1
|
Moreno VM, Schweikert LE. Visual acuity of the summer flounder (Paralichthys dentatus) captures spatial information relevant to dynamic camouflage at close range. Anat Rec (Hoboken) 2024. [PMID: 39096041 DOI: 10.1002/ar.25543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024]
Abstract
Dynamic camouflage is the capacity to rapidly change skin color and pattern, often for the purpose of background-matching camouflage. Summer flounder (Paralichthys dentatus) are demersal fish with an exceptional capacity for dynamic camouflage, but with eyes that face away from the substrate, it is unknown if this behavior is mediated by vision. Past studies have shown that summer flounder skin can match the pattern (i.e., spatial detail) of substrate with a high degree of precision, and for that to be achieved using sight, one testable assumption is that the resolution of vision must match the degree of detail produced in color-change performance. To test this, approaches in morphology and behavior were used to estimate visual acuity, which is the capacity of the visual system to resolve static spatial detail. Using image processing techniques, we then compared the degree of spatial detail from a relevant substrate with what may be detectable by summer flounder spatial vision. The morphological and behavioral estimates of visual acuity were calculated as 3.62 cycles per degree (CPD) ± 0.8 (s.d.) and 4.06 CPD ± 0.4 (s.d.), respectively. These estimates fall within a range of acuities known among other flatfishes and appear adequate for detecting the spatial information needed for background-matching camouflage, though only at close distances. These data provide new knowledge about summer flounder visual acuity and suggest the capacity of flounder vision to support dynamic camouflage of the skin.
Collapse
Affiliation(s)
- Vanessa M Moreno
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Lorian E Schweikert
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| |
Collapse
|
2
|
Cheney KL, Hudson J, de Busserolles F, Luehrmann M, Shaughnessy A, van den Berg C, Green NF, Marshall NJ, Cortesi F. Seeing Picasso: an investigation into the visual system of the triggerfish Rhinecanthus aculeatus. J Exp Biol 2022; 225:jeb243907. [PMID: 35244167 PMCID: PMC9080752 DOI: 10.1242/jeb.243907] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/25/2022] [Indexed: 11/20/2022]
Abstract
Vision is used by animals to find food and mates, avoid predators, defend resources and navigate through complex habitats. Behavioural experiments are essential for understanding animals' perception but are often challenging and time-consuming; therefore, using species that can be trained easily for complex tasks is advantageous. Picasso triggerfish, Rhinecanthus aculeatus, have been used in many behavioural studies investigating vision and navigation. However, little is known about the molecular and anatomical basis of their visual system. We addressed this knowledge gap here and behaviourally tested achromatic and chromatic acuity. In terms of visual opsins, R. aculeatus possessed one rod opsin gene (RH1) and at least nine cone opsins: one violet-sensitive SWS2B gene, seven duplicates of the blue-green-sensitive RH2 gene (RH2A, RH2B, RH2C1-5) and one red-sensitive LWS gene. However, only five cone opsins were expressed: SWS2B expression was consistent, while RH2A, RH2C-1 and RH2C-2 expression varied depending on whether fish were sampled from the field or aquaria. Levels of LWS expression were very low. Using fluorescence in situ hybridisation, we found SWS2B was expressed exclusively in single cones, whereas RH2A and RH2Cs were expressed in opposite double cone members. Anatomical resolution estimated from ganglion cell densities was 6.8 cycles per degree (cpd), which was significantly higher than values obtained from behavioural testing for black-and-white achromatic stimuli (3.9 cpd) and chromatic stimuli (1.7-1.8 cpd). These measures were twice as high as previously reported. This detailed information on their visual system will help inform future studies with this emerging focal species.
Collapse
Affiliation(s)
- Karen L. Cheney
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jemma Hudson
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Fanny de Busserolles
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Martin Luehrmann
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Abigail Shaughnessy
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Cedric van den Berg
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Naomi F. Green
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - N. Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
3
|
Tashiro JH, Ventura DF, Hauzman E. Morphological Plasticity of the Retina of Viperidae Snakes Is Associated With Ontogenetic Changes in Ecology and Behavior. Front Neuroanat 2022; 15:770804. [PMID: 35153683 PMCID: PMC8825375 DOI: 10.3389/fnana.2021.770804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Snakes of the Viperidae family have retinas adapted to low light conditions, with high packaging of rod-photoreceptors containing the rhodopsin photopigment (RH1), and three types of cone-photoreceptors, large single and double cones with long-wavelength sensitive opsins (LWS), and small single cones with short-wavelength sensitive opsins (SWS1). In this study, we compared the density and distribution of photoreceptors and ganglion cell layer (GCL) cells in whole-mounted retinas of two viperid snakes, the lancehead Bothrops jararaca and the rattlesnake Crotalus durissus, and we estimated the upper limits of spatial resolving power based on anatomical data. The ground-dwelling C. durissus inhabits savannah-like habitats and actively searches for places to hide before using the sit-and-wait hunting strategy to ambush rodents. B. jararaca inhabits forested areas and has ontogenetic changes in ecology and behavior. Adults are terrestrial and use similar hunting strategies to those used by rattlesnakes to prey on rodents. Juveniles are semi-arboreal and use the sit-and-wait strategy and caudal luring to attract ectothermic prey. Our analyses showed that neuronal densities were similar for the two species, but their patterns of distribution were different between and within species. In adults and juveniles of C. durissus, cones were distributed in poorly defined visual streaks and rods were concentrated in the dorsal retina, indicating higher sensitivity in the lower visual field. In adults of B. jararaca, both cones and rods were distributed in poorly defined visual streaks, while in juveniles, rods were concentrated in the dorsal retina and cones in the ventral retina, enhancing sensitivity in the lower visual field and visual acuity in the upper field. The GCL cells had peak densities in the temporal retina of C. durissus and adults of B. jararaca, indicating higher acuity in the frontal field. In juveniles of B. jararaca, the peak density of GCL cells in the ventral retina indicates better acuity in the upper field. The estimated visual acuity varied from 2.3 to 2.8 cycles per degree. Our results showed interspecific differences and suggest ontogenetic plasticity of the retinal architecture associated with changes in the niche occupied by viperid snakes, and highlight the importance of the retinal topography for visual ecology and behavior of snakes.
Collapse
|
4
|
Caves EM, de Busserolles F, Kelley LA. Sex differences in behavioural and anatomical estimates of visual acuity in the green swordtail Xiphophorus helleri. J Exp Biol 2021; 224:273770. [PMID: 34787303 PMCID: PMC8729911 DOI: 10.1242/jeb.243420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/05/2021] [Indexed: 11/20/2022]
Abstract
Among fishes in the family Poeciliidae, signals such as colour patterns, ornaments and courtship displays play important roles in mate choice and male–male competition. Despite this, visual capabilities in poeciliids are understudied, in particular, visual acuity, the ability to resolve detail. We used three methods to quantify visual acuity in male and female green swordtails (Xiphophorus helleri), a species in which body size and the length of the male's extended caudal fin (‘sword’) serve as assessment signals during mate choice and agonistic encounters. Topographic distribution of retinal ganglion cells (RGCs) was similar in all individuals and was characterized by areas of high cell densities located centro-temporally and nasally, as well as a weak horizontal streak. Based on the peak density of RGCs in the centro-temporal area, anatomical acuity was estimated to be approximately 3 cycles per degree (cpd) in both sexes. However, a behavioural optomotor assay found significantly lower mean acuity in males (0.8 cpd) than females (3.0 cpd), which was not explained by differences in eye size between males and females. An additional behavioural assay, in which we trained individuals to discriminate striped gratings from grey stimuli of the same mean luminance, also showed lower acuity in males (1–2 cpd) than females (2–3 cpd). Thus, although retinal anatomy predicts identical acuity in males and females, two behavioural assays found higher acuity in females than males, a sexual dimorphism that is rare outside of invertebrates. Overall, our results have implications for understanding how poeciliids perceive visual signals during mate choice and agonistic encounters. Summary: Anatomical and behavioural quantification of visual acuity (spatial resolving power) in green swordtails indicates that acuity was anatomically identical in both sexes, but behaviourally higher in females, with implications for signalling.
Collapse
Affiliation(s)
- Eleanor M Caves
- University of Exeter, Centre for Ecology and Conservation, Penryn, UK.,University of California Santa Barbara, Department of Ecology, Evolution, and Marine Biology, Santa Barbara, CA, USA
| | | | - Laura A Kelley
- University of Exeter, Centre for Ecology and Conservation, Penryn, UK
| |
Collapse
|
5
|
Pinzon-Rodriguez A, Muheim R. Cryptochrome expression in avian UV cones: revisiting the role of CRY1 as magnetoreceptor. Sci Rep 2021; 11:12683. [PMID: 34135416 PMCID: PMC8209128 DOI: 10.1038/s41598-021-92056-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/03/2021] [Indexed: 02/05/2023] Open
Abstract
Cryptochromes (CRY) have been proposed as putative magnetoreceptors in vertebrates. Localisation of CRY1 in the UV cones in the retinas of birds suggested that it could be the candidate magnetoreceptor. However, recent findings argue against this possibility. CRY1 is a type II cryptochrome, a subtype of cryptochromes that may not be inherently photosensitive, and it exhibits a clear circadian expression in the retinas of birds. Here, we reassessed the localisation and distribution of CRY1 in the retina of the zebra finch. Zebra finches have a light-dependent magnetic compass based on a radical-pair mechanism, similar to migratory birds. We found that CRY1 colocalised with the UV/V opsin (SWS1) in the outer segments of UV cones, but restricted to the tip of the segments. CRY1 was found in all UV cones across the entire retina, with the highest densities near the fovea. Pre-exposure of birds to different wavelengths of light did not result in any difference in CRY1 detection, suggesting that CRY1 did not undergo any detectable functional changes as result of light activation. Considering that CRY1 is likely not involved in magnetoreception, our findings open the possibility for an involvement in different, yet undetermined functions in the avian UV/V cones.
