1
|
Abstract
Eryptosis is a coordinated non-lytic cell death of erythrocytes characterized by cell shrinkage, cell membrane scrambling, Ca2+ influx, ceramide accumulation, oxidative stress, activation of calpain and caspases. Physiologically, it aims at removing damaged or aged erythrocytes from circulation. A plethora of diseases are associated with enhanced eryptosis, including metabolic diseases, cardiovascular pathology, renal and hepatic diseases, hematological disorders, systemic autoimmune pathology, and cancer. This makes eryptosis and eryptosis-regulating signaling pathways a target for therapeutic interventions. This review highlights the eryptotic signaling machinery containing several protein kinases and its small molecular inhibitors with a special emphasis on casein kinase 1α (CK1α), a serine/threonine protein kinase with a broad spectrum of activity. In this review article, we provide a critical analysis of the regulatory role of CK1α in eryptosis, highlight triggers of CK1α-mediated suicidal death of red blood cells, cover the knowledge gaps in understanding CK1α-driven eryptosis and discover the opportunity of CK1α-targeted pharmacological modulation of eryptosis. Moreover, we discuss the directions of future research focusing on uncovering crosstalks between CK1α and other eryptosis-regulating kinases and pathways.
Collapse
Affiliation(s)
- Anton Tkachenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave, 61022, Kharkiv, Ukraine.
| | - Anatolii Onishchenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave, 61022, Kharkiv, Ukraine
| |
Collapse
|
2
|
Alfhili MA, Alsughayyir J, Basudan AB. Epidemic dropsy toxin, sanguinarine chloride, stimulates sucrose-sensitive hemolysis and breakdown of membrane phospholipid asymmetry in human erythrocytes. Toxicon 2021; 199:41-48. [PMID: 34081931 DOI: 10.1016/j.toxicon.2021.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 01/21/2023]
Abstract
Sanguinarine (SGN) is a benzophenathridine alkaloid extracted from Sanguinaria canadensis plant. SGN is incriminated in epidemic dropsy (ED) characterized by multiple-organ failure and anemia. Nevertheless, how SGN leads to anemia of ED remains poorly understood. This study was thus initiated to investigate the interaction of SGN with human red blood cells (RBCs) and to delineate associated molecular mechanisms. Heparin- and EDTA-anticoagulated blood was collected from healthy participants and whole blood was analyzed for a complete blood count, while isolated RBCs were examined for hemolytic and eryptotic markers following exposure to 1-100 μM SGN for 24 h at 37 °C. Calcium was measured by Fluo4/AM, hemolysis by hemoglobin leakage, membrane scrambling by Annexin V-FITC, cell size by forward scatter (FSC), cell granularity by side scatter (SSC), and oxidative stress by H2DCFDA. SGN led to increased Fluo4 fluorescence and dose-dependent hemolysis which was not ameliorated by exclusion of extracellular Ca2+ but was nevertheless sensitive to hyperosmotic conditions and to the presence of aspirin. SGN also caused significant increase in Annexin V-positive cells, decreased FSC and SSC values, and elevated DCF fluorescence. Moreover, significantly reduced lymphocyte and basophil percentages along with selective toxicity to platelets was noted. Collectively, SGN possesses sucrose- and cyclooxygenase-sensitive hemolytic potential and elicits eryptosis characterized by Ca2+ accumulation, phosphatidylserine externalization, morphological alterations including cell shrinkage and loss of granularity, and oxidative stress. In conclusion, this report reveals a novel activity of SGN against human RBCs and informs prospective policies in ED prevention and management.
Collapse
Affiliation(s)
- Mohammad A Alfhili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| | - Jawaher Alsughayyir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed B Basudan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Papadopoulos C, Panopoulou M, Anagnostopoulos K, Tentes I. Immune and Metabolic Interactions of Human Erythrocytes: A Molecular Perspective. Endocr Metab Immune Disord Drug Targets 2020; 21:843-853. [PMID: 33148159 DOI: 10.2174/1871530320666201104115016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/15/2020] [Accepted: 09/24/2020] [Indexed: 11/22/2022]
Abstract
Apart from their main function as oxygen carriers in vertebrates, erythrocytes are also involved in immune regulation. By circulating throughout the body, the erythrocytes are exposed and interact with tissues that are damaged as a result of a disease. In this study, we summarize the literature regarding the contribution of erythrocytes to immune regulation and metabolism. Under the circumstances of a disease state, the erythrocytes may lose their antioxidant capacity and release Damage Associated Molecular Patterns, resulting in the regulation of innate and adaptive immunity. In addition, the erythrocytes scavenge and affect the levels of chemokines, circulating cell-free mtDNA, and C3b attached immune complexes. Furthermore, through surface molecules, erythrocytes control the function of T lymphocytes, macrophages, and dendritic cells. Through an array of enzymes, red blood cells contribute to the pool of blood's bioactive lipids. Finally, the erythrocytes contribute to reverse cholesterol transport through various mechanisms. Our study is highlighting overlooked molecular interactions between erythrocytes and immunity and metabolism, which could lead to the discovery of potent therapeutic targets for immunometabolic diseases.
