. Our data showed that R-ter efficiently ameliorated asthma responses, including airway hyperresponsiveness, eosinophils influx and IL-5 in BALF, plasma OVA-sIgE and significantly reduced pulmonary inflammation, peribronchial smooth muscle layer thickness, goblet cell hyperplasia, and deposition of collagen fibers, as well as downregulation of p38 MAPK phosphorylation and NF-κB expression. Racemic mixture exhibited diminished effects while S-ter enhanced airway responsiveness to methacholine and exerted pro-asthmatic effects.
Collapse
Affiliation(s)
- Huimin Beng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Hao Su
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Shanping Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yihe Kuai
- Institute of Biomedical & Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Junhua Hu
- Institute of Biomedical & Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Rui Zhang
- Institute of Biomedical & Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Fei Liu
- Institute of Biomedical & Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Wen Tan
- Institute of Biomedical & Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
2
|
Qi Y, Fang L, Stolz D, Tamm M, Roth M. Long acting β2-agonist's activation of cyclic AMP cannot halt ongoing mitogenic stimulation in airway smooth muscle cells. Pulm Pharmacol Ther 2019; 56:20-28. [PMID: 30876906 DOI: 10.1016/j.pupt.2019.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 10/27/2022]
Abstract
Airway smooth muscle cell (ASMC) hyperplasia causes airway wall remodelling, which is resisting to therapy. Long acting β2-agonists (LABA) relax airway muscles, but their effect on remodelling is unclear. This study compared the anti-proliferative effect of LABA in human primary ASMC, in situations where LABA were applied before, together, or after platelet derived growth factor (PDGF-BB). Cells obtained from controls (n = 5), and asthma patients (n = 5) were stimulated by PDGF-BB (10 ng/ml) before or after the application of formoterol or salmeterol. Proliferation was determined by direct cell counts over three days, cell cycle control proteins p21(Waf1/Cip1), p27(Kip1), signalling proteins Erk1/2 and p38 mitogen activated protein kinase (MAPK) were detected by immuno-blotting. PDGF-BB induced proliferation was significantly stronger in asthmatic ASMC versus controls. Proliferation was prevented by 30 min pre-incubation with LABA. When LABA were applied together or after PDGF-BB, their anti-proliferative effect was no longer significant. In untreated ASMC, LABA increased the expression of p21(Waf1/Cip1) and p27(Kip1) through cAMP, and this mechanism was abolished by the presence of PDGF-BB. The data show that the anti-proliferative effect of cAMP signalling cannot overcome the mitogenic signalling cascade once it was activated. Therefore, remodelling in asthma cannot be reduced by LABA.
Collapse
Affiliation(s)
- Ying Qi
- Pulmonary Cell Research and Pneumology, Department Biomedicine & Internal Medicine, University & University Hospital Basel, Petersgraben 4, CH-4031, Basel, Switzerland; Department of Medicine and Division of Pulmonary and Critical Care Medicine, Jishuitan Hospital, Fourth Medical College of Peking Medical University, No 31, Xinjiekou East Street, Xicheng District, Beijing, China
| | - Lei Fang
- Pulmonary Cell Research and Pneumology, Department Biomedicine & Internal Medicine, University & University Hospital Basel, Petersgraben 4, CH-4031, Basel, Switzerland
| | - Daiana Stolz
- Pulmonary Cell Research and Pneumology, Department Biomedicine & Internal Medicine, University & University Hospital Basel, Petersgraben 4, CH-4031, Basel, Switzerland
| | - Michael Tamm
- Pulmonary Cell Research and Pneumology, Department Biomedicine & Internal Medicine, University & University Hospital Basel, Petersgraben 4, CH-4031, Basel, Switzerland
| | - Michael Roth
- Pulmonary Cell Research and Pneumology, Department Biomedicine & Internal Medicine, University & University Hospital Basel, Petersgraben 4, CH-4031, Basel, Switzerland.