Collapse
Affiliation(s)
- Atticus Pinzon-Rodriguez
- grid.4514.40000 0001 0930 2361Department of Biology, Lund University, Biology Building B, 223 62 Lund, Sweden
| | - Rachel Muheim
- grid.4514.40000 0001 0930 2361Department of Biology, Lund University, Biology Building B, 223 62 Lund, Sweden
| |
Collapse
|
6
|
Collin SP. A web‐based archive for topographic maps of retinal cell distribution in vertebrates. Clin Exp Optom 2021; 91:85-95. [DOI: 10.1111/j.1444-0938.2007.00228.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Shaun P Collin
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
E‐mail:
| |
Collapse
|
7
|
Foveal shape, ultrastructure and photoreceptor composition in yellow-legged gull, Larus michahellis (Naumann, 1840). ZOOMORPHOLOGY 2021. [DOI: 10.1007/s00435-020-00512-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
de Busserolles F, Cortesi F, Fogg L, Stieb SM, Luehrmann M, Marshall NJ. The visual ecology of Holocentridae, a nocturnal coral reef fish family with a deep-sea-like multibank retina. J Exp Biol 2021; 224:jeb233098. [PMID: 33234682 DOI: 10.1242/jeb.233098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022]
Abstract
The visual systems of teleost fishes usually match their habitats and lifestyles. Since coral reefs are bright and colourful environments, the visual systems of their diurnal inhabitants have been more extensively studied than those of nocturnal species. In order to fill this knowledge gap, we conducted a detailed investigation of the visual system of the nocturnal reef fish family Holocentridae. Results showed that the visual system of holocentrids is well adapted to their nocturnal lifestyle with a rod-dominated retina. Surprisingly, rods in all species were arranged into 6-17 well-defined banks, a feature most commonly found in deep-sea fishes, that may increase the light sensitivity of the eye and/or allow colour discrimination in dim light. Holocentrids also have the potential for dichromatic colour vision during the day with the presence of at least two spectrally different cone types: single cones expressing the blue-sensitive SWS2A gene, and double cones expressing one or two green-sensitive RH2 genes. Some differences were observed between the two subfamilies, with Holocentrinae (squirrelfish) having a slightly more developed photopic visual system than Myripristinae (soldierfish). Moreover, retinal topography of both ganglion cells and cone photoreceptors showed specific patterns for each cell type, likely highlighting different visual demands at different times of the day, such as feeding. Overall, their well-developed scotopic visual systems and the ease of catching and maintaining holocentrids in aquaria, make them ideal models to investigate teleost dim-light vision and more particularly shed light on the function of the multibank retina and its potential for dim-light colour vision.
Collapse
Affiliation(s)
- Fanny de Busserolles
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lily Fogg
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sara M Stieb
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
- Center for Ecology, Evolution and Biogeochemistry, Eawag Federal Institute of Aquatic Science and Technology, Seestrasse 79, 6074 Kastanienbaum, Switzerland; and Institute for Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
| | - Martin Luehrmann
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - N Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
9
|
Pierotti MER, Wandycz A, Wandycz P, Rebelein A, Corredor VH, Tashiro JH, Castillo A, Wcislo WT, McMillan WO, Loew ER. Aggressive mimicry in a coral reef fish: The prey's view. Ecol Evol 2020; 10:12990-13010. [PMID: 33304511 PMCID: PMC7713928 DOI: 10.1002/ece3.6883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/24/2020] [Accepted: 09/11/2020] [Indexed: 01/08/2023] Open
Abstract
Since all forms of mimicry are based on perceptual deception, the sensory ecology of the intended receiver is of paramount importance to test the necessary precondition for mimicry to occur, that is, model-mimic misidentification, and to gain insight in the origin and evolutionary trajectory of the signals. Here we test the potential for aggressive mimicry by a group of coral reef fishes, the color polymorphic Hypoplectrus hamlets, from the point of view of their most common prey, small epibenthic gobies and mysid shrimp. We build visual models based on the visual pigments and spatial resolution of the prey, the underwater light spectrum and color reflectances of putative models and their hamlet mimics. Our results are consistent with one mimic-model relationship between the butter hamlet H. unicolor and its model the butterflyfish Chaetodon capistratus but do not support a second proposed mimic-model pair between the black hamlet H. nigricans and the dusky damselfish Stegastes adustus. We discuss our results in the context of color morphs divergence in the Hypoplectrus species radiation and suggest that aggressive mimicry in H. unicolor might have originated in the context of protective (Batesian) mimicry by the hamlet from its fish predators rather than aggressive mimicry driven by its prey.
Collapse
Affiliation(s)
| | - Anna Wandycz
- Department of Anatomy, Institute of ZoologyJagiellonian UniversityKrakowPoland
| | - Pawel Wandycz
- Faculty of Geology, Geophysics and Environment ProtectionAGH University of Science and TechnologyKrakowPoland
| | | | - Vitor H. Corredor
- Department of Experimental Psychology, Psychology InstituteUniversity of São PauloSão PauloBrazil
| | - Juliana H. Tashiro
- Department of Experimental Psychology, Psychology InstituteUniversity of São PauloSão PauloBrazil
| | | | | | | | - Ellis R. Loew
- Department of Biomedical SciencesCornell UniversityIthacaNYUSA
| |
Collapse
|
10
|
Lisney TJ, Potier S, Isard PF, Mentek M, Mitkus M, Collin SP. Retinal topography in two species of flamingo (Phoenicopteriformes: Phoenicopteridae). J Comp Neurol 2020; 528:2848-2863. [PMID: 32154931 DOI: 10.1002/cne.24902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 11/11/2022]
Abstract
In this study, we assessed eye morphology and retinal topography in two flamingo species, the Caribbean flamingo (Phoenicopterus ruber) and the Chilean flamingo (P. chilensis). Eye morphology is similar in both species and cornea size relative to eye size (C:A ratio) is intermediate between those previously reported for diurnal and nocturnal birds. Using stereology and retinal whole mounts, we estimate that the total number of Nissl-stained neurons in the retinal ganglion cell (RGC) layer in the Caribbean and Chilean flamingo is ~1.70 and 1.38 million, respectively. Both species have a well-defined visual streak with a peak neuron density of between 13,000 and 16,000 cells mm-2 located in a small central area. Neurons in the high-density regions are smaller and more homogeneous compared to those in medium- and low-density regions. Peak anatomical spatial resolving power in both species is approximately 10-11 cycles/deg. En-face images of the fundus in live Caribbean flamingos acquired using spectral domain optical coherence tomography (SD-OCT) revealed a thin, dark band running nasotemporally just dorsal to the pecten, which aligned with the visual streak in the retinal topography maps. Cross-sectional images (B-scans) obtained with SD-OCT showed that this dark band corresponds with an area of retinal thickening compared to adjacent areas. Neither the retinal whole mounts, nor the SD-OCT imaging revealed any evidence of a central fovea in either species. Overall, we suggest that eye morphology and retinal topography in flamingos reflects their cathemeral activity pattern and the physical nature of the habitats in which they live.
Collapse
Affiliation(s)
- Thomas J Lisney
- Oceans Graduate School, The University of Western Australia, Perth, Western Australia, Australia.,The Oceans Institute, The University of Western Australia, Perth, Western Australia, Australia.,CEFE UMR 5175, CNRS-Université de Montpellier-Université Paul-Valéry Montpellier-EPHE, Montpellier, France
| | - Simon Potier
- Department of Biology, Lund University, Lund, Sweden
| | - Pierre-François Isard
- Unité d'Ophtalmologie, Centre Hospitalier Vétérinaire, Saint-Martin-Bellevue, France
| | - Marielle Mentek
- Unité d'Ophtalmologie, Centre Hospitalier Vétérinaire, Saint-Martin-Bellevue, France
| | - Mindaugas Mitkus
- Department of Biology, Lund University, Lund, Sweden.,Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Shaun P Collin
- Oceans Graduate School, The University of Western Australia, Perth, Western Australia, Australia.,The Oceans Institute, The University of Western Australia, Perth, Western Australia, Australia.,School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
11
|
Cechetto C, de Busserolles F, Jakobsen L, Warrant EJ. Retinal Ganglion Cell Topography and Spatial Resolving Power in Echolocating and Non-Echolocating Bats. BRAIN, BEHAVIOR AND EVOLUTION 2020; 95:58-68. [PMID: 32818939 DOI: 10.1159/000508863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 05/17/2020] [Indexed: 11/19/2022]
Abstract
Bats are nocturnal mammals known for their ability to echolocate, yet all bats can see, and most bats of the family Pteropodidae (fruit bats) do not echolocate - instead they rely mainly on vision and olfaction to forage. We investigated whether echolocating bats, given their limited reliance on vision, have poorer spatial resolving power (SRP) than pteropodids and whether tongue click echolocating fruit bats differ from non-echolocating fruit bats in terms of visual performance. We compared the number and distribution of retinal ganglion cells (RGCs) as well as the maximum anatomical SRP derived from these distributions in 4 species of bats: Myotis daubentonii, a laryngeal echolocating bat from the family Vespertilionidae, Rousettus aegyptiacus, a tongue clicking echolocating bat from the family Pteropodidae, and Pteropus alecto and P. poliocephalus, 2 non-echolocating bats (also from the Pteropodidae). We find that all 3 pteropodids have a similar number (≈200,000 cells) and distribution of RGCs and a similar maximum SRP (≈4 cycles/degree). M. daubentonii has fewer (∼6,000 cells) and sparser RGCs than the pteropodids and thus a significantly lower SRP (0.6 cycles/degree). M. daubentonii also differs in terms of the distribution of RGCs by having a unique dorsal area of specialization in the retina. Our findings are consistent with the existing literature and suggest that M. daubentonii likely only uses vision for orientation, while for pteropodids vision is also important for foraging.