Collapse
Affiliation(s)
| | - Maria Panopoulou
- Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Ioannis Tentes
- Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
4
|
Triggers, inhibitors, mechanisms, and significance of eryptosis: the suicidal erythrocyte death. BIOMED RESEARCH INTERNATIONAL 2015; 2015:513518. [PMID: 25821808 PMCID: PMC4364016 DOI: 10.1155/2015/513518] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 01/12/2015] [Accepted: 01/15/2015] [Indexed: 12/13/2022]
Abstract
Suicidal erythrocyte death or eryptosis is characterized by erythrocyte shrinkage, cell membrane blebbing, and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include Ca(2+) entry, ceramide formation, stimulation of caspases, calpain activation, energy depletion, oxidative stress, and dysregulation of several kinases. Eryptosis is triggered by a wide variety of xenobiotics. It is inhibited by several xenobiotics and endogenous molecules including NO and erythropoietin. The susceptibility of erythrocytes to eryptosis increases with erythrocyte age. Phosphatidylserine exposing erythrocytes adhere to the vascular wall by binding to endothelial CXC-Motiv-Chemokin-16/Scavenger-receptor for phosphatidylserine and oxidized low density lipoprotein (CXCL16). Phosphatidylserine exposing erythrocytes are further engulfed by phagocytosing cells and are thus rapidly cleared from circulating blood. Eryptosis eliminates infected or defective erythrocytes thus counteracting parasitemia in malaria and preventing detrimental hemolysis of defective cells. Excessive eryptosis, however, may lead to anemia and may interfere with microcirculation. Enhanced eryptosis contributes to the pathophysiology of several clinical disorders including metabolic syndrome and diabetes, malignancy, cardiac and renal insufficiency, hemolytic uremic syndrome, sepsis, mycoplasma infection, malaria, iron deficiency, sickle cell anemia, thalassemia, glucose 6-phosphate dehydrogenase deficiency, and Wilson's disease. Facilitating or inhibiting eryptosis may be a therapeutic option in those disorders.
Collapse
|
5
|
Foudi N, Gomez I, Benyahia C, Longrois D, Norel X. Prostaglandin E2 receptor subtypes in human blood and vascular cells. Eur J Pharmacol 2012; 695:1-6. [DOI: 10.1016/j.ejphar.2012.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 08/21/2012] [Accepted: 08/27/2012] [Indexed: 12/31/2022]
|
6
|
Hofmann B, Rödl CB, Kahnt AS, Maier TJ, Michel AA, Hoffmann M, Rau O, Awwad K, Pellowska M, Wurglics M, Wacker M, Zivković A, Fleming I, Schubert-Zsilavecz M, Stark H, Schneider G, Steinhilber D. Molecular pharmacological profile of a novel thiazolinone-based direct and selective 5-lipoxygenase inhibitor. Br J Pharmacol 2012; 165:2304-13. [PMID: 21955369 DOI: 10.1111/j.1476-5381.2011.01707.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE The potency of many 5-lipoxygenase (5-LOX) inhibitors depends on the cellular peroxide tone and the mechanism of 5-LOX enzyme activation. Therefore, new inhibitors that act regardless of the mode of enzyme activation need to be developed. Recently, we identified a novel class of thiazolinone-based compounds as potent 5-LOX inhibitors. Here, we present the molecular pharmacological profile of (Z)-5-(4-methoxybenzylidene)-2-(p-tolyl)-5H-thiazol-4-one, compound C06. EXPERIMENTAL APPROACH Inhibition of 5-LOX product formation was determined in intact cells [polymorphonuclear leukocytes (PMNL), rat basophilic leukaemia-1, RAW264.7] and in cell-free assays [homogenates, 100, 000×g supernatant (S100), partially purified 5-LOX] applying different stimuli for 5-LOX activation. Inhibition of peroxisome proliferator-activated receptor (PPAR), cytosolic phospholipase A(2) (cPLA(2) ), 12-LOX, 15-LOX-1 and 15-LOX-2 as well as cyclooxygenase-2 (COX-2) were measured in vitro. KEY RESULTS C06 induced non-cytotoxic, direct 5-LOX inhibition with IC(50) values about 0.66 µM (intact PMNL, PMNL homogenates) and approximately 0.3 µM (cell-free PMNL S100, partially purified 5-LOX). Action of C06 was independent of the stimulus used for 5-LOX activation and cellular redox tone and was selective for 5-LOX compared with other arachidonic acid binding proteins (PPAR, cPLA(2) , 12-LOX, 15-LOX-1, 15-LOX-2, COX-2). Experimental results suggest an allosteric binding distinct from the active site and the C2-like domain of 5-LOX. CONCLUSIONS AND IMPLICATIONS C06 was identified as a potent selective direct 5-LOX inhibitor exhibiting a novel and unique mode of action, different from other established 5-LOX inhibitors. This thiazolinone may possess potential for intervention with inflammatory and allergic diseases and certain types of cancer.
Collapse
Affiliation(s)
- B Hofmann
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Gwanyanya A, Macianskiene R, Mubagwa K. Insights into the effects of diclofenac and other non-steroidal anti-inflammatory agents on ion channels. ACTA ACUST UNITED AC 2012; 64:1359-75. [PMID: 22943167 DOI: 10.1111/j.2042-7158.2012.01479.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Diclofenac and other non-steroidal anti-inflammatory drugs (NSAIDs) are widely used in the treatment of inflammation and pain. Most effects of NSAIDs are attributed to the inhibition of cyclooxygenases (COX). However, many NSAIDs may have other effects not related to COX, including the modulation of various ion channels. The clinical implications of the effects on channels are not fully understood. This review outlines the effects of NSAIDs, with special attention to diclofenac, on ion channels and highlights the possible underlying mechanisms. KEY FINDINGS NSAIDs have effects on channels such as inhibition, activation or changes in expression patterns. The channels affected include voltage-gated Na(+) , Ca(2+) , or K(+) channels, ligand-gated K(+) channels, transient receptor potential and other cation channels as well as chloride channels in several types of cells. The mechanisms of drug actions not related to COX inhibition may involve drug-channel interactions, interference with the generation of second messengers, changes in channel expression, or synergistic/antagonist interactions with other channel modulators. SUMMARY The effects on ion channels may account for novel therapeutic actions of NSAIDs or for adverse effects. Among the NSAIDs, diclofenac may serve as a template for developing new channel modulators and as a tool for investigating the actions of other drugs.
Collapse
Affiliation(s)
- Asfree Gwanyanya
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | | |
Collapse
|
8
|
Hofmann B, Barzen S, Rödl CB, Kiehl A, Borig J, Živković A, Stark H, Schneider G, Steinhilber D. A Class of 5-Benzylidene-2-phenylthiazolinones with High Potency as Direct 5-Lipoxygenase Inhibitors. J Med Chem 2011; 54:1943-7. [DOI: 10.1021/jm101165z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bettina Hofmann
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt, Germany
- Institute of Organic Chemistry and Chemical Biology, ZAFES/CMP, Goethe University Frankfurt, Siesmayerstrasse 70, D-60323 Frankfurt, Germany
| | - Sebastian Barzen
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt, Germany
| | - Carmen B. Rödl
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt, Germany
| | - Andreas Kiehl
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt, Germany
| | - Julia Borig
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt, Germany
| | - Aleksandra Živković
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt, Germany
| | - Holger Stark
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt, Germany
| | - Gisbert Schneider
- Institute of Organic Chemistry and Chemical Biology, ZAFES/CMP, Goethe University Frankfurt, Siesmayerstrasse 70, D-60323 Frankfurt, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt, Germany
| |
Collapse
|
9
|
Bobbala D, Koka S, Geiger C, Föller M, Huber SM, Lang F. Azathioprine favourably influences the course of malaria. Malar J 2009; 8:102. [PMID: 19442289 PMCID: PMC2694830 DOI: 10.1186/1475-2875-8-102] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Accepted: 05/14/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Azathioprine triggers suicidal erythrocyte death or eryptosis, characterized by cell shrinkage and exposure of phosphatidylserine at the erythrocyte surface. Eryptosis may accelerate the clearance of Plasmodium-infected erythrocytes. The present study thus explored whether azathioprine influences eryptosis of Plasmodium-infected erythrocytes, development of parasitaemia and thus the course of malaria. METHODS Human erythrocytes were infected in vitro with Plasmodium falciparum (P. falciparum) (strain BinH) in the absence and presence of azathioprine (0.001 - 10 microM), parasitaemia determined utilizing Syto16, phosphatidylserine exposure estimated from annexin V-binding and cell volume from forward scatter in FACS analysis. Mice were infected with Plasmodium berghei (P. berghei) ANKA by injecting parasitized murine erythrocytes (1 x 106) intraperitoneally. Where indicated azathioprine (5 mg/kg b.w.) was administered subcutaneously from the eighth day of infection. RESULTS In vitro infection of human erythrocytes with P. falciparum increased annexin V-binding and initially decreased forward scatter, effects significantly augmented by azathioprine. At higher concentrations azathioprine significantly decreased intraerythrocytic DNA/RNA content (>or= 1 microM) and in vitro parasitaemia (>or= 1 microM). Administration of azathioprine significantly decreased the parasitaemia of circulating erythrocytes and increased the survival of P. berghei-infected mice (from 0% to 77% 22 days after infection). CONCLUSION Azathioprine inhibits intraerythrocytic growth of P. falciparum, enhances suicidal death of infected erythrocytes, decreases parasitaemia and fosters host survival during malaria.
Collapse
Affiliation(s)
- Diwakar Bobbala
- Department of Physiology, University of Tübingen, