1
|
Abstract
Over 50 years after its discovery in early chick embryos, the concept of epithelial-mesenchymal transition (EMT) is now widely applied to morphogenetic studies in both physiological and pathological contexts. Indeed, the EMT field has witnessed exponential growth in recent years, driven primarily by a rapid expansion of cancer-oriented EMT research. This has led to EMT-based therapeutic interventions that bear the prospect of fighting cancer, and has given developmental biologists new impetus to investigate EMT phenomena more closely and to find suitable models to address emerging EMT-related questions. Here, and in the accompanying poster, I provide a brief summary of the current status of EMT research and give an overview of EMT models that have been used in developmental studies. I also highlight dynamic epithelialization and de-epithelialization events that are involved in many developmental processes and that should be considered to provide a broader perspective of EMT. Finally, I put forward a set of criteria to separate morphogenetic phenomena that are EMT-related from those that are not.
Collapse
Affiliation(s)
- Guojun Sheng
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| |
Collapse
|
2
|
Meng P, Zhu M, Ling X, Zhou L. Wnt signaling in kidney: the initiator or terminator? J Mol Med (Berl) 2020; 98:1511-1523. [PMID: 32939578 PMCID: PMC7591426 DOI: 10.1007/s00109-020-01978-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/14/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022]
Abstract
The kidney is a key organ in the human body that excretes toxins and sustains the water-electrolyte balance. During embryonic development and disease progression, the kidney undergoes enormous changes in macrostructure, accompanied by a variety of microstructural histological changes, such as glomerular formation and sclerosis, tubule elongation and atrophy, interstitial establishment, and fibrosis progression. All of these rely on the frequent occurrence of cell death and growth. Notably, to overcome disease, some cells regenerate through self-repair or progenitor cell differentiation. However, the signaling mechanisms underlying kidney development and regeneration have not been elucidated. Recently, Wnt signaling has been noted to play an important role. Although it is a well-known developmental signal, the role of Wnt signaling in kidney development and regeneration is not well recognized. In this review, we review the role of Wnt signaling in kidney embryonic development, tissue repair, cell division, and progenitor cell differentiation after injury. Moreover, we briefly highlight advances in our understanding of the pathogenic mechanisms of Wnt signaling in mediating cellular senescence in kidney parenchymal and stem cells, an irreversible arrest of cell proliferation blocking tissue repair and regeneration. We also highlight the therapeutic targets of Wnt signaling in kidney diseases and provide important clues for clinical strategies.
Collapse
Affiliation(s)
- Ping Meng
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, China
- Department of Nephrology, Huadu District People's Hospital, Southern Medical University, Guangzhou, China
| | - Mingsheng Zhu
- Department of Nephrology, The People's Hospital of Gaozhou, Maoming, China
| | - Xian Ling
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, China.
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.
| |
Collapse
|
3
|
Abstract
KIT is a receptor tyrosine kinase that after binding to its ligand stem cell factor activates signaling cascades linked to biological processes such as proliferation, differentiation, migration and cell survival. Based on studies performed on SCF and/or KIT mutant animals that presented anemia, sterility, and/or pigmentation disorders, KIT signaling was mainly considered to be involved in the regulation of hematopoiesis, gametogenesis, and melanogenesis. More recently, novel animal models and ameliorated cellular and molecular techniques have led to the discovery of a widen repertoire of tissue compartments and functions that are being modulated by KIT. This is the case for the lung, heart, nervous system, gastrointestinal tract, pancreas, kidney, liver, and bone. For this reason, the tyrosine kinase inhibitors that were originally developed for the treatment of hemato-oncological diseases are being currently investigated for the treatment of non-oncological disorders such as asthma, rheumatoid arthritis, and alzheimer's disease, among others. The beneficial effects of some of these tyrosine kinase inhibitors have been proven to depend on KIT inhibition. This review will focus on KIT expression and regulation in healthy and pathologic conditions other than cancer. Moreover, advances in the development of anti-KIT therapies, including tyrosine kinase inhibitors, and their application will be discussed.