Collapse
Affiliation(s)
- Clément Cechetto
- Sound, Communication and Behaviour Group, Department of Biology, University of Southern Denmark, Odense, Denmark,
| | - Fanny de Busserolles
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Lasse Jakobsen
- Sound, Communication and Behaviour Group, Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Eric J Warrant
- Vision Group, Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
12
|
Peel LR, Collin SP, Hart NS. Retinal topography and spectral sensitivity of the Port Jackson shark (
Heterodontus portusjacksoni
). J Comp Neurol 2020; 528:2831-2847. [DOI: 10.1002/cne.24911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Lauren R. Peel
- School of Biological Sciences University of Western Australia Crawley Western Australia Australia
- The Oceans Institute University of Western Australia Crawley Western Australia Australia
- The Oceans Graduate School University of Western Australia Crawley Western Australia Australia
| | - Shaun P. Collin
- School of Biological Sciences University of Western Australia Crawley Western Australia Australia
- The Oceans Institute University of Western Australia Crawley Western Australia Australia
- The Oceans Graduate School University of Western Australia Crawley Western Australia Australia
- School of Life Sciences, La Trobe University Bundoora Victoria Australia
| | - Nathan S. Hart
- School of Biological Sciences University of Western Australia Crawley Western Australia Australia
- Department of Biological Sciences Macquarie University Sydney New South Wales Australia
| |
Collapse
|
13
|
Iwaniuk AN, Wylie DR. Sensory systems in birds: What we have learned from studying sensory specialists. J Comp Neurol 2020; 528:2902-2918. [PMID: 32133638 DOI: 10.1002/cne.24896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/09/2020] [Accepted: 02/17/2020] [Indexed: 12/27/2022]
Abstract
"Diversity" is an apt descriptor of the research career of Jack Pettigrew as it ranged from the study of trees, to clinical conditions, to sensory neuroscience. Within sensory neuroscience, he was fascinated by the evolution of sensory systems across species. Here, we review some of his work on avian sensory specialists and research that he inspired in others. We begin with an overview of the importance of the Wulst in stereopsis and the need for further study of the Wulst in relation to binocularity across avian species. Next, we summarize recent anatomical, behavioral, and physiological studies on optic flow specializations in hummingbirds. Beyond vision, we discuss the first evidence of a tactile "fovea" in birds and how this led to detailed studies of tactile specializations in waterfowl and sensorimotor systems in parrots. We then describe preliminary studies by Pettigrew of two endemic Australian species, the plains-wanderer (Pedionomus torquatus) and letter-winged kite (Elanus scriptus), that suggest the evolution of some unique auditory and visual specializations in relation to their unique behavior and ecology. Finally, we conclude by emphasizing the importance of a comparative and integrative approach to understanding avian sensory systems and provide an example of one system that has yet to be properly examined: tactile facial bristles in birds. Through reviewing this research and offering future avenues for discovery, we hope that others also embrace the comparative approach to understanding sensory system evolution in birds and other vertebrates.
Collapse
Affiliation(s)
- Andrew N Iwaniuk
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Douglas R Wylie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
14
|
Nagloo N, Coimbra JP, Hoops D, Hart NS, Collin SP, Hemmi JM. Retinal topography and microhabitat diversity in a group of dragon lizards. J Comp Neurol 2020; 528:542-558. [PMID: 31576574 DOI: 10.1002/cne.24780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/28/2019] [Accepted: 09/13/2019] [Indexed: 12/25/2022]
Abstract
The well-studied phylogeny and ecology of dragon lizards and their range of visually mediated behaviors provide an opportunity to examine the factors that shape retinal organization. Dragon lizards consist of three evolutionarily stable groups based on their shelter type, including burrows, shrubs, and rocks. This allows us to test whether microhabitat changes are reflected in their retinal organization. We examined the retinae of three burrowing species (Ctenophorus pictus, C. gibba, and C. nuchalis), and three species that shelter in rock crevices (C. ornatus, C. decresii, and C. vadnappa). We used design-based stereology to sample both the photoreceptor array and neurons within the retinal ganglion cell layer to estimate areas specialized for acute vision. All species had two retinal specializations mediating enhanced spatial acuity: a fovea in the retinal center and a visual streak across the retinal equator. Furthermore, all species featured a dorsoventrally asymmetric photoreceptor distribution with higher photoreceptor densities in the ventral retina. This dorsoventral asymmetry may provide greater spatial summation of visual information in the dorsal visual field. Burrow-dwelling species had significantly larger eyes, higher total numbers of retinal cells, higher photoreceptor densities in the ventral retina, and higher spatial resolving power than rock-dwelling species. C. pictus, a secondary burrow-dwelling species, was the only species that changed burrow usage over evolutionary time, and its retinal organization revealed features more similar to rock-dwelling species than other burrow-dwelling species. This suggests that phylogeny may play a substantial role in shaping retinal organization in Ctenophorus species compared to microhabitat occupation.
Collapse
Affiliation(s)
- Nicolas Nagloo
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,The Oceans Institute and Oceans Graduate School, The University of Western Australia, Crawley, Western Australia, Australia.,Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
| | - João Paulo Coimbra
- School of Anatomical Sciences, The University of the Witwatersrand, Johannesburg, South Africa
| | - Daniel Hoops
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Nathan S Hart
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,The Oceans Institute and Oceans Graduate School, The University of Western Australia, Crawley, Western Australia, Australia.,Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Shaun P Collin
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,The Oceans Institute and Oceans Graduate School, The University of Western Australia, Crawley, Western Australia, Australia.,School of Life Science, La Trobe University, Bundoora, Victoria, Australia
| | - Jan M Hemmi
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,The Oceans Institute and Oceans Graduate School, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
15
|
Luehrmann M, Cortesi F, Cheney KL, Busserolles F, Marshall NJ. Microhabitat partitioning correlates with opsin gene expression in coral reef cardinalfishes (Apogonidae). Funct Ecol 2020. [DOI: 10.1111/1365-2435.13529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Martin Luehrmann
- Sensory Neurobiology Group Queensland Brain Institute The University of Queensland Brisbane Qld Australia
| | - Fabio Cortesi
- Sensory Neurobiology Group Queensland Brain Institute The University of Queensland Brisbane Qld Australia
| | - Karen L. Cheney
- Sensory Neurobiology Group Queensland Brain Institute The University of Queensland Brisbane Qld Australia
- School of Biological Sciences The University of Queensland Brisbane Qld Australia
| | - Fanny Busserolles
- Sensory Neurobiology Group Queensland Brain Institute The University of Queensland Brisbane Qld Australia
| | - N. Justin Marshall
- Sensory Neurobiology Group Queensland Brain Institute The University of Queensland Brisbane Qld Australia
| |
Collapse
|
16
|
Coimbra JP, Alagaili AN, Bennett NC, Mohammed OB, Manger PR. Unusual topographic specializations of retinal ganglion cell density and spatial resolution in a cliff-dwelling artiodactyl, the Nubian ibex (Capra nubiana). J Comp Neurol 2019; 527:2813-2825. [PMID: 31045240 DOI: 10.1002/cne.24709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 11/12/2022]
Abstract
The Nubian ibex (Capra nubiana) occurs in information-rich visual habitats including the edges of cliffs and escarpments. In addition to needing enhanced spatial resolution to find food and detect predators, enhanced visual sampling of the lower visual field would be advantageous for the control of locomotion in such precarious terrains. Using retinal wholemounts and stereology, we sought to measure how the ganglion cell density varies across the retina of the Nubian ibex to reveal which portions of its surroundings are sampled with high resolution. We estimated a total of ~1 million ganglion cells in the Nubian ibex retinal ganglion cell layer. Topographic variations of ganglion cell density reveal a temporal area, a horizontal streak, and a dorsotemporal extension, which are topographic retinal features also found in other artiodactyls. In contrast to savannah-dwelling artiodactyls, the horizontal streak of the Nubian ibex appears loosely organized possibly reflecting a reduced predation risk in mountainous habitats. Estimates of spatial resolving power (~17 cycles/degree) for the temporal area would be reasonable to facilitate foraging in the frontal visual field. Embedded in the dorsotemporal extension, we also found an unusual dorsotemporal area not yet reported in any other mammal. Given its location and spatial resolving power (~6 cycles/degree), this specialization enhances visual sampling toward the lower visual field, which would be advantageous for visually guided locomotion. This study expands our understanding of the retinal organization in artiodactyls and offers insights on the importance of vision for the Nubian ibex ecology.
Collapse
Affiliation(s)
- João Paulo Coimbra
- School of Anatomical Sciences, University of the Witwatersrand, Parktown, Johannesburg, South Africa
| | - Abdulaziz N Alagaili
- KSU Mammals Research Chair, Department of Zoology, King Saud University, Riyadh, Saudi Arabia
| | - Nigel C Bennett
- KSU Mammals Research Chair, Department of Zoology, King Saud University, Riyadh, Saudi Arabia.,Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Osama B Mohammed
- KSU Mammals Research Chair, Department of Zoology, King Saud University, Riyadh, Saudi Arabia
| | - Paul R Manger
- School of Anatomical Sciences, University of the Witwatersrand, Parktown, Johannesburg, South Africa
| |
Collapse
|
17
|
Baden T, Euler T, Berens P. Understanding the retinal basis of vision across species. Nat Rev Neurosci 2019; 21:5-20. [PMID: 31780820 DOI: 10.1038/s41583-019-0242-1] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2019] [Indexed: 12/12/2022]
Abstract
The vertebrate retina first evolved some 500 million years ago in ancestral marine chordates. Since then, the eyes of different species have been tuned to best support their unique visuoecological lifestyles. Visual specializations in eye designs, large-scale inhomogeneities across the retinal surface and local circuit motifs mean that all species' retinas are unique. Computational theories, such as the efficient coding hypothesis, have come a long way towards an explanation of the basic features of retinal organization and function; however, they cannot explain the full extent of retinal diversity within and across species. To build a truly general understanding of vertebrate vision and the retina's computational purpose, it is therefore important to more quantitatively relate different species' retinal functions to their specific natural environments and behavioural requirements. Ultimately, the goal of such efforts should be to build up to a more general theory of vision.
