1
|
Halpert G, Sredni B. The effect of the novel tellurium compound AS101 on autoimmune diseases. Autoimmun Rev 2014; 13:1230-5. [PMID: 25153485 DOI: 10.1016/j.autrev.2014.08.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 07/30/2014] [Indexed: 02/06/2023]
Abstract
Tellurium is a rare element, which has been regarded as a non-essential trace element despite its relative abundance in the human body. The chemistry of tellurium supports a plethora of activities, but its biochemistry is not clearly established to date. The small tellurium(IV) compound, ammonium trichloro (dioxoethylene-o,o')tellurate (AS101) developed and initially investigated by us, is currently being evaluated in Phase II clinical trials in psoriasis patients. AS101 is the first tellurium compound to be tested for clinical efficacy. This compound is a potent immunomodulator both in vitro and in vivo with a variety of potential therapeutic applications. The present review will focus on the immunomodulatory properties of AS101, and specifically, its effects in mitigating autoimmune diseases. AS101 has several activities that act on the immune system, including: 1) its ability to reduce IL-17 levels and to inhibit the function of Th17 cells; 2) its specific unique redox-modulating activities enabling the inhibition of specific leukocyte integrins such as α4β1 and α4β7, that are pivotal for diapedesis of macrophages and CD4(+) T inflammatory/auto-reactive cells into the autoimmune tissues; and 3) its ability to enhance the activity of regulatory T cells (Treg). These activities coupled with its excellent safety profile suggest that AS101 may be a promising candidate for the management of autoimmune diseases.
Collapse
Affiliation(s)
- Gilad Halpert
- C.A.I.R. Institute, The Safdié AIDS and Immunology Research Center, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Benjamin Sredni
- C.A.I.R. Institute, The Safdié AIDS and Immunology Research Center, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel.
| |
Collapse
|
2
|
Sredni B. Immunomodulating tellurium compounds as anti-cancer agents. Semin Cancer Biol 2012; 22:60-9. [DOI: 10.1016/j.semcancer.2011.12.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 12/13/2011] [Indexed: 01/24/2023]
|
3
|
Shewchuk LJ, Bryan S, Ulanova M, Khaper N. Integrin β3 prevents apoptosis of HL-1 cardiomyocytes under conditions of oxidative stressThis article is one of a selection of papers published in a Special Issue on Oxidative Stress in Health and Disease. Can J Physiol Pharmacol 2010; 88:324-30. [DOI: 10.1139/y09-131] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Integrin receptors are essential in the regulation of vital cardiac functions, and impaired integrin activity has been associated with cardiac remodeling. Oxidative stress is known to be involved in apoptosis and cardiac remodeling and thus may profoundly influence cardiac function via integrin modulation. The aim of this study was to determine the expression pattern and functional role of integrins in HL-1 cardiomyocytes under conditions of oxidative stress. Gene expression was studied by end-point and real-time PCR; surface protein expression was studied by flow cytometry; integrin knockdown was accomplished by siRNA gene silencing; and apoptosis was studied by annexin V staining and active caspase-3/7 using flow cytometry. Among the various subunits under study (αv, α5, α6, and β1, β3, β4, and β5), the expression of β3 integrin was significantly increased at both the mRNA and protein levels in cardiomyocytes exposed to 100 µmol/L hydrogen peroxide for 3 h. Gene silencing of β3 integrin by using siRNA resulted in a 2-fold increase in cardiomyocyte apoptosis upon treatment with hydrogen peroxide. This increase in apoptosis, as measured by annexin V staining, correlated with an increase in active caspase-3/7. Integrin β3 plays a vital role in preventing cardiomyocyte apoptosis under conditions of oxidative stress.
Collapse
Affiliation(s)
- Lee J. Shewchuk
- Medical Sciences Division, Northern Ontario School of Medicine, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Sean Bryan
- Medical Sciences Division, Northern Ontario School of Medicine, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Marina Ulanova
- Medical Sciences Division, Northern Ontario School of Medicine, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Neelam Khaper
- Medical Sciences Division, Northern Ontario School of Medicine, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|