Collapse
|
4
|
Genetics of Congenital Anomalies of the Kidney and Urinary Tract: The Current State of Play. Int J Mol Sci 2017; 18:ijms18040796. [PMID: 28398236 PMCID: PMC5412380 DOI: 10.3390/ijms18040796] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/29/2017] [Accepted: 04/07/2017] [Indexed: 01/13/2023] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are the most frequent form of malformation at birth and represent the cause of 40–50% of pediatric and 7% of adult end-stage renal disease worldwide. The pathogenesis of CAKUT is based on the disturbance of normal nephrogenesis, secondary to environmental and genetic causes. Often CAKUT is the first clinical manifestation of a complex systemic disease, so an early molecular diagnosis can help the physician identify other subtle clinical manifestations, significantly affecting the management and prognosis of patients. The number of sporadic CAKUT cases explained by highly penetrant mutations in a single gene may have been overestimated over the years and a genetic diagnosis is missed in most cases, hence the importance of identifying new genetic approaches which can help unraveling the vast majority of unexplained CAKUT cases. The aim of our review is to clarify the current state of play and the future perspectives of the genetic bases of CAKUT.
Collapse
|
5
|
Schwabe T, Li X, Gaul U. Dynamic analysis of the mesenchymal-epithelial transition of blood-brain barrier forming glia in Drosophila. Biol Open 2017; 6:232-243. [PMID: 28108476 PMCID: PMC5312092 DOI: 10.1242/bio.020669] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During development, many epithelia are formed by a mesenchymal-epithelial transition (MET). Here, we examine the major stages and underlying mechanisms of MET during blood-brain barrier formation in Drosophila. We show that contact with the basal lamina is essential for the growth of the barrier-forming subperineurial glia (SPG). Septate junctions (SJs), which provide insulation of the paracellular space, are not required for MET, but are necessary for the establishment of polarized SPG membrane compartments. In vivo time-lapse imaging reveals that the Moody GPCR signaling pathway regulates SPG cell growth and shape, with different levels of signaling causing distinct phenotypes. Timely, well-coordinated SPG growth is essential for the uniform insertion of SJs and thus the insulating function of the barrier. To our knowledge, this is the first dynamic in vivo analysis of all stages in the formation of a secondary epithelium, and of the key role trimeric G protein signaling plays in this important morphogenetic process. Summary: This study examines the major steps and underlying mechanisms of mesenchymal-epithelial transition of the blood-brain-barrier forming glia in Drosophila, including the role of basal lamina, septate junctions and of trimeric G protein signaling.
Collapse
Affiliation(s)
- Tina Schwabe
- Department of Biochemistry, Gene Center, Center of Integrated Protein Science (CIPSM), University of Munich, Feodor-Lynen-Str. 25, Munich 81377, Germany
| | - Xiaoling Li
- Department of Biochemistry, Gene Center, Center of Integrated Protein Science (CIPSM), University of Munich, Feodor-Lynen-Str. 25, Munich 81377, Germany.,Rockefeller University, 1230 York Ave, New York, 10065-6399 NY, USA
| | - Ulrike Gaul
- Department of Biochemistry, Gene Center, Center of Integrated Protein Science (CIPSM), University of Munich, Feodor-Lynen-Str. 25, Munich 81377, Germany
| |
Collapse
|
6
|
Sharma M, Zhou J, Gauchat JF, Sharma R, McCarthy ET, Srivastava T, Savin VJ. Janus kinase 2/signal transducer and activator of transcription 3 inhibitors attenuate the effect of cardiotrophin-like cytokine factor 1 and human focal segmental glomerulosclerosis serum on glomerular filtration barrier. Transl Res 2015; 166:384-98. [PMID: 25843671 PMCID: PMC4569535 DOI: 10.1016/j.trsl.2015.03.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 03/04/2015] [Accepted: 03/10/2015] [Indexed: 12/31/2022]
Abstract
Recurrence of idiopathic focal segmental glomerulosclerosis (FSGS) after renal transplantation is believed to be caused by a circulating factor(s). We detected cardiotrophin-like cytokine factor 1 (CLCF1), a member of the interleukin 6 family, in the plasma from patients with recurrent FSGS. We hypothesized that CLCF1 contributes to the effect of FSGS serum on the glomerular filtration barrier in vitro. Presently, we studied the effect of CLCF1 on isolated rat glomeruli using an in vitro assay of albumin permeability (P(alb)). CLCF1 (0.05-100 ng/mL) increased P(alb) and caused maximal effect at 5-10 ng/mL (P < 0.001). The increase in Palb was analogous to the effect of FSGS serum. Anti-CLCF1 monoclonal antibody blocked the CLCF1-induced increase in P(alb) and significantly attenuated the effect of FSGS serum (P < 0.001). The heterodimer composed of CLCF1 and cosecreted molecule cytokine receptor-like factor 1 (CRLF1) attenuated the increase in P(alb) caused by CLCF1 or FSGS serum. Western blot analysis showed that CLCF1 upregulated phosphorylation of signal transducer and activator of transcription 3 (STAT3) (Tyr705) in glomeruli. This effect was diminished by the heterodimer CLCF1-CRLF1. Janus kinase 2 (JAK2) inhibitor BMS-1119543 or STAT3 inhibitor Stattic significantly blocked the effect of CLCF1 or FSGS serum on P(alb) (P < 0.001). These novel findings suggest that when monomeric CLCF1 increases P(alb), the heterodimer CLCF1-CRLF1 may protect the glomerular filtration barrier. We speculate that albuminuria in FSGS is related to qualitative or quantitative changes in the CLCF1-CRLF1 complex, and that JAK2 or STAT3 inhibitors may be novel therapeutic agents to treat FSGS.
Collapse
Affiliation(s)
- Mukut Sharma
- Renal Research Laboratory, Research and Development, MBRF and Kansas City VA Medical Center, Kansas City, Mo; Kidney Institute, University of Kansas Medical Center, Kansas City, Kan.
| | - Jianping Zhou
- Renal Research Laboratory, Research and Development, MBRF and Kansas City VA Medical Center, Kansas City, Mo
| | | | - Ram Sharma
- Renal Research Laboratory, Research and Development, MBRF and Kansas City VA Medical Center, Kansas City, Mo
| | - Ellen T McCarthy
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kan
| | - Tarak Srivastava
- Renal Research Laboratory, Research and Development, MBRF and Kansas City VA Medical Center, Kansas City, Mo; Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, Mo
| | - Virginia J Savin
- Renal Research Laboratory, Research and Development, MBRF and Kansas City VA Medical Center, Kansas City, Mo; Kidney Institute, University of Kansas Medical Center, Kansas City, Kan
| |
Collapse
|
7
|
Bringuier PP, Schalken JA, Hervieu V, Giroldi LA. Involvement of orphan nuclear receptor COUP-TFII in cadherin-6 and cadherin-11 regulation: Implications in development and cancer. Mech Dev 2015; 136:64-72. [DOI: 10.1016/j.mod.2015.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/03/2015] [Accepted: 02/10/2015] [Indexed: 12/18/2022]
|
8
|
Maluf DG, Dumur CI, Suh JL, Lee JK, Cathro EP, King AL, Gallon L, Brayman KL, Mas VR. Evaluation of molecular profiles in calcineurin inhibitor toxicity post-kidney transplant: input to chronic allograft dysfunction. Am J Transplant 2014; 14:1152-1163. [PMID: 24698514 PMCID: PMC4377109 DOI: 10.1111/ajt.12696] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 01/21/2014] [Accepted: 01/28/2014] [Indexed: 02/05/2023]
Abstract
The molecular basis of calcineurin inhibitor toxicity (CNIT) in kidney transplantation (KT) and its contribution to chronic allograft dysfunction (CAD) with interstitial fibrosis (IF) and tubular atrophy (TA) were evaluated by: (1) identifying specific CNIT molecular pathways that associate with allograft injury (cross-sectional study) and (2) assessing the contribution of the identified CNIT signature in the progression to CAD with IF/TA (longitudinal study). Kidney biopsies from well-selected transplant recipients with histological diagnosis of CNIT (n = 14), acute rejection (n = 13) and CAD with IF/TA (n = 10) were evaluated. Normal allografts (n = 18) were used as controls. To test CNIT contribution to CAD progression, an independent set of biopsies (n = 122) from 61 KT patients collected at 3 and ~12 months post-KT (range = 9-18) were evaluated. Patients were classified based on 2-year post-KT graft function and histological findings as progressors (n = 30) or nonprogressors to CAD (n = 31). Molecular signatures characterizing CNIT samples were identified. Patients classified as progressors showed an overlap of 7% and 22% with the CNIT signature at 3 and at ~12 months post-KT, respectively, while the overlap was <1% and 1% in nonprogressor patients, showing CNIT at the molecular level as a nonimmunological factor involved in the progression to CAD.
Collapse
Affiliation(s)
- DG Maluf
- University of Virginia, Department of Surgery PO Box 800679, Charlottesville, VA 22908-0679
| | - CI Dumur
- University of Virginia, Department of Pathology PO Box 800904, VA 22908-0214
| | - JL Suh
- University of Virginia, Department of Surgery PO Box 800679, Charlottesville, VA 22908-0679
| | - JK Lee
- University of Virginia, Division of Biostatistics PO Box 800717, VA 22298-0717
| | - EP Cathro
- University of Virginia, Department of Pathology PO Box 800904, VA 22908-0214
| | - AL King
- Virginia Commonwealth University, Division of Nephrology PO Box 980662, VA 23298-0662
| | - L Gallon
- Northwestern University, Division of Nephrology, Department of Internal Medicine, Comprehensive Transplant Center Chicago, IL 60611
| | - KL Brayman
- University of Virginia, Department of Surgery PO Box 800679, Charlottesville, VA 22908-0679
| | - VR Mas
- University of Virginia, Department of Surgery PO Box 800679, Charlottesville, VA 22908-0679
- Corresponding author: Valeria Mas, Ph.D. Associate Professor Research Surgery Co-Director Transplant Research Director Translational Genomics Transplant Laboratory Transplant Division, Department of Surgery University of Virginia PO Box 800679 Charlottesville, VA 22908-0679
| |
Collapse
|
9
|
Hauser PV, Nishikawa M, Kimura H, Fujii T, Yanagawa N. Controlled tubulogenesis from dispersed ureteric bud-derived cells using a micropatterned gel. J Tissue Eng Regen Med 2014; 10:762-71. [DOI: 10.1002/term.1871] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 11/15/2013] [Accepted: 01/02/2014] [Indexed: 11/12/2022]
Affiliation(s)
- Peter V. Hauser
- Renal Regeneration Laboratory; VAGLAHS at Sepulveda; North Hills CA USA
- David Geffen School of Medicine; University of California at Los Angeles; CA USA
| | - Masaki Nishikawa
- Renal Regeneration Laboratory; VAGLAHS at Sepulveda; North Hills CA USA
- David Geffen School of Medicine; University of California at Los Angeles; CA USA
| | - Hiroshi Kimura
- Institute of Industrial Science; University of Tokyo; Japan
| | - Teruo Fujii
- Institute of Industrial Science; University of Tokyo; Japan
| | - Norimoto Yanagawa
- Renal Regeneration Laboratory; VAGLAHS at Sepulveda; North Hills CA USA
- David Geffen School of Medicine; University of California at Los Angeles; CA USA
| |
Collapse
|
10
|
EMT in developmental morphogenesis. Cancer Lett 2013; 341:9-15. [DOI: 10.1016/j.canlet.2013.02.037] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 02/14/2013] [Accepted: 02/14/2013] [Indexed: 12/24/2022]
|
11
|
Takashima S, Paul M, Aghajanian P, Younossi-Hartenstein A, Hartenstein V. Migration of Drosophila intestinal stem cells across organ boundaries. Development 2013; 140:1903-11. [PMID: 23571215 DOI: 10.1242/dev.082933] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
All components of the Drosophila intestinal tract, including the endodermal midgut and ectodermal hindgut/Malpighian tubules, maintain populations of dividing stem cells. In the midgut and hindgut, these stem cells originate from within larger populations of intestinal progenitors that proliferate during the larval stage and form the adult intestine during metamorphosis. The origin of stem cells found in the excretory Malpighian tubules ('renal stem cells') has not been established. In this paper, we investigate the migration patterns of intestinal progenitors that take place during metamorphosis. Our data demonstrate that a subset of adult midgut progenitors (AMPs) move posteriorly to form the adult ureters and, consecutively, the renal stem cells. Inhibiting cell migration by AMP-directed expression of a dominant-negative form of Rac1 protein results in the absence of stem cells in the Malpighian tubules. As the majority of the hindgut progenitor cells migrate posteriorly and differentiate into hindgut enterocytes, a group of the progenitor cells, unexpectedly, invades anteriorly into the midgut territory. Consequently, these progenitor cells differentiate into midgut enterocytes. The midgut determinant GATAe is required for the differentiation of midgut enterocytes derived from hindgut progenitors. Wingless signaling acts to balance the proportion of hindgut progenitors that differentiate as midgut versus hindgut enterocytes. Our findings indicate that a stable boundary between midgut and hindgut/Malpighian tubules is not established during early embryonic development; instead, pluripotent progenitor populations cross in between these organs in both directions, and are able to adopt the fate of the organ in which they come to reside.