| |
Collapse
|
3
|
Mechanism by which nuclear factor-kappa beta (NF-kB) regulates ovine fetal pulmonary vascular smooth muscle cell proliferation. Mol Genet Metab Rep 2015; 4:11-8. [PMID: 26966681 PMCID: PMC4777924 DOI: 10.1016/j.ymgmr.2015.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Platelet activating factor (PAF) modulates ovine fetal pulmonary hemodynamic. PAF acts through its receptors (PAFR) in pulmonary vascular smooth muscle cells (PVSMC) to phosphorylate and induce nuclear translocation of NF-kB p65 leading to PVSMC proliferation. However, the interaction of NF-kB p65 and PAF in the nuclear domain to effect PVSMC cell growth is not clearly defined. We used siRNA-dependent translation initiation arrest to study a mechanism by which NF-kB p65 regulates PAF stimulation of PVSMC proliferation. Our hypotheses are: (a) PAF induces NF-kB p65 DNA binding and (b) NF-kB p65 siRNA attenuates PAF stimulation of PVSMC proliferation. For DNA binding, cells were fed 10 nM PAF with and without PAFR antagonists WEB 2170, CV 3988 or BN 52021 and incubated for 12 h. DNA binding was measured by specific ELISA. For NF-kB p65 siRNA effect, starved cells transfected with the siRNA were incubated for 24 h with and without 10 nM PAF. Cell proliferation was measured by DNA synthesis while expression of NF-kB p65 and PAFR protein was measured by Western blotting. In both studies, the effect of 10% FBS alone was used as the positive control. In general, PAF stimulated DNA binding which was inhibited by PAFR antagonists. siRNAs to NF-kB p65 and PAFR significantly attenuated cell proliferation compared to 10% FBS and PAF effect. Inclusion of PAF in siRNA-treated cells did not reverse inhibitory effect of NF-kB p65 siRNA on DNA synthesis. PAFR expression was inhibited in siRNA-treated cells. These data show that PAF-stimulation of PVSMC proliferation occurs via a PAFR-NF-kB p65 linked pathway.
Collapse
|
4
|
Poppinga WJ, Muñoz-Llancao P, González-Billault C, Schmidt M. A-kinase anchoring proteins: cAMP compartmentalization in neurodegenerative and obstructive pulmonary diseases. Br J Pharmacol 2014; 171:5603-23. [PMID: 25132049 PMCID: PMC4290705 DOI: 10.1111/bph.12882] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/14/2014] [Accepted: 08/10/2014] [Indexed: 12/25/2022] Open
Abstract
The universal second messenger cAMP is generated upon stimulation of Gs protein-coupled receptors, such as the β2 -adreneoceptor, and leads to the activation of PKA, the major cAMP effector protein. PKA oscillates between an on and off state and thereby regulates a plethora of distinct biological responses. The broad activation pattern of PKA and its contribution to several distinct cellular functions lead to the introduction of the concept of compartmentalization of cAMP. A-kinase anchoring proteins (AKAPs) are of central importance due to their unique ability to directly and/or indirectly interact with proteins that either determine the cellular content of cAMP, such as β2 -adrenoceptors, ACs and PDEs, or are regulated by cAMP such as the exchange protein directly activated by cAMP. We report on lessons learned from neurons indicating that maintenance of cAMP compartmentalization by AKAP5 is linked to neurotransmission, learning and memory. Disturbance of cAMP compartments seem to be linked to neurodegenerative disease including Alzheimer's disease. We translate this knowledge to compartmentalized cAMP signalling in the lung. Next to AKAP5, we focus here on AKAP12 and Ezrin (AKAP78). These topics will be highlighted in the context of the development of novel pharmacological interventions to tackle AKAP-dependent compartmentalization.
Collapse
Affiliation(s)
- W J Poppinga
- Department of Molecular Pharmacology, University of GroningenGroningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of GroningenGroningen, The Netherlands
| | - P Muñoz-Llancao
- Department of Molecular Pharmacology, University of GroningenGroningen, The Netherlands
- Laboratory of Cell and Neuronal Dynamics (Cenedyn), Department of Biology, Faculty of Sciences, Universidad de ChileSantiago, Chile
- Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, University of GroningenGroningen, The Netherlands
| | - C González-Billault
- Laboratory of Cell and Neuronal Dynamics (Cenedyn), Department of Biology, Faculty of Sciences, Universidad de ChileSantiago, Chile
| | - M Schmidt
- Department of Molecular Pharmacology, University of GroningenGroningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of GroningenGroningen, The Netherlands
| |
Collapse
|
5
|
Maiti R, Prasad CN, Jaida J, Mukkisa S, Koyagura N, Palani A. Racemic salbutamol and levosalbutamol in mild persistent asthma: A comparative study of efficacy and safety. Indian J Pharmacol 2012; 43:638-43. [PMID: 22144765 PMCID: PMC3229776 DOI: 10.4103/0253-7613.89817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 06/30/2011] [Accepted: 08/31/2011] [Indexed: 12/02/2022] Open
Abstract
Aim: The effect of monotherapy with racemic salbutamol and levosalbutamol on symptoms, quality of life, and pulmonary function has been assessed and compared in mild persistent asthma. Materials and Methods: A randomized, open, parallel clinical study was conducted on 60 patients of mild persistent asthma. After baseline assessments, salbutamol was prescribed to 30 patients and levosalbutamol to another 30 for 4 weeks. The efficacy variables were change in asthma symptom scoring, pulmonary function test, and Mini Asthma Quality of Life Questionnaire (MiniAQLQ) scoring. At follow-up, the patients were re-evaluated and analyzed by statistical tools. Results: Shortness of breath (P<0.001), chest tightness (P=0.033), wheeze (P=0.01), cough (P=0.024), and overall asthma symptom score (P<0.001) were significantly decreased in the levosalbutamol group in comparison to the salbutamol group. Results of MiniAQLQ revealed that improvement in symptoms (P=0.018), activity limitations (P=0.03), environmental stimuli (P=0.013)-related scoring and overall MiniAQLQ scoring (P<0.001) was statistically significant in the levosalbutamol group. Percentage reversibility of forced expiratory volume at one second (P=0.034), forced vital capacity (P=0.029), peak expiratory flow rate (P=0.0003) was found to be superior in the levosalbutamol group. Conclusion: Levosalbutamol was found to be superior compared to recemic salbutamol in mild persistent asthma.
Collapse
Affiliation(s)
- Rituparna Maiti
- Department of Pharmacology, Prathima Institute of Medical Sciences, Nagunur Road, Karimnagar, Andhra Pradesh, India
| | | | | | | | | | | |
Collapse
|
6
|
Bae R, Arteaga A, Raj JU, Ibe BO. Albuterol isomers modulate platelet-activating factor synthesis and receptor signaling in human bronchial smooth muscle cells. Int Arch Allergy Immunol 2011; 158:18-26. [PMID: 22212397 DOI: 10.1159/000330029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Accepted: 06/10/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Racemic albuterol is a 50:50 mixture of the (R)- and (S)-enantiomers of albuterol. Its clinical efficacy resides in the (R)-enantiomer (levalbuterol). Studies have shown that (S)-albuterol induces human bronchial smooth muscle cell (HBSMC) proliferation via a pathway linked to platelet-activating factor (PAF), but the underlying mechanism by which (S)-albuterol augments PAF effects is not clear. In this study, we compared effect of levalbuterol and (S)-albuterol on PAF receptor (PAFr)-mediated signaling and PAF metabolism by HBSMCs after incubation with the albuterol isomers. METHODS PAF binding and inositol phosphate (IP(3)) release were studied on adherent cultured cells. PAFr protein expression was measured by Western blotting, PAF synthesis and catabolism were measured in membrane and cytosolic proteins of cells incubated with albuterol isomers. RESULTS Compared to control conditions, (S)-albuterol increased PAF binding by 70% after 30 min of preincubation and by 150% after 24 h of preincubation. Levalbuterol had no effect on PAF binding under both conditions. (S)-albuterol also augmented PAF stimulation of IP(3) release, while levalbuterol and the racemic mixture had no effect. WEB 2170, a PAFr antagonist, inhibited the ability of (S)-albuterol to increase PAF binding or stimulate IP(3) release. (S)-albuterol stimulated PAFr protein expression. With PAF metabolism, (S)-albuterol treatment augmented PAF synthesis, but significantly inhibited PAF catabolism. CONCLUSIONS Our data suggest that one mechanism by which (S)-albuterol stimulates HBSMC proliferation involves upregulation of PAFr-mediated effects including increased PAF synthesis and decreased PAF catabolism.
Collapse
Affiliation(s)
- Rena Bae
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | | | | | | |
Collapse
|
7
|
Székely JI, Pataki A. Recent findings on the pathogenesis of bronchial asthma. ACTA ACUST UNITED AC 2010; 96:385-405. [PMID: 19942547 DOI: 10.1556/aphysiol.96.2009.4.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the first part of this series of papers (Székely and Pataki, 102) the pathogenesis of asthma was approached as a pathological antigen-antibody complex induced vago-vagal axon reflex. In the next part (103) the contribution of individual hormonal predisposition, the environmental and the most frequent allergizing factors have been reviewed. In the first section of this last (third) part of the review the genetic factors contributing to the asthma are surveyed. In this field a great progress has been made during the last decade, a lot of genes have been pinpointed which contribute to the heredity of the disease. In the second section of this last paper on the etiology of asthma an attempt is made to summarize the previously reviewed data and some new ones. Actually a new hypothesis is proposed that beyond the multitude of genetic, environmental and hormonal factors the underlying biochemical mechanism is simple: the disequilibrium of two functionally opposing second messenger systems in the airways: the Ca i ++ liberating PLC-PKC cascade and the Ca i ++ level reducing cAMP mediated one with preponderance of the former.
Collapse
Affiliation(s)
- J I Székely
- Human Physiology Department, Medical School, Semmelweis University, Budapest, Hungary
| | | |
Collapse
|
8
|
Tliba O, Panettieri RA. Noncontractile functions of airway smooth muscle cells in asthma. Annu Rev Physiol 2009; 71:509-35. [PMID: 18851708 DOI: 10.1146/annurev.physiol.010908.163227] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although pivotal in regulating bronchomotor tone in asthma, airway smooth muscle (ASM) also modulates airway inflammation and undergoes hypertrophy and hyperplasia, contributing to airway remodeling in asthma. ASM myocytes secrete or express a wide array of immunomodulatory mediators in response to extracellular stimuli, and in chronic severe asthma, increases in ASM mass may render the airway irreversibly obstructed. Although the mechanisms by which ASM secretes cytokines and chemokines are the same as those regulating immune cells, there exist unique ASM signaling pathways that may provide novel therapeutic targets. This review provides an overview of our current understanding of the proliferative as well as the synthetic properties of ASM.
Collapse
Affiliation(s)
- Omar Tliba
- Pulmonary, Allergy and Critical Care Division, Airways Biology Initiative, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
9
|
Ibe BO, Abdallah MF, Portugal AM, Raj JU. Platelet-activating factor stimulates ovine foetal pulmonary vascular smooth muscle cell proliferation: role of nuclear factor-kappa B and cyclin-dependent kinases. Cell Prolif 2008; 41:208-29. [PMID: 18336468 DOI: 10.1111/j.1365-2184.2008.00517.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE Platelet-activating factor (PAF) is implicated in pathogenesis of persistent pulmonary hypertension of the neonate (PPHN); PAF is a mitogen for lung fibroblasts. PAF's role in pulmonary vascular smooth muscle cell (PVSMC) proliferation and in hypoxia-induced pulmonary vein (PV) remodelling has not been established and mechanisms for PAF's cell-proliferative effects are not well understood. We investigated involvement of PAF and PAF receptors in PVSMC proliferation. MATERIALS AND METHODS Cells from pulmonary arteries (SMC-PA) and veins (SMC-PV) were serum starved for 72 h in 5% CO2 in air (normoxia). They were cultured for 24 h more in normoxia or 2% O(2) (hypoxia) in 0.1% or 10% foetal bovine serum with 5 microCi/well of [(3)H]-thymidine, with and without 10 nm PAF. Nuclear factor-kappa B (NF-kappaB), CDK2 and CDK4 protein expression, and their roles in cell proliferation control were studied. RESULTS PAF and hypoxia increased SMC-PA and SMC-PV proliferation. WEB2170 inhibited PAF-induced cell proliferation while lyso-PAF had no effect. SMC-PV proliferated more than SMC-PA and PAF plus hypoxia augmented NF-kappaB protein expression. NF-kappaB inhibitory peptide attenuated PAF-induced cell proliferation by 50% and PAF increased CDK2 and CDK4 protein expression. The data show that hypoxia and PAF up-regulate PVSMC proliferation via PAF receptor-specific pathway involving NF-kappaB, CDK2 and CDK4 activations. CONCLUSION They suggest that in vivo, in foetal lung low-oxygen environment, where PAF level is high, proliferation of PVSMC will occur readily to modulate PV development and that failure of down-regulation of PAF effects postnatally may result in PPHN.
Collapse
Affiliation(s)
- B O Ibe
- Division of Neonatology, Harbor-UCLA Medical Center, Los Angeles Biomedical Institute, Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA.
| | | | | | | |
Collapse
|
10
|
Yamreudeewong W, Teixeira MG, Mayer GE. Stability of Levalbuterol in a Mixture of Levalbuterol and Ipratropium Nebulizer Solution. Hosp Pharm 2008. [DOI: 10.1310/hpj4304-303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Weeranuj Yamreudeewong
- University of Wyoming School of Pharmacy, and Pharmacy Service, Cheyenne VAMC, Cheyenne, WY
| | | | | |
Collapse
|
11
|
Ibe BO, Abdallah MF, Raj JU. Mechanisms by which S-albuterol induces human bronchial smooth muscle cell proliferation. Int Arch Allergy Immunol 2008; 146:321-33. [PMID: 18362475 DOI: 10.1159/000121466] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 11/20/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Racemic albuterol is a 50:50 mixture of the R-isomer, levalbuterol, and the S-isomer, S-albuterol. S-Albuterol increases airway hyperresponsiveness to spasmogens, exacerbates asthmatic conditions and stimulates cell growth, whereas levalbuterol attenuates cell growth in culture. The mechanisms of S-albuterol-induced cell proliferation are not well understood. We studied the role of albuterol isomers and intracellular cell cycle regulators on proliferation of human bronchial smooth muscle cells. METHODS Serum-starved cells (72 h) were fed test agents for 24 h and cell proliferation was measured. The expression of nuclear factor-kappaB inhibitory protein IkappaBalpha, nuclear factor-kappaB, cyclin-dependent kinases 2 and 4, interleukin (IL)-6, and retinoblastoma and platelet-activating factor (PAF) receptor protein were measured by Western blotting. RESULTS S-Albuterol, PAF and platelet-derived growth factor stimulated cell proliferation, but levalbuterol and the racemic mixture inhibited cell proliferation compared with the effect of 5% fetal bovine serum alone. The proliferative effect of platelet-derived growth factor on S-albuterol was not additive, suggesting that the 2 mediators act by different mechanisms. S-Albuterol induced greater expression of all the measured proteins than either levalbuterol, the racemic mixture or 5% fetal bovine serum. S-Albuterol stimulated IL-6 secretion and abolished the ability of levalbuterol to inhibit IL-6 secretion. CONCLUSION Our data show that S-albuterol stimulates cell proliferation by activating expression and phosphorylation of several intracellular mitogenic proteins and may exacerbate asthma by stimulating the release of IL-6. Induction of PAF receptor protein expression by S-albuterol strongly suggests that S-albuterol may exert its adverse effects by binding to a G protein-coupled receptor such as the PAF receptor.
Collapse
Affiliation(s)
- Basil O Ibe
- Department of Pediatrics, Los Angeles Biomedical Institute, Harbor-UCLA Medical Center, Torrance, CA 90502, USA.
| | | | | |
Collapse
|
12
|
Ferrada MA, Gordon EL, Jen KY, He HZ, Lu X, Barone LM, Amirifeli S, Perkins DL, Finn PW. (R)-albuterol decreases immune responses: role of activated T cells. Respir Res 2008; 9:3. [PMID: 18194569 PMCID: PMC2253534 DOI: 10.1186/1465-9921-9-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2007] [Accepted: 01/14/2008] [Indexed: 12/25/2022] Open
Abstract
Racemic albuterol is an equimolar mixture of two isomers, (R) and (S). Whether (R) and (S) isomers and the combination of both exert different effects in immune activation is not well defined. We analyzed the effects of (R+S)-albuterol, (R)-albuterol and (S)-albuterol in a murine model of allergic pulmonary inflammation and in activated T cells. Mice (C57BL/6) sensitized and aerosol challenged with the allergen ovalbumin (OVA) or phosphate buffered saline (PBS) were treated with (R)-albuterol, (S)-albuterol or (R+S)-albuterol. Following administration of (R)-albuterol, allergen induced bronchoalveolar lavage eosinophils and IgE showed a decrease, albeit not significantly by ANOVA. As T cells are important in allergic inflammation, we asked whether (R+S), (R) or (S)-albuterol might differ in effects on T cells and on the activity of the inflammatory transcription factor NF-κB. In activated T cells, (R)-albuterol administration decreased levels of inflammatory cytokines and NF-κB activity. These studies suggest that (R)-albuterol decreases cytokine secretion and NF-κB activity in T cells.
Collapse
Affiliation(s)
- Marcela A Ferrada
- Pulmonary and Critical Care Division, University of California San Diego, La Jolla, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhou W, Ibe BO, Raj JU. Platelet-activating factor induces ovine fetal pulmonary venous smooth muscle cell proliferation: role of epidermal growth factor receptor transactivation. Am J Physiol Heart Circ Physiol 2007; 292:H2773-81. [PMID: 17322418 DOI: 10.1152/ajpheart.01018.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously reported that platelet-activating factor (PAF) is present in very high levels in the ovine fetal lung and circulation and that PAF serves as an important physiological vasoconstrictor of the pulmonary circulation in utero. However, it is not known whether PAF stimulates pulmonary vascular smooth muscle cell (SMC) proliferation. In this study, we used ovine fetal pulmonary venous SMCs as our model system to study the effects and mechanisms of action of PAF on SMC proliferation. We found that PAF induced SMC proliferation in a dose-dependent manner. PAF also stimulated activation of both ERK and p38 but not c-Jun NH(2) terminal kinase (JNK) mitogen-activated protein (MAP) kinase pathways. PAF (10 nM) induced phosphorylation of epidermal growth factor receptor (EGFR). Specific inhibition of EGFR by AG-1478 and by the expression of a dominant-negative EGFR mutant in SMCs attenuated PAF-stimulated cell proliferation. Inhibition of heparin-binding EGF-like growth factor (HB-EGF) release by CRM-197 and inhibition of matrix metalloproteinases (MMP) by GM-6001 abolished PAF-induced MAP kinase activation and cell proliferation. Increased alkaline phosphatase (AP) activity after PAF treatment in AP-HB-EGF fusion construct-transfected SMCs indicated that PAF induced the release of HB-EGF within 1 min. Gelatin zymography data showed that PAF stimulated MMP-2 activity and MMP-9 activity within 1 min. These results suggest that PAF promotes pulmonary vascular SMC proliferation via transactivation of EGFR through MMP activation and HB-EGF, resulting in p38 and ERK activation and that EGFR transactivation is essential for the mitogenic effect of PAF in pulmonary venous SMC.
Collapse
MESH Headings
- Animals
- Bacterial Proteins/pharmacology
- Cell Proliferation/drug effects
- Cells, Cultured
- Dipeptides/pharmacology
- Dose-Response Relationship, Drug
- Enzyme Activation
- Enzyme Inhibitors/pharmacology
- Epidermal Growth Factor/genetics
- Epidermal Growth Factor/metabolism
- ErbB Receptors/drug effects
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Heparin-binding EGF-like Growth Factor
- Intercellular Signaling Peptides and Proteins
- Matrix Metalloproteinase 2/metabolism
- Matrix Metalloproteinase 9/metabolism
- Matrix Metalloproteinase Inhibitors
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/embryology
- Muscle, Smooth, Vascular/metabolism
- Mutation
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Phosphorylation
- Platelet Activating Factor/metabolism
- Platelet Activating Factor/pharmacology
- Pulmonary Veins/cytology
- Pulmonary Veins/embryology
- Pulmonary Veins/metabolism
- Quinazolines
- Sheep
- Signal Transduction/drug effects
- Time Factors
- Transfection
- Tyrphostins/pharmacology
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Weilin Zhou
- Division of Neonatology, Harbor-University of California, Los Angeles (UCLA) Medical Center, Los Angeles Biomedical Institute, 1124 West Carson St., Torrance, CA 90502, USA.
| | | | | |
Collapse
|
14
|
Ameredes BT, Calhoun WJ. (R)-albuterol for asthma: pro [a.k.a. (S)-albuterol for asthma: con]. Am J Respir Crit Care Med 2006; 174:965-9; discussion 972-4. [PMID: 17060667 DOI: 10.1164/rccm.2606001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Is there scientific evidence to support the replacement of the beta-agonist racemic albuterol with levalbuterol--that is, (R)-albuterol? The argument presented further refines the question as "Do we wish to continue to treat asthma with a mixture of albuterol, of which half is an agent with no known benefit--that is, (S)-albuterol--and which may exacerbate the disease?"
Collapse
|
15
|
|