Collapse
Affiliation(s)
- Tom Baden
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK. .,Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Philipp Berens
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany.,Bernstein Centre for Computational Neuroscience, University of Tübingen, Tübingen, Germany
| |
Collapse
|
18
|
Salazar J, Severin D, Vega-Zuniga T, Fernández-Aburto P, Deichler A, Sallaberry A. M, Mpodozis J. Anatomical Specializations Related to Foraging in the Visual System of a Nocturnal Insectivorous Bird, the Band-Winged Nightjar (Aves: Caprimulgiformes). BRAIN, BEHAVIOR AND EVOLUTION 2019; 94:27-36. [DOI: 10.1159/000504162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 11/19/2022]
Abstract
Nocturnal animals that rely on their visual system for foraging, mating, and navigation usually exhibit specific traits associated with living in scotopic conditions. Most nocturnal birds have several visual specializations, such as enlarged eyes and an increased orbital convergence. However, the actual role of binocular vision in nocturnal foraging is still debated. Nightjars (Aves: Caprimulgidae) are predators that actively pursue and capture flying insects in crepuscular and nocturnal environments, mainly using a conspicuous “sit-and-wait” tactic on which pursuit begins with an insect flying over the bird that sits on the ground. In this study, we describe the visual system of the band-winged nightjar (Systellura longirostris), with emphasis on anatomical features previously described as relevant for nocturnal birds. Orbit convergence, determined by 3D scanning of the skull, was 73.28°. The visual field, determined by ophthalmoscopic reflex, exhibits an area of maximum binocular overlap of 42°, and it is dorsally oriented. The eyes showed a nocturnal-like normalized corneal aperture/axial length index. Retinal ganglion cells (RGCs) were relatively scant, and distributed in an unusual oblique-band pattern, with higher concentrations in the ventrotemporal quadrant. Together, these results indicate that the band-winged nightjar exhibits a retinal specialization associated with the binocular area of their dorsal visual field, a relevant area for pursuit triggering and prey attacks. The RGC distribution observed is unusual among birds, but similar to that of some visually dependent insectivorous bats, suggesting that those features might be convergent in relation to feeding strategies.
Collapse
|
19
|
A detailed investigation of the visual system and visual ecology of the Barrier Reef anemonefish, Amphiprion akindynos. Sci Rep 2019; 9:16459. [PMID: 31712572 PMCID: PMC6848076 DOI: 10.1038/s41598-019-52297-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/13/2019] [Indexed: 11/24/2022] Open
Abstract
Vision plays a major role in the life of most teleosts, and is assumingly well adapted to each species ecology and behaviour. Using a multidisciplinary approach, we scrutinised several aspects of the visual system and ecology of the Great Barrier Reef anemonefish, Amphiprion akindynos, including its orange with white patterning, retinal anatomy and molecular biology, its symbiosis with anemones and sequential hermaphroditism. Amphiprion akindynos possesses spectrally distinct visual pigments and opsins: one rod opsin, RH1 (498 nm), and five cone opsins, SWS1 (370 nm), SWS2B (408 nm), RH2B (498 nm), RH2A (520 nm), and LWS (554 nm). Cones were arranged in a regular mosaic with each single cone surrounded by four double cones. Double cones mainly expressed RH2B (53%) in one member and RH2A (46%) in the other, matching the prevailing light. Single cones expressed SWS1 (89%), which may serve to detect zooplankton, conspecifics and the host anemone. Moreover, a segregated small fraction of single cones coexpressed SWS1 with SWS2B (11%). This novel visual specialisation falls within the region of highest acuity and is suggested to increase the chromatic contrast of Amphiprion akindynos colour patterns, which might improve detection of conspecifics.
Collapse
|
20
|
Jones HH, Sieving KE. Foraging ecology drives social information reliance in an avian eavesdropping community. Ecol Evol 2019; 9:11584-11597. [PMID: 31695870 PMCID: PMC6822049 DOI: 10.1002/ece3.5561] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/14/2019] [Accepted: 07/26/2019] [Indexed: 11/06/2022] Open
Abstract
Vertebrates obtain social information about predation risk by eavesdropping on the alarm calls of sympatric species. In the Holarctic, birds in the family Paridae function as sentinel species; however, factors shaping eavesdroppers' reliance on their alarm calls are unknown. We compared three hypothesized drivers of eavesdropper reliance: (a) foraging ecology, (b) degree of sociality, and (c) call relevance (caller-to-eavesdropper body-size difference). In a rigorous causal-comparative design, we presented Tufted Titmouse (Baeolophus bicolor) alarm calls to 242 individuals of 31 ecologically diverse bird species in Florida forests and recorded presence/absence and type (diving for cover or freezing in place) of response. Playback response was near universal, as individuals responded to 87% of presentations (N = 211). As an exception to this trend, the sit-and-wait flycatcher Eastern Phoebe (Sayornis phoebe) represented 48% of the nonresponses. We tested 12 predictor variables representing measures relevant to the three hypothesized drivers, distance to playback speaker, and vulnerability at time of playback (eavesdropper's microhabitat when alarm call is detected). Using model-averaged generalized linear models, we determined that foraging ecology best predicted playback response, with aerial foragers responding less often. Foraging ecology (distance from trunk) and microhabitat occupied during playback (distance to escape cover) best predicted escape behavior type. We encountered a sparsity of sit-and-wait flycatchers (3 spp.), yet their contrasting responses relative to other foraging behaviors clearly identified foraging ecology as a driver of species-specific antipredator escape behavior. Our findings align well with known links between the exceptional visual acuity and other phenotypic traits of flycatchers that allow them to rely more heavily on personal rather than social information while foraging. Our results suggest that foraging ecology drives species-specific antipredator behavior based on the availability and type of escape cover.
Collapse
Affiliation(s)
- Harrison H. Jones
- Department of Wildlife Ecology and ConservationUniversity of FloridaGainesvilleFLUSA
- Department of BiologyUniversity of FloridaGainesvilleFLUSA
| | - Kathryn E. Sieving
- Department of Wildlife Ecology and ConservationUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
21
|
Bringmann A. Structure and function of the bird fovea. Anat Histol Embryol 2019; 48:177-200. [DOI: 10.1111/ahe.12432] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/07/2019] [Accepted: 01/15/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, Medical Faculty University of Leipzig Leipzig Germany
| |
Collapse
|
22
|
Tettamanti V, de Busserolles F, Lecchini D, Marshall NJ, Cortesi F. Visual system development of the spotted unicornfish, Naso brevirostris (Acanthuridae). J Exp Biol 2019; 222:jeb.209916. [DOI: 10.1242/jeb.209916] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/22/2019] [Indexed: 12/28/2022]
Abstract
Ontogenetic changes of the visual system are often correlated to shifts in habitat and feeding behaviour of animals. Coral reef fishes begin their lives in the pelagic zone and then migrate to the reef. This habitat transition frequently involves a change in diet and light environment as well as major morphological modifications. The spotted unicornfish, Naso brevirostris, is known to shift diet from zooplankton to algae and back to mainly zooplankton when transitioning from larval to juvenile and then to adult stages. Concurrently, N. brevirostris also moves from an open pelagic to a coral-associated habitat before migrating up in the water column when reaching adulthood. Using retinal mapping techniques, we discovered that the distribution and density of ganglion and photoreceptor cells in N. brevirostris mostly changes during the transition from the larval to the juvenile stage, with only minor modifications thereafter. Similarly, visual gene (opsin) expression based on RNA sequencing, although qualitatively similar between stages (all fishes mainly expressed the same three cone opsins; SWS2B, RH2B, RH2A), also showed the biggest quantitative difference when transitioning from larvae to juveniles. The juvenile stage in particular seems mismatched with its reef-associated ecology, which may be due to this stage only lasting a fraction of the lifespan of these fishes. Hence, the visual ontogeny found in N. brevirostris is very different from the progressive changes found in other reef fishes calling for a thorough analysis of visual system development of the reef fish community.
Collapse
Affiliation(s)
- Valerio Tettamanti
- Queensland Brain Institute, The University of Queensland, 4072 Brisbane, Australia
- Swiss Federal Institute of Technology Zurich, 8092 Zurich, Switzerland
| | - Fanny de Busserolles
- Queensland Brain Institute, The University of Queensland, 4072 Brisbane, Australia
| | - David Lecchini
- PSL Research University: EPHE-UPVD-CNRS, USR3278 CRIOBE, BP 1013, 98729 Papetoai, Moorea, French Polynesia
- Laboratoire d'Excellence “CORAIL”, Paris, France
| | - N. Justin Marshall
- Queensland Brain Institute, The University of Queensland, 4072 Brisbane, Australia
| | - Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, 4072 Brisbane, Australia
| |
Collapse
|
23
|
Fritsch R, Collin SP, Michiels NK. Anatomical Analysis of the Retinal Specializations to a Crypto-Benthic, Micro-Predatory Lifestyle in the Mediterranean Triplefin Blenny Tripterygion delaisi. Front Neuroanat 2017; 11:122. [PMID: 29311852 PMCID: PMC5732991 DOI: 10.3389/fnana.2017.00122] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/28/2017] [Indexed: 12/27/2022] Open
Abstract
The environment and lifestyle of a species are known to exert selective pressure on the visual system, often demonstrating a tight link between visual morphology and ecology. Many studies have predicted the visual requirements of a species by examining the anatomical features of the eye. However, among the vast number of studies on visual specializations in aquatic animals, only a few have focused on small benthic fishes that occupy a heterogeneous and spatially complex visual environment. This study investigates the general retinal anatomy including the topography of both the photoreceptor and ganglion cell populations and estimates the spatial resolving power (SRP) of the eye of the Mediterranean triplefin Tripterygion delaisi. Retinal wholemounts were prepared to systematically and quantitatively analyze photoreceptor and retinal ganglion cell (RGC) densities using design-based stereology. To further examine the retinal structure, we also used magnetic resonance imaging (MRI) and histological examination of retinal cross sections. Observations of the triplefin's eyes revealed them to be highly mobile, allowing them to view the surroundings without body movements. A rostral aphakic gap and the elliptical shape of the eye extend its visual field rostrally and allow for a rostro-caudal accommodatory axis, enabling this species to focus on prey at close range. Single and twin cones dominate the retina and are consistently arranged in one of two regular patterns, which may enhance motion detection and color vision. The retina features a prominent, dorso-temporal, convexiclivate fovea with an average density of 104,400 double and 30,800 single cones per mm2, and 81,000 RGCs per mm2. Based on photoreceptor spacing, SRP was calculated to be between 6.7 and 9.0 cycles per degree. Location and resolving power of the fovea would benefit the detection and identification of small prey in the lower frontal region of the visual field.
Collapse
Affiliation(s)
- Roland Fritsch
- Animal Evolutionary Ecology, Department of Biology, Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Shaun P. Collin
- The Oceans Institute, The University of Western Australia, Crawley, WA, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Nico K. Michiels
- Animal Evolutionary Ecology, Department of Biology, Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
24
|
de Busserolles F, Cortesi F, Helvik JV, Davies WIL, Templin RM, Sullivan RKP, Michell CT, Mountford JK, Collin SP, Irigoien X, Kaartvedt S, Marshall J. Pushing the limits of photoreception in twilight conditions: The rod-like cone retina of the deep-sea pearlsides. SCIENCE ADVANCES 2017; 3:eaao4709. [PMID: 29134201 PMCID: PMC5677336 DOI: 10.1126/sciadv.aao4709] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
Most vertebrates have a duplex retina comprising two photoreceptor types, rods for dim-light (scotopic) vision and cones for bright-light (photopic) and color vision. However, deep-sea fishes are only active in dim-light conditions; hence, most species have lost their cones in favor of a simplex retina composed exclusively of rods. Although the pearlsides, Maurolicus spp., have such a pure rod retina, their behavior is at odds with this simplex visual system. Contrary to other deep-sea fishes, pearlsides are mostly active during dusk and dawn close to the surface, where light levels are intermediate (twilight or mesopic) and require the use of both rod and cone photoreceptors. This study elucidates this paradox by demonstrating that the pearlside retina does not have rod photoreceptors only; instead, it is composed almost exclusively of transmuted cone photoreceptors. These transmuted cells combine the morphological characteristics of a rod photoreceptor with a cone opsin and a cone phototransduction cascade to form a unique photoreceptor type, a rod-like cone, specifically tuned to the light conditions of the pearlsides' habitat (blue-shifted light at mesopic intensities). Combining properties of both rods and cones into a single cell type, instead of using two photoreceptor types that do not function at their full potential under mesopic conditions, is likely to be the most efficient and economical solution to optimize visual performance. These results challenge the standing paradigm of the function and evolution of the vertebrate duplex retina and emphasize the need for a more comprehensive evaluation of visual systems in general.
Collapse
Affiliation(s)
- Fanny de Busserolles
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jon Vidar Helvik
- Department of Biology, University of Bergen, Bergen 5020, Norway
| | - Wayne I. L. Davies
- The Oceans Institute, The University of Western Australia, Crawley, Western Australia 6009, Australia
- School of Biological Science, The University of Western Australia, Crawley, Western Australia 6009, Australia
- Lions Eye Institute, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Rachel M. Templin
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Robert K. P. Sullivan
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Craig T. Michell
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistokatu 7, FI-80101 Joensuu, Finland
| | - Jessica K. Mountford
- The Oceans Institute, The University of Western Australia, Crawley, Western Australia 6009, Australia
- School of Biological Science, The University of Western Australia, Crawley, Western Australia 6009, Australia
- Lions Eye Institute, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Shaun P. Collin
- The Oceans Institute, The University of Western Australia, Crawley, Western Australia 6009, Australia
- School of Biological Science, The University of Western Australia, Crawley, Western Australia 6009, Australia
- Lions Eye Institute, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Xabier Irigoien
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Marine Research, AZTI - Tecnalia, Herrera Kaia, Portualdea z/g, 20110 Pasaia (Gipuzkoa), Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Stein Kaartvedt
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Department of Biosciences, University of Oslo, Oslo 0316, Norway
| | - Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
25
|
Coimbra JP, Bertelsen MF, Manger PR. Retinal ganglion cell topography and spatial resolving power in the river hippopotamus (Hippopotamus amphibius
). J Comp Neurol 2017; 525:2499-2513. [DOI: 10.1002/cne.24179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 11/10/2022]
Affiliation(s)
- João Paulo Coimbra
- School of Anatomical Sciences; University of the Witwatersrand; Johannesburg South Africa
| | - Mads F. Bertelsen
- Center for Zoo and Wild Animal Health, Copenhagen Zoo; Fredericksberg Denmark
| | - Paul R. Manger
- School of Anatomical Sciences; University of the Witwatersrand; Johannesburg South Africa
| |
Collapse
|
26
|
Tyrrell LP, Fernández-Juricic E. The Hawk-Eyed Songbird: Retinal Morphology, Eye Shape, and Visual Fields of an Aerial Insectivore. Am Nat 2017; 189:709-717. [PMID: 28514631 DOI: 10.1086/691404] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Swallows are a unique group of songbirds because they are active-pursuit predators that execute all aspects of hunting prey in flight: search, detection, pursuit, and capture. We show that swallows have evolved a visual system that is unlike that of any other studied songbird. Swallows have a bifoveate retina that provides sharp lateral and frontal vision, an unusually long eye that enhances spatial resolution, a large posterior blind area, and a narrow binocular field. We also show that swallows and diurnal raptors (hawks and falcons) have converged on a similar visual configuration but that, interestingly, predatory songbirds that ambush prey (flycatchers) have not converged on the same suite of traits. Despite the commonly held belief that predators rely on binocular vision, the temporal (frontally projecting) fovea present in swallows-but not present in other songbirds-is likely not involved in binocular vision. Instead, swallows have four nonoverlapping foveae in a 100° arc around the beak, which can improve the tracking of frontally located aerial prey that are engaging in evasive maneuvers. Overall, vision in pursuit predators reflects the complex sensory demands of hunting in the air at high speeds and emphasizes the importance of acute frontal vision in predators.
Collapse
|
27
|
Coimbra JP, Manger PR. Retinal ganglion cell topography and spatial resolving power in the white rhinoceros (Ceratotherium simum). J Comp Neurol 2017; 525:2484-2498. [DOI: 10.1002/cne.24136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/13/2016] [Accepted: 10/25/2016] [Indexed: 01/14/2023]
Affiliation(s)
- João Paulo Coimbra
- School of Anatomical Sciences; University of the Witwatersrand; Parktown 2193 Johannesburg South Africa
| | - Paul R. Manger
- School of Anatomical Sciences; University of the Witwatersrand; Parktown 2193 Johannesburg South Africa
| |
Collapse
|
28
|
Dalton BE, de Busserolles F, Marshall NJ, Carleton KL. Retinal specialization through spatially varying cell densities and opsin coexpression in cichlid fish. ACTA ACUST UNITED AC 2016; 220:266-277. [PMID: 27811302 DOI: 10.1242/jeb.149211] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/25/2016] [Indexed: 01/30/2023]
Abstract
The distinct behaviours of animals and the varied habitats in which animals live place different requirements on their visual systems. A trade-off exists between resolution and sensitivity, with these properties varying across the retina. Spectral sensitivity, which affects both achromatic and chromatic (colour) vision, also varies across the retina, though the function of this inhomogeneity is less clear. We previously demonstrated spatially varying spectral sensitivity of double cones in the cichlid fish Metriaclima zebra owing to coexpression of different opsins. Here, we map the distributions of ganglion cells and cone cells and quantify opsin coexpression in single cones to show these also vary across the retina. We identify an area centralis with peak acuity and infrequent coexpression, which may be suited for tasks such as foraging and detecting male signals. The peripheral retina has reduced ganglion cell densities and increased opsin coexpression. Modeling of cichlid visual tasks indicates that coexpression might hinder colour discrimination of foraging targets and some fish colours. But, coexpression might improve contrast detection of dark objects against bright backgrounds, which might be useful for detecting predators or zooplankton. This suggests a trade-off between acuity and colour discrimination in the central retina versus lower resolution but more sensitive contrast detection in the peripheral retina. Significant variation in the pattern of coexpression among individuals, however, raises interesting questions about the selective forces at work.
Collapse
Affiliation(s)
- Brian E Dalton
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | - N Justin Marshall
- Queensland Brain Institute, University of Queensland, Brisbane 4072, Australia
| | - Karen L Carleton
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
29
|
Coimbra JP, Pettigrew JD, Kaswera-Kyamakya C, Gilissen E, Collin SP, Manger PR. Retinal ganglion cell topography and spatial resolving power in African megachiropterans: Influence of roosting microhabitat and foraging. J Comp Neurol 2016; 525:186-203. [DOI: 10.1002/cne.24055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 11/10/2022]
Affiliation(s)
- João Paulo Coimbra
- School of Anatomical Sciences; University of the Witwatersrand; Parktown 2193 Johannesburg South Africa
- The Oceans Institute; The University of Western Australia; Crawley Western Australia 6009 Australia
- School of Animal Biology; The University of Western Australia; Crawley Western Australia 6009 Australia
| | - John D. Pettigrew
- Queensland Brain Institute; The University of Queensland; Santa Lucia Queensland 4072 Australia
| | | | - Emmanuel Gilissen
- Department of Anthropology; University of Arkansas; Fayetteville Arkansas 72701
- Faculty of Sciences; University of Kisangani; B.P. 1232 Kisangani Democratic Republic of the Congo
- Department of African Zoology; Royal Museum for Central Africa; B-3080 Tervuren Belgium
- Laboratory of Histology and Neuropathology; Free University of Brussells; B-1070 Brussels Belgium
| | - Shaun P. Collin
- The Oceans Institute; The University of Western Australia; Crawley Western Australia 6009 Australia
- School of Animal Biology; The University of Western Australia; Crawley Western Australia 6009 Australia
| | - Paul R. Manger
- School of Anatomical Sciences; University of the Witwatersrand; Parktown 2193 Johannesburg South Africa
| |
Collapse
|
30
|
Appudurai AM, Hart NS, Zurr I, Collin SP. Morphology, Characterization and Distribution of Retinal Photoreceptors in the South American (Lepidosiren paradoxa) and Spotted African (Protopterus dolloi) Lungfishes. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
31
|
Nagloo N, Collin SP, Hemmi JM, Hart NS. Spatial resolving power and spectral sensitivity of the saltwater crocodile, Crocodylus porosus, and the freshwater crocodile, Crocodylus johnstoni. J Exp Biol 2016; 219:1394-404. [DOI: 10.1242/jeb.135673] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/23/2016] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Crocodilians are apex amphibious predators that occupy a range of tropical habitats. In this study, we examined whether their semi-aquatic lifestyle and ambush hunting mode are reflected in specific adaptations in the peripheral visual system. Design-based stereology and microspectrophotometry were used to assess spatial resolving power and spectral sensitivity of saltwater (Crocodylus porosus) and freshwater crocodiles (Crocodylus johnstoni). Both species possess a foveal streak that spans the naso-temporal axis and mediates high spatial acuity across the central visual field. The saltwater crocodile and freshwater crocodile have a peak spatial resolving power of 8.8 and 8.0 cycles deg−1, respectively. Measurement of the outer segment dimensions and spectral absorbance revealed five distinct photoreceptor types consisting of three single cones, one twin cone and a rod. The three single cones (saltwater/freshwater crocodile) are violet (424/426 nm λmax), green (502/510 nm λmax) and red (546/554 nm λmax) sensitive, indicating the potential for trichromatic colour vision. The visual pigments of both members of the twin cones have the same λmax as the red-sensitive single cone and the rod has a λmax at 503/510 nm (saltwater/freshwater). The λmax values of all types of visual pigment occur at longer wavelengths in the freshwater crocodile compared with the saltwater crocodile. Given that there is a greater abundance of long wavelength light in freshwater compared with a saltwater environment, the photoreceptors would be more effective at detecting light in their respective habitats. This suggests that the visual systems of both species are adapted to the photic conditions of their respective ecological niche.
Collapse
Affiliation(s)
- Nicolas Nagloo
- School of Animal Biology, The University of Western Australia, Crawley, Western Australia 6009, Australia
- The Oceans Institute, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Shaun P. Collin
- School of Animal Biology, The University of Western Australia, Crawley, Western Australia 6009, Australia
- The Oceans Institute, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Jan M. Hemmi
- School of Animal Biology, The University of Western Australia, Crawley, Western Australia 6009, Australia
- The Oceans Institute, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Nathan S. Hart
- School of Animal Biology, The University of Western Australia, Crawley, Western Australia 6009, Australia
- The Oceans Institute, The University of Western Australia, Crawley, Western Australia 6009, Australia
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| |
Collapse
|
32
|
Coimbra JP, Kaswera-Kyamakya C, Gilissen E, Manger PR, Collin SP. The Topographic Organization of Retinal Ganglion Cell Density and Spatial Resolving Power in an Unusual Arboreal and Slow-Moving Strepsirhine Primate, the Potto (Perodicticus potto). BRAIN, BEHAVIOR AND EVOLUTION 2016; 87:4-18. [DOI: 10.1159/000443015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/01/2015] [Indexed: 11/19/2022]
Abstract
The potto (Perodicticus potto) is an arboreal strepsirhine found in the rainforests of central Africa. In contrast to most primates, the potto shows slow-moving locomotion over the upper surface of branches, where it forages for exudates and crawling invertebrates with its head held very close to the substrate. Here, we asked whether the retina of the potto displays topographic specializations in neuronal density that correlate with its unusual lifestyle. Using stereology and retinal wholemounts, we measured the total number and topographic distribution of retinal ganglion cells (total and presumed parasol), as well as estimating the upper limits of the spatial resolution of the potto eye. We estimated ∼210,000 retinal ganglion cells, of which ∼7% (∼14,000) comprise presumed parasol ganglion cells. The topographic distribution of both total and parasol ganglion cells reveals a concentric centroperipheral organization with a nasoventral asymmetry. Combined with the upwardly shifted orbits of the potto, this nasoventral increase in parasol ganglion cell density enhances contrast sensitivity and motion detection skywards, which potentially assists with the detection of predators in the high canopy. The central area of the potto occurs ∼2.5 mm temporal to the optic disc and contains a maximum ganglion cell density of ∼4,300 cells/mm2. We found no anatomical evidence of a fovea within this region. Using maximum ganglion cell density and eye size (∼14 mm), we estimated upper limits of spatial resolving power between 4.1 and 4.4 cycles/degree. Despite their reported reliance on olfaction to detect exudates, this level of spatial resolution potentially assists pottos with foraging for small invertebrates and in the detection of predators.
Collapse
|
33
|
Lisney TJ, Wylie DR, Kolominsky J, Iwaniuk AN. Eye Morphology and Retinal Topography in Hummingbirds (Trochilidae: Aves). BRAIN, BEHAVIOR AND EVOLUTION 2015; 86:176-90. [DOI: 10.1159/000441834] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/15/2015] [Indexed: 11/19/2022]
Abstract
Hummingbirds are a group of small, highly specialized birds that display a range of adaptations to their nectarivorous lifestyle. Vision plays a key role in hummingbird feeding and hovering behaviours, yet very little is known about the visual systems of these birds. In this study, we measured eye morphology in 5 hummingbird species. For 2 of these species, we used stereology and retinal whole mounts to study the topographic distribution of neurons in the ganglion cell layer. Eye morphology (expressed as the ratio of corneal diameter to eye transverse diameter) was similar among all 5 species and was within the range previously documented for diurnal birds. Retinal topography was similar in Amazilia tzacatl and Calypte anna. Both species had 2 specialized retinal regions of high neuron density: a central region located slightly dorso-nasal to the superior pole of the pecten, where densities reached ∼45,000 cells·mm-2, and a temporal area with lower densities (38,000-39,000 cells·mm-2). A weak visual streak bridged the two high-density areas. A retina from Phaethornis superciliosus also had a central high-density area with a similar peak neuron density. Estimates of spatial resolving power for all 3 species were similar, at approximately 5-6 cycles·degree-1. Retinal cross sections confirmed that the central high-density region in C. anna contains a fovea, but not the temporal area. We found no evidence of a second, less well-developed fovea located close to the temporal retina margin. The central and temporal areas of high neuron density allow for increased spatial resolution in the lateral and frontal visual fields, respectively. Increased resolution in the frontal field in particular may be important for mediating feeding behaviors such as aerial docking with flowers and catching small insects.
Collapse
|
34
|
Coimbra JP, Kaswera-Kyamakya C, Gilissen E, Manger PR, Collin SP. The Retina of Ansorge's Cusimanse (Crossarchus ansorgei): Number, Topography and Convergence of Photoreceptors and Ganglion Cells in Relation to Ecology and Behavior. BRAIN, BEHAVIOR AND EVOLUTION 2015; 86:79-93. [DOI: 10.1159/000433514] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/22/2015] [Indexed: 11/19/2022]
Abstract
The family Herpestidae (cusimanses and mongooses) is a monophyletic radiation of carnivores with remarkable variation in microhabitat occupation and diel activity, but virtually nothing is known about how they use vision in the context of their behavioral ecology. In this paper, we measured the number and topographic distribution of neurons (rods, cones and retinal ganglion cells) and estimated the spatial resolving power of the eye of the diurnal, forest-dwelling Ansorge's cusimanse (Crossarchus ansorgei). Using retinal wholemounts and stereology, we found that rods are more numerous (42,500,000; 92%) than cones (3,900,000; 8%). Rod densities form a concentric and dorsotemporally asymmetric plateau that matches the location and shape of a bright yellow tapetum lucidum located within the dorsal aspect of the eye. Maximum rod density (340,300 cells/mm2) occurs within an elongated plateau below the optic disc that corresponds to a transitional region between the tapetum lucidum and the pigmented choroid. Cone densities form a temporal area with a peak density of 44,500 cells/mm2 embedded in a weak horizontal streak that matches the topographic distribution of retinal ganglion cells. Convergence ratios of cones to retinal ganglion cells vary from 50:1 in the far periphery to 3:1 in the temporal area. With a ganglion cell peak density of 13,400 cells/mm2 and an eye size of 11 mm in axial length, we estimated upper limits of spatial resolution of 7.5-8 cycles/degree, which is comparable to other carnivores such as hyenas. In conclusion, we suggest that the topographic retinal traits described for Ansorge's cusimanse conform to a presumed carnivore retinal blueprint but also show variations that reflect its specific ecological needs.
Collapse
|
35
|
de Busserolles F, Hart NS, Hunt DM, Davies WI, Marshall NJ, Clarke MW, Hahne D, Collin SP. Spectral Tuning in the Eyes of Deep-Sea Lanternfishes (Myctophidae): A Novel Sexually Dimorphic Intra-Ocular Filter. BRAIN, BEHAVIOR AND EVOLUTION 2015; 85:77-93. [DOI: 10.1159/000371652] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 09/15/2014] [Indexed: 11/19/2022]
Abstract
Deep-sea fishes possess several adaptations to facilitate vision where light detection is pushed to its limit. Lanternfishes (Myctophidae), one of the world's most abundant groups of mesopelagic fishes, possess a novel and unique visual specialisation, a sexually dimorphic photostable yellow pigmentation, constituting the first record of a visual sexual dimorphism in any non-primate vertebrate. The topographic distribution of the yellow pigmentation across the retina is species specific, varying in location, shape and size. Spectrophotometric analyses reveal that this new retinal specialisation differs between species in terms of composition and acts as a filter, absorbing maximally between 356 and 443 nm. Microspectrophotometry and molecular analyses indicate that the species containing this pigmentation also possess at least 2 spectrally distinct rod visual pigments as a result of a duplication of the Rh1 opsin gene. After modelling the effect of the yellow pigmentation on photoreceptor spectral sensitivity, we suggest that this unique specialisation acts as a filter to enhance contrast, thereby improving the detection of bioluminescent emissions and possibly fluorescence in the extreme environment of the deep sea. The fact that this yellow pigmentation is species specific, sexually dimorphic and isolated within specific parts of the retina indicates an evolutionary pressure to visualise prey/predators/mates in a particular part of each species' visual field.
Collapse
|
36
|
Coimbra JP, Collin SP, Hart NS. Variations in retinal photoreceptor topography and the organization of the rod-free zone reflect behavioral diversity in Australian passerines. J Comp Neurol 2015; 523:1073-94. [DOI: 10.1002/cne.23718] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/14/2014] [Accepted: 11/21/2014] [Indexed: 02/01/2023]
Affiliation(s)
- João Paulo Coimbra
- School of Animal Biology, University of Western Australia; Crawley WA 6009 Australia
- Oceans Institute, University of Western Australia; Crawley WA 6009 Australia
- School of Anatomical Sciences, University of the Witwatersrand; Parktown 2193 Johannesburg South Africa
| | - Shaun P. Collin
- School of Animal Biology, University of Western Australia; Crawley WA 6009 Australia
- Oceans Institute, University of Western Australia; Crawley WA 6009 Australia
| | - Nathan S. Hart
- School of Animal Biology, University of Western Australia; Crawley WA 6009 Australia
- Oceans Institute, University of Western Australia; Crawley WA 6009 Australia
| |
Collapse
|
37
|
Moore BA, Pita D, Tyrrell LP, Fernández-Juricic E. Vision in avian emberizid foragers: maximizing both binocular vision and fronto-lateral visual acuity. J Exp Biol 2015; 218:1347-58. [PMID: 25750415 DOI: 10.1242/jeb.108613] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 02/23/2015] [Indexed: 11/20/2022]
Abstract
Avian species vary in their visual system configuration, but previous studies have often compared single visual traits between 2-3 distantly related species. However, birds use different visual dimensions that cannot be maximized simultaneously to meet different perceptual demands, potentially leading to trade-offs between visual traits. We studied the degree of inter-specific variation in multiple visual traits related to foraging and anti-predator behaviors in nine species of closely related emberizid sparrows, controlling for phylogenetic effects. Emberizid sparrows maximize binocular vision, even seeing their bill tips, which may enhance the detection of prey and facilitate food handling. Sparrows have a single retinal center of acute vision (i.e., fovea) projecting fronto-laterally (but not into the binocular field). The foveal projection close to the edge of the binocular field may shorten the time to gather and process both monocular and binocular visual information from the foraging substrate. Contrary to previous work, we found that species with larger visual fields had higher visual acuity, which may compensate for larger blind spots (i.e., pectens) above the center of acute vision, enhancing predator detection. Finally, species with a steeper change in ganglion cell density across the retina had higher eye movement amplitude likely due to a more pronounced reduction in visual resolution away from the fovea, which would need to be moved around more frequently. The visual configuration of emberizid passive prey foragers is substantially different from that of previously studied avian groups (e.g., sit-and-wait and tactile foragers).
Collapse
Affiliation(s)
- Bret A. Moore
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Diana Pita
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Luke P. Tyrrell
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Esteban Fernández-Juricic
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| |
Collapse
|
38
|
de Busserolles F, Marshall NJ, Collin SP. Retinal Ganglion Cell Distribution and Spatial Resolving Power in Deep-Sea Lanternfishes (Myctophidae). BRAIN, BEHAVIOR AND EVOLUTION 2014; 84:262-76. [DOI: 10.1159/000365960] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/16/2014] [Indexed: 11/19/2022]
|
39
|
Krabichler Q, Vega-Zuniga T, Morales C, Luksch H, Marín GJ. The visual system of a Palaeognathous bird: Visual field, retinal topography and retino-central connections in the Chilean Tinamou (Nothoprocta perdicaria). J Comp Neurol 2014; 523:226-50. [DOI: 10.1002/cne.23676] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 09/05/2014] [Accepted: 09/09/2014] [Indexed: 02/05/2023]
Affiliation(s)
- Quirin Krabichler
- Chair of Zoology, Technische Universität München; Freising-Weihenstephan Germany
| | - Tomas Vega-Zuniga
- Chair of Zoology, Technische Universität München; Freising-Weihenstephan Germany
| | - Cristian Morales
- Laboratorio de Neurobiología y Biología del Conocer; Departamento de Biología; Facultad de Ciencias; Universidad de Chile; Santiago de Chile Chile
| | - Harald Luksch
- Chair of Zoology, Technische Universität München; Freising-Weihenstephan Germany
| | - Gonzalo J. Marín
- Laboratorio de Neurobiología y Biología del Conocer; Departamento de Biología; Facultad de Ciencias; Universidad de Chile; Santiago de Chile Chile
- Facultad de Medicina; Universidad Finis Terrae; Santiago de Chile Chile
| |
Collapse
|
40
|
Claes JM, Partridge JC, Hart NS, Garza-Gisholt E, Ho HC, Mallefet J, Collin SP. Photon hunting in the twilight zone: visual features of mesopelagic bioluminescent sharks. PLoS One 2014; 9:e104213. [PMID: 25099504 PMCID: PMC4123902 DOI: 10.1371/journal.pone.0104213] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 07/04/2014] [Indexed: 01/01/2023] Open
Abstract
The mesopelagic zone is a visual scene continuum in which organisms have developed various strategies to optimize photon capture. Here, we used light microscopy, stereology-assisted retinal topographic mapping, spectrophotometry and microspectrophotometry to investigate the visual ecology of deep-sea bioluminescent sharks [four etmopterid species (Etmopterus lucifer, E. splendidus, E. spinax and Trigonognathus kabeyai) and one dalatiid species (Squaliolus aliae)]. We highlighted a novel structure, a translucent area present in the upper eye orbit of Etmopteridae, which might be part of a reference system for counterillumination adjustment or acts as a spectral filter for camouflage breaking, as well as several ocular specialisations such as aphakic gaps and semicircular tapeta previously unknown in elasmobranchs. All species showed pure rod hexagonal mosaics with a high topographic diversity. Retinal specialisations, formed by shallow cell density gradients, may aid in prey detection and reflect lifestyle differences; pelagic species display areae centrales while benthopelagic and benthic species display wide and narrow horizontal streaks, respectively. One species (E. lucifer) displays two areae within its horizontal streak that likely allows detection of conspecifics' elongated bioluminescent flank markings. Ganglion cell topography reveals less variation with all species showing a temporal area for acute frontal binocular vision. This area is dorsally extended in T. kabeyai, allowing this species to adjust the strike of its peculiar jaws in the ventro-frontal visual field. Etmopterus lucifer showed an additional nasal area matching a high rod density area. Peak spectral sensitivities of the rod visual pigments (λmax) fall within the range 484–491 nm, allowing these sharks to detect a high proportion of photons present in their habitat. Comparisons with previously published data reveal ocular differences between bioluminescent and non-bioluminescent deep-sea sharks. In particular, bioluminescent sharks possess higher rod densities, which might provide them with improved temporal resolution particularly useful for bioluminescent communication during social interactions.
Collapse
Affiliation(s)
- Julien M. Claes
- Laboratoire de Biologie Marine, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- * E-mail:
| | - Julian C. Partridge
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
- Neuroecology Group, School of Animal Biology and the UWA Oceans Institute, The University of Western Australia, Crawley, Australia
| | - Nathan S. Hart
- Neuroecology Group, School of Animal Biology and the UWA Oceans Institute, The University of Western Australia, Crawley, Australia
| | - Eduardo Garza-Gisholt
- Neuroecology Group, School of Animal Biology and the UWA Oceans Institute, The University of Western Australia, Crawley, Australia
| | - Hsuan-Ching Ho
- National Museum of Marine Biology and Aquarium, Checheng, Taiwan
- Institute of Marine Biodiversity and Evolutionary Biology, National Dong Hwa University, Shoufeng, Taiwan
| | - Jérôme Mallefet
- Laboratoire de Biologie Marine, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Shaun P. Collin
- Neuroecology Group, School of Animal Biology and the UWA Oceans Institute, The University of Western Australia, Crawley, Australia
| |
Collapse
|
41
|
Coimbra JP, Collin SP, Hart NS. Topographic specializations in the retinal ganglion cell layer correlate with lateralized visual behavior, ecology, and evolution in cockatoos. J Comp Neurol 2014; 522:3363-85. [DOI: 10.1002/cne.23637] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 05/26/2014] [Accepted: 05/27/2014] [Indexed: 11/10/2022]
Affiliation(s)
- João Paulo Coimbra
- School of Animal Biology, The University of Western Australia; Crawley Western Australia 6009 Australia
- The Oceans Institute, The University of Western Australia; Crawley Western Australia 6009 Australia
- School of Anatomical Sciences, The University of the Witwatersrand; Parktown 2193 Johannesburg South Africa
| | - Shaun P. Collin
- School of Animal Biology, The University of Western Australia; Crawley Western Australia 6009 Australia
- The Oceans Institute, The University of Western Australia; Crawley Western Australia 6009 Australia
| | - Nathan S. Hart
- School of Animal Biology, The University of Western Australia; Crawley Western Australia 6009 Australia
- The Oceans Institute, The University of Western Australia; Crawley Western Australia 6009 Australia
| |
Collapse
|
42
|
de Busserolles F, Fitzpatrick JL, Marshall NJ, Collin SP. The influence of photoreceptor size and distribution on optical sensitivity in the eyes of lanternfishes (Myctophidae). PLoS One 2014; 9:e99957. [PMID: 24927016 PMCID: PMC4057366 DOI: 10.1371/journal.pone.0099957] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/20/2014] [Indexed: 01/19/2023] Open
Abstract
The mesopelagic zone of the deep-sea (200-1000 m) is characterised by exponentially diminishing levels of downwelling sunlight and by the predominance of bioluminescence emissions. The ability of mesopelagic organisms to detect and behaviourally react to downwelling sunlight and/or bioluminescence will depend on the visual task and ultimately on the eyes and their capacity for detecting low levels of illumination and intermittent point sources of bioluminescent light. In this study, we investigate the diversity of the visual system of the lanternfish (Myctophidae). We focus specifically on the photoreceptor cells by examining their size, arrangement, topographic distribution and contribution to optical sensitivity in 53 different species from 18 genera. We also examine the influence(s) of both phylogeny and ecology on these photoreceptor variables using phylogenetic comparative analyses in order to understand the constraints placed on the visual systems of this large group of mesopelagic fishes at the first stage of retinal processing. We report great diversity in the visual system of the Myctophidae at the level of the photoreceptors. Photoreceptor distribution reveals clear interspecific differences in visual specialisations (areas of high rod photoreceptor density), indicating potential interspecific differences in interactions with prey, predators and/or mates. A great diversity in photoreceptor design (length and diameter) and density is also present. Overall, the myctophid eye is very sensitive compared to other teleosts and each species seems to be specialised for the detection of a specific signal (downwelling light or bioluminescence), potentially reflecting different visual demands for survival. Phylogenetic comparative analyses highlight several relationships between photoreceptor characteristics and the ecological variables tested (depth distribution and luminous tissue patterns). Depth distribution at night was a significant factor in most of the models tested, indicating that vision at night is of great importance for lanternfishes and may drive the evolution of their photoreceptor design.
Collapse
Affiliation(s)
- Fanny de Busserolles
- The School of Animal Biology and The UWA Oceans Institute, The University of Western Australia, Crawley, Australia; Red Sea Research Centre, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - John L Fitzpatrick
- Centre for Evolutionary Biology, School of Animal Biology, The University of Western Australia, Crawley, Australia; Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - N Justin Marshall
- Sensory Neurobiology Group, Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Shaun P Collin
- The School of Animal Biology and The UWA Oceans Institute, The University of Western Australia, Crawley, Australia
| |
Collapse
|
43
|
Coimbra JP, Collin SP, Hart NS. Topographic specializations in the retinal ganglion cell layer of Australian passerines. J Comp Neurol 2014; 522:3609-28. [DOI: 10.1002/cne.23624] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 05/03/2014] [Accepted: 05/05/2014] [Indexed: 11/08/2022]
Affiliation(s)
- João Paulo Coimbra
- School of Animal Biology, The University of Western Australia; Crawley Western Australia 6009 Australia
- The Oceans Institute, The University of Western Australia; Crawley Western Australia 6009 Australia
- School of Anatomical Sciences, The University of the Witwatersrand; Parktown 2193 Johannesburg South Africa
| | - Shaun P. Collin
- School of Animal Biology, The University of Western Australia; Crawley Western Australia 6009 Australia
- The Oceans Institute, The University of Western Australia; Crawley Western Australia 6009 Australia
| | - Nathan S. Hart
- School of Animal Biology, The University of Western Australia; Crawley Western Australia 6009 Australia
- The Oceans Institute, The University of Western Australia; Crawley Western Australia 6009 Australia
| |
Collapse
|
44
|
Garza-Gisholt E, Hemmi JM, Hart NS, Collin SP. A comparison of spatial analysis methods for the construction of topographic maps of retinal cell density. PLoS One 2014; 9:e93485. [PMID: 24747568 PMCID: PMC3998654 DOI: 10.1371/journal.pone.0093485] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 03/05/2014] [Indexed: 11/18/2022] Open
Abstract
Topographic maps that illustrate variations in the density of different neuronal sub-types across the retina are valuable tools for understanding the adaptive significance of retinal specialisations in different species of vertebrates. To date, such maps have been created from raw count data that have been subjected to only limited analysis (linear interpolation) and, in many cases, have been presented as iso-density contour maps with contour lines that have been smoothed 'by eye'. With the use of stereological approach to count neuronal distribution, a more rigorous approach to analysing the count data is warranted and potentially provides a more accurate representation of the neuron distribution pattern. Moreover, a formal spatial analysis of retinal topography permits a more robust comparison of topographic maps within and between species. In this paper, we present a new R-script for analysing the topography of retinal neurons and compare methods of interpolating and smoothing count data for the construction of topographic maps. We compare four methods for spatial analysis of cell count data: Akima interpolation, thin plate spline interpolation, thin plate spline smoothing and Gaussian kernel smoothing. The use of interpolation 'respects' the observed data and simply calculates the intermediate values required to create iso-density contour maps. Interpolation preserves more of the data but, consequently includes outliers, sampling errors and/or other experimental artefacts. In contrast, smoothing the data reduces the 'noise' caused by artefacts and permits a clearer representation of the dominant, 'real' distribution. This is particularly useful where cell density gradients are shallow and small variations in local density may dramatically influence the perceived spatial pattern of neuronal topography. The thin plate spline and the Gaussian kernel methods both produce similar retinal topography maps but the smoothing parameters used may affect the outcome.
Collapse
Affiliation(s)
- Eduardo Garza-Gisholt
- School of Animal Biology and The UWA Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
- * E-mail:
| | - Jan M. Hemmi
- School of Animal Biology and The UWA Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
| | - Nathan S. Hart
- School of Animal Biology and The UWA Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
| | - Shaun P. Collin
- School of Animal Biology and The UWA Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
45
|
Retinal ganglion cell topography and spatial resolution of two parrot species: budgerigar (Melopsittacus undulatus) and Bourke's parrot (Neopsephotus bourkii). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:371-84. [PMID: 24677162 DOI: 10.1007/s00359-014-0894-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 02/17/2014] [Accepted: 02/20/2014] [Indexed: 10/25/2022]
Abstract
Retinal ganglion cell (RGC) isodensity maps indicate important regions in an animal's visual field. These maps can also be combined with measures of focal length to estimate the theoretical visual acuity. Here we present the RGC isodensity maps and anatomical spatial resolving power in three budgerigars (Melopsittacus undulatus) and two Bourke's parrots (Neopsephotus bourkii). Because RGCs were stacked in several layers, we modified the Nissl staining procedure to assess the cell number in the whole-mounted and cross-sectioned tissue of the same retinal specimen. The retinal topography showed surprising variation; however, both parrot species had an area centralis without discernable fovea. Budgerigars also had a putative area nasalis never reported in birds before. The peak RGC density was 22,300-34,200 cells/mm(2) in budgerigars and 18,100-38,000 cells/mm(2) in Bourke's parrots. The maximum visual acuity based on RGCs and focal length was 6.9 cyc/deg in budgerigars and 9.2 cyc/deg in Bourke's parrots. These results are lower than earlier behavioural estimates. Our findings illustrate that retinal topography is not a very fixed trait and that theoretical visual acuity estimations based on RGC density can be lower than the behavioural performance of the bird.
Collapse
|
46
|
Baumhardt PE, Moore BA, Doppler M, Fernández-Juricic E. Do American goldfinches see their world like passive prey foragers? A study on visual fields, retinal topography, and sensitivity of photoreceptors. BRAIN, BEHAVIOR AND EVOLUTION 2014; 83:181-98. [PMID: 24663005 DOI: 10.1159/000357750] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 12/04/2013] [Indexed: 11/19/2022]
Abstract
Several species of the most diverse avian order, Passeriformes, specialize in foraging on passive prey, although relatively little is known about their visual systems. We tested whether some components of the visual system of the American goldfinch (Spinus tristis), a granivorous bird, followed the profile of species seeking passive food items (small eye size relative to body mass, narrow binocular fields and blind areas, centrally located retinal specialization projecting laterally, ultraviolet-sensitive vision). We measured eye size, visual field configuration, the degree of eye movement, variations in the density of ganglion cells and cone photoreceptors, and the sensitivity of photoreceptor visual pigments and oil droplets. Goldfinches had relatively large binocular (46°) and lateral (134°) visual fields with a high degree of eye movement (66° at the plane of the bill). They had a single centrotemporally located fovea that projects laterally, but can be moved closer to the edge of the binocular field by converging the eyes. Goldfinches could also increase their panoramic vision by diverging their eyes while handling food items in head-up positions. The distribution of photoreceptors indicated that the highest density of single and double cones was surrounding the fovea, making it the center of chromatic and achromatic vision and motion detection. Goldfinches possessed a tetrachromatic ultraviolet visual system with visual pigment peak sensitivities of 399 nm (ultraviolet-sensitive cone), 442 nm (short-wavelength-sensitive cone), 512 nm (medium-wavelength-sensitive cone), and 580 nm (long-wavelength-sensitive cone). Overall, the visual system of American goldfinches showed characteristics of passive as well as active prey foragers, with a single-fovea configuration and a large degree of eye movement that would enhance food searching and handling with their relatively wide binocular fields.
Collapse
Affiliation(s)
- Patrice E Baumhardt
- Department of Biological Sciences, Purdue University, West Lafayette, Ind., USA
| | | | | | | |
Collapse
|
47
|
de Busserolles F, Marshall NJ, Collin SP. The eyes of lanternfishes (Myctophidae, Teleostei): Novel ocular specializations for vision in dim light. J Comp Neurol 2014; 522:1618-40. [DOI: 10.1002/cne.23495] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Fanny de Busserolles
- Neuroecology Group; School of Animal Biology and the Oceans Institute; The University of Western Australia; Crawley Western Australia 6012 Australia
| | - N. Justin Marshall
- Sensory Neurobiology Group; Queensland Brain Institute; University of Queensland; St. Lucia Queensland 4072 Australia
| | - Shaun P. Collin
- Neuroecology Group; School of Animal Biology and the Oceans Institute; The University of Western Australia; Crawley Western Australia 6012 Australia
| |
Collapse
|
48
|
Lisney TJ, Stecyk K, Kolominsky J, Graves GR, Wylie DR, Iwaniuk AN. Comparison of eye morphology and retinal topography in two species of New World vultures (Aves: Cathartidae). Anat Rec (Hoboken) 2013; 296:1954-70. [PMID: 24249399 DOI: 10.1002/ar.22815] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 08/11/2013] [Accepted: 08/26/2013] [Indexed: 11/08/2022]
Abstract
Vultures are highly reliant on their sensory systems for the rapid detection and localization of carrion before other scavengers can exploit the resource. In this study, we compared eye morphology and retinal topography in two species of New World vultures (Cathartidae), turkey vultures (Cathartes aura), with a highly developed olfactory sense, and black vultures (Coragyps atratus), with a less developed sense of olfaction. We found that eye size relative to body mass was the same in both species, but that black vultures have larger corneas relative to eye size than turkey vultures. However, the overall retinal topography, the total number of cells in the retinal ganglion cell layer, peak and average cell densities, cell soma area frequency distributions, and the theoretical peak anatomical spatial resolving power were the same in both species. This suggests that the visual systems of these two species are similar and that vision plays an equally important role in the biology of both species, despite the apparently greater reliance on olfaction for finding carrion in turkey vultures.
Collapse
Affiliation(s)
- Thomas J Lisney
- Department of Psychology, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | |
Collapse
|
49
|
Coimbra JP, Hart NS, Collin SP, Manger PR. Scene from above: Retinal ganglion cell topography and spatial resolving power in the giraffe (Giraffa camelopardalis). J Comp Neurol 2013; 521:2042-57. [DOI: 10.1002/cne.23271] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 11/16/2012] [Accepted: 11/20/2012] [Indexed: 01/31/2023]
|
50
|
Lisney TJ, Stecyk K, Kolominsky J, Schmidt BK, Corfield JR, Iwaniuk AN, Wylie DR. Ecomorphology of eye shape and retinal topography in waterfowl (Aves: Anseriformes: Anatidae) with different foraging modes. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:385-402. [DOI: 10.1007/s00359-013-0802-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 02/12/2013] [Accepted: 02/13/2013] [Indexed: 11/24/2022]
|