Collapse
Affiliation(s)
- Shigeo Takashima
- Department of Molecular Cell and Developmental Biology, University of California-Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
12
|
Gallegos TF, Kouznetsova V, Kudlicka K, Sweeney DE, Bush KT, Willert K, Farquhar MG, Nigam SK. A protein kinase A and Wnt-dependent network regulating an intermediate stage in epithelial tubulogenesis during kidney development. Dev Biol 2012; 364:11-21. [PMID: 22290330 DOI: 10.1016/j.ydbio.2012.01.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 01/12/2012] [Accepted: 01/13/2012] [Indexed: 12/19/2022]
Abstract
Genetic interactions regulating intermediate stages of tubulogenesis in the developing kidney have been difficult to define. A systems biology strategy using microarray was combined with in vitro/ex vivo and genetic approaches to identify pathways regulating specific stages of tubulogenesis. Analysis of the progression of the metanephric mesenchyme (MM) through four stages of tubule induction and differentiation (i.e., epithelialization, tubular organization and elongation and early differentiation) revealed signaling pathways potentially involved at each stage and suggested key roles for a number of signaling molecules. A screen of the signaling pathways on in vitro/ex vivo nephron formation implicated a unique regulatory role for protein kinase A (PKA), through PKA-2, in a specific post-epithelialization morphogenetic step (conversion of the renal vesicle to the S-shaped body). Microarray analysis not only confirmed this stage-specificity, but also highlighted the upregulation of Wnt genes. Addition of PKA agonists to LIF-induced nephrons (previously shown to be a Wnt/beta-catenin dependent pathway) disrupted normal tubulogenesis in a manner similar to PKA-agonist treated MM/spinal-cord assays, suggesting that PKA regulates a Wnt-dependent tubulogenesis step. PKA induction of canonical Wnt signaling during tubulogenesis was confirmed genetically using MM from Batgal-reporter mice. Addition of a Wnt synthesis inhibitor to activated PKA cultures rescued tubulogenesis. By re-analysis of existing microarray data from the FGF8, Lim1 and Wnt4 knockouts, which arrest in early tubulogenesis, a network of genes involving PKA, Wnt, Lhx1, FGF8, and hyaluronic acid signaling regulating the transition of nascent epithelial cells to tubular epithelium was derived, helping to reconcile in vivo and in vitro/ex vivo data.
Collapse
Affiliation(s)
- Thomas F Gallegos
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
The fate of Notch-deficient nephrogenic progenitor cells during metanephric kidney development. Kidney Int 2011; 79:1099-112. [PMID: 21270765 DOI: 10.1038/ki.2010.553] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To determine which nephron segments require Notch signals for development, we conditionally deleted Rbpj, a transcription factor required for canonical Notch signaling, in nephrogenic progenitors (NPs) of the metanephric mesenchyme. The retinoic acid receptor-β2 (Rarb2) promoter efficiently directed Cre-recombinase (Cre) activity to these progenitors. Conditional knockout of Rbpj in mice (Rarb2Cre(+)/Rbpj (f/-)) caused severe renal hypoplasia, as indicated by a 70-95% reduction in nephron number and the development of tubular cysts. To track the fate of NPs following Rarb2Cre expression, we labeled them with membrane-associated enhanced green fluorescent protein (GFP). In TomatoGFP(+)/Rarb2Cre(+) control mice, NPs differentiated into epithelia of all nephron segments, except into collecting ducts. In TomatoGFP(+)/Rarb2Cre(+)/Rbpj (f/-) conditional knockout mice, NPs developed into podocytes or distal tubular epithelia, indicating that canonical Notch signals were not required for mesenchymal-to-epithelial transition or for the specification of these nephron segments. Conversely, the few proximal tubules and associated cysts that developed in these mice were derived from the 5-10% of NPs that had failed to express Cre and, therefore, had intact Notch signaling. Thus, our fate mapping studies establish that the profound effect of Notch signaling on nephrogenesis is due to the specification of proximal but not distal tubules or podocytes.
Collapse
|
14
|
Pampaloni F, Stelzer EHK, Leicht S, Marcello M. Madin-Darby canine kidney cells are increased in aerobic glycolysis when cultured on flat and stiff collagen-coated surfaces rather than in physiological 3-D cultures. Proteomics 2010; 10:3394-413. [DOI: 10.1002/pmic.201000236] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Shah MM, Sakurai H, Sweeney DE, Gallegos TF, Bush KT, Esko JD, Nigam SK. Hs2st mediated kidney mesenchyme induction regulates early ureteric bud branching. Dev Biol 2010; 339:354-65. [PMID: 20059993 DOI: 10.1016/j.ydbio.2009.12.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 12/18/2009] [Accepted: 12/23/2009] [Indexed: 01/14/2023]
Abstract
Heparan sulfate proteoglycans (HSPGs) are central modulators of developmental processes likely through their interaction with growth factors, such as GDNF, members of the FGF and TGFbeta superfamilies, EGF receptor ligands and HGF. Absence of the biosynthetic enzyme, heparan sulfate 2-O-sulfotransferase (Hs2st) leads to kidney agenesis. Using a novel combination of in vivo and in vitro approaches, we have reanalyzed the defect in morphogenesis of the Hs2st(-)(/)(-) kidney. Utilizing assays that separately model distinct stages of kidney branching morphogenesis, we found that the Hs2st(-/-) UB is able to undergo branching and induce mesenchymal-to-epithelial transformation when recombined with control MM, and the isolated Hs2st null UB is able to undergo branching morphogenesis in the presence of exogenous soluble pro-branching growth factors when embedded in an extracellular matrix, indicating that the UB is intrinsically competent. This is in contrast to the prevailing view that the defect underlying the renal agenesis phenotype is due to a primary role for 2-O sulfated HS in UB branching. Unexpectedly, the mutant MM was also fully capable of being induced in recombination experiments with wild-type tissue. Thus, both the mutant UB and mutant MM tissue appear competent in and of themselves, but the combination of mutant tissues fails in vivo and, as we show, in organ culture. We hypothesized a 2OS-dependent defect in the mutual inductive process, which could be on either the UB or MM side, since both progenitor tissues express Hs2st. In light of these observations, we specifically examined the role of the HS 2-O sulfation modification on the morphogenetic capacity of the UB and MM individually. We demonstrate that early UB branching morphogenesis is not primarily modulated by factors that depend on the HS 2-O sulfate modification; however, factors that contribute to MM induction are markedly sensitive to the 2-O sulfation modification. These data suggest that key defect in Hs2st null kidneys is the inability of MM to undergo induction either through a failure of mutual induction or a primary failure of MM morphogenesis. This results in normal UB formation but affects either T-shaped UB formation or iterative branching of the T-shaped UB (possibly two separate stages in collecting system development dependent upon HS). We discuss the possibility that a disruption in the interaction between HS and Wnts (e.g. Wnt 9b) may be an important aspect of the observed phenotype. This appears to be the first example of a defect in the MM preventing advancement of early UB branching past the first bifurcation stage, one of the limiting steps in early kidney development.
Collapse
Affiliation(s)
- Mita M Shah
- Department of Medicine, University of California, San Diego, CA 92093-0693, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Gai Z, Zhou G, Itoh S, Morimoto Y, Tanishima H, Hatamura I, Uetani K, Ito M, Muragaki Y. Trps1 functions downstream of Bmp7 in kidney development. J Am Soc Nephrol 2009; 20:2403-11. [PMID: 19820125 DOI: 10.1681/asn.2008091020] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
During embryonic development, the mesenchyme of the lungs, gut, kidneys, and other tissues expresses Trps1, an atypical member of the GATA-type family of transcription factors. Our previous work suggested the possibility that Trps1 acts downstream of bone morphogenic protein 7 (Bmp7), which is essential for normal renal development. To examine the role of Trps1 during early renal development, we generated Trps1-deficient mice and examined their renal histology. Compared with wild-type mice, Trps1-deficient newborn mice had fewer tubules and glomeruli, an expanded renal interstitium, and numerous uninduced metanephric mesenchymal cells, which resulted in fewer nephrons. In wild-type kidneys, Trps1 expression was present in ureteric buds, cap mesenchyme, and renal vesicles, whereas Trps1 was virtually absent in Bmp7-deficient kidneys. Furthermore, Trps1-deficient kidneys had low levels of Pax2 and Wt1, which are markers of condensed mesenchymal cells, suggesting that a lack of Trps1 affects the differentiation of cap mesenchyme to renal vesicles. In cultured metanephric mesenchymal cells, Bmp7 induced Trps1 and E-cadherin and downregulated vimentin. Knockdown of Trps1 with small interference RNA inhibited this Bmp7-induced mesenchymal-to-epithelial transition. Last, whole-mount in situ hybridization of Wnt9b and Wnt4 demonstrated prolonged branching of ureteric buds and sparse cap mesenchyme in the kidneys of Trps1-deficient mice. Taken together, these findings suggest that normal formation of nephrons requires Trps1, which mediates mesenchymal-to-epithelial transition and ureteric bud branching during early renal development.
Collapse
Affiliation(s)
- Zhibo Gai
- First Department of Pathology, Wakayama Medical University Medical School, 811-1 Kimiidera, Wakayama 641-0012, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
An integrated genome screen identifies the Wnt signaling pathway as a major target of WT1. Proc Natl Acad Sci U S A 2009; 106:11154-9. [PMID: 19549856 DOI: 10.1073/pnas.0901591106] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
WT1, a critical regulator of kidney development, is a tumor suppressor for nephroblastoma but in some contexts functions as an oncogene. A limited number of direct transcriptional targets of WT1 have been identified to explain its complex roles in tumorigenesis and organogenesis. In this study we performed genome-wide screening for direct WT1 targets, using a combination of ChIP-ChIP and expression arrays. Promoter regions bound by WT1 were highly G-rich and resembled the sites for a number of other widely expressed transcription factors such as SP1, MAZ, and ZNF219. Genes directly regulated by WT1 were implicated in MAPK signaling, axon guidance, and Wnt pathways. Among directly bound and regulated genes by WT1, nine were identified in the Wnt signaling pathway, suggesting that WT1 modulates a subset of Wnt components and responsive genes by direct binding. To prove the biological importance of the interplay between WT1 and Wnt signaling, we showed that WT1 blocked the ability of Wnt8 to induce a secondary body axis during Xenopus embryonic development. WT1 inhibited TCF-mediated transcription activated by Wnt ligand, wild type and mutant, stabilized beta-catenin by preventing TCF4 loading onto a promoter. This was neither due to direct binding of WT1 to the TCF binding site nor to interaction between WT1 and TCF4, but by competition of WT1 and TCF4 for CBP. WT1 interference with Wnt signaling represents an important mode of its action relevant to the suppression of tumor growth and guidance of development.
Collapse
|
18
|
Abstract
The ability to form epithelial lumina is a central architectural characteristic of virtually all organs and indispensable for their function. Ontogenetically, the kidney is one of the best-characterized organs, but concepts of the regulated formation of its hollow epithelial structures are still emerging. Epithelial cell lines provide the opportunity to study molecular mechanisms in simplified assays modeling cyst and tube formation. In these systems, several groups have identified molecules implicated in lumen formation, and their downregulation results in either multiple-lumen or no-lumen phenotypes. On the basis of these phenotypes, we propose a working model, assigning proteins to groups with similar functions. Defects within these specific protein groups lead to distinct epithelial phenotypes. Studies of mesenchymal-to-epithelial transition underline the importance of these protein groups, but converting these basic models of lumen formation to an understanding of the mesenchymal to tubule formation during kidney development is still challenging.
Collapse
Affiliation(s)
- Marc A Schlüter
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | | |
Collapse
|
19
|
Abstract
Many genes that modulate kidney development have been identified; however, the molecular interactions that direct arborization of the ureteric bud (UB) remain incompletely understood. This article discusses how "systems" approaches may shed light on the structure of the gene network during UB branching morphogenesis and the mechanisms involved in the formation of a branched collecting system from a straight epithelial tube in the context of a stage model. In vitro and genetic studies suggest that the stages seem to be governed by a conserved network of genes that establish a "tip-stalk generator"; these genes sustain iterative UB branching tubulogenesis through minimal alterations in the network architecture as a budding system shifts to one that autocatalytically branches through budding. The differential expression of stage-specific positive and inhibitory factors in the mesenchyme, likely presented in the context of heparan sulfate proteoglycans, and effector molecules in the epithelium seems to regulate advancement between stages; similar principles may apply to other branching epithelia such as the lung, salivary gland, pancreas, mammary gland, and prostate. Active mesenchymal interactions with the UB seem to govern vectorial arborization and tapering of the collecting system and its terminal differentiation. Cessation of branching correlates with induction of mesenchyme as well as local extracellular matrix changes. Perturbations of these mechanisms and/or single-nucleotide polymorphisms in genes regulating UB branching may predispose to a variety of renal diseases (e.g., hypertension and chronic kidney disease) by altering nephron number. Decentralization of the gene-protein interaction network may explain the relative paucity of branching phenotypes in mutant mice and in human disease.
Collapse
Affiliation(s)
- Sanjay K Nigam
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0693, USA.
| | | |
Collapse
|
20
|
Boyle S, Shioda T, Perantoni AO, de Caestecker M. Cited1 and Cited2 are differentially expressed in the developing kidney but are not required for nephrogenesis. Dev Dyn 2007; 236:2321-30. [PMID: 17615577 DOI: 10.1002/dvdy.21242] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Early kidney development in mammals is characterized by reciprocal tissue interaction between the ureteric bud and the metanephric mesenchyme. The coordinated response to this interaction is regulated largely at the transcriptional level. Here, we investigate the expression and function of Cited1, a transcriptional cofactor that we have previously implicated in kidney development. We show that Cited1 is expressed in the metanephric mesenchyme after invasion of the ureteric bud and that its expression is limited to the cap mesenchyme, those cells that aggregate most tightly around the tip of the ureteric bud and give rise to nephronic epithelium of the adult kidney. Cited1 is down-regulated during the initial stages of epithelial conversion and is not expressed past this progenitor stage. Despite its unique expression pattern, deletion of Cited1 does not disrupt kidney development. We hypothesized that this finding was due to functional redundancy with other members of this gene family. The expression pattern of Cited2 overlaps that of Cited1, but its deletion, either alone or in combination with Cited1, does not disrupt epithelial differentiation of the metanephric mesenchyme. From these studies, we conclude that Cited1 and 2 are dynamically expressed during kidney development, but are not required for nephrogenesis.
Collapse
Affiliation(s)
- Scott Boyle
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | |
Collapse
|
21
|
Sanna-Cherchi S, Caridi G, Weng PL, Dagnino M, Seri M, Konka A, Somenzi D, Carrea A, Izzi C, Casu D, Allegri L, Schmidt-Ott KM, Barasch J, Scolari F, Ravazzolo R, Ghiggeri GM, Gharavi AG. Localization of a gene for nonsyndromic renal hypodysplasia to chromosome 1p32-33. Am J Hum Genet 2007; 80:539-49. [PMID: 17273976 PMCID: PMC1821099 DOI: 10.1086/512248] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Accepted: 01/02/2007] [Indexed: 12/12/2022] Open
Abstract
Nonsyndromic defects in the urinary tract are the most common cause of end-stage renal failure in children and account for a significant proportion of adult nephropathy. The genetic basis of these disorders is not fully understood. We studied seven multiplex kindreds ascertained via an index case with a nonsyndromic solitary kidney or renal hypodysplasia. Systematic ultrasonographic screening revealed that many family members harbor malformations, such as solitary kidneys, hypodysplasia, or ureteric abnormalities (in a total of 29 affected individuals). A genomewide scan identified significant linkage to a 6.9-Mb segment on chromosome 1p32-33 under an autosomal dominant model with reduced penetrance (peak LOD score 3.5 at D1S2652 in the largest kindred). Altogether, three of the seven families showed positive LOD scores at this interval, demonstrating heterogeneity of the trait (peak HLOD 3.9, with 45% of families linked). The chromosome 1p32-33 interval contains 52 transcription units, and at least 23 of these are expressed at stage E12.5 in the murine ureteric bud and/or metanephric mesenchyme. These data show that autosomal dominant nonsyndromic renal hypodysplasia and associated urinary tract malformations are genetically heterogeneous and identify a locus for this common cause of human kidney failure.
Collapse
Affiliation(s)
- Simone Sanna-Cherchi
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Schmidt-Ott KM, Chen X, Paragas N, Levinson RS, Mendelsohn CL, Barasch J. c-kit delineates a distinct domain of progenitors in the developing kidney. Dev Biol 2006; 299:238-49. [PMID: 16942767 DOI: 10.1016/j.ydbio.2006.07.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 07/01/2006] [Accepted: 07/25/2006] [Indexed: 10/24/2022]
Abstract
Early inductive events in mammalian nephrogenesis depend on an interaction between the ureteric bud and the metanephric mesenchyme. However, mounting evidence points towards an involvement of additional cell types--such as stromal cells and angioblasts--in growth and patterning of the nephron. In this study, through analysis of the stem cell factor (SCF)/c-kit ligand receptor pair, we describe an additional distinct cell population in the early developing kidney. While SCF is restricted to the ureteric bud, c-kit-positive cells are located within the renal interstitium, but are negative for Foxd1, an established marker of stromal cells. In fact, the c-kit-positive domain is continuous with a central mesodermal cell mass ventral and lateral to the dorsal aorta, while Foxd1-expressing stromal cells are continuous with a dorsal perisomitic cell population suggesting distinct intraembryonic origins for these cell types. A subset of c-kit-positive cells expresses Flk-1 and podocalyxin, suggesting that this cell population includes angioblasts and their progenitors. c-kit activation is not required for the survival of these cells in vivo, because white spotting (c-kit(W/W)) mice, carrying a natural inactivating mutation of c-kit, display normal intrarenal distribution of the c-kit-positive cells at E13.5. In addition, early kidney development in these mutants is preserved up to the stage when anemia compromises global embryonic development. In contrast, under defined conditions in organ cultures of metanephric kidneys, c-kit-positive cells, including the Flk-1-positive subset, undergo apoptosis after treatment with STI-571, an inhibitor of c-kit tyrosine phosphorylation. This is associated with reductions in ureteric bud branching and nephron number. Conversely, exogenous SCF expands the c-kit-positive population, including Flk-1-positive angioblasts, and accelerates kidney development in vitro. These data suggest that ureteric bud-derived SCF elicits growth-promoting effects in the metanephric kidney by expanding one or more components of the interstitial c-kit-positive progenitor pool.
Collapse
Affiliation(s)
- Kai M Schmidt-Ott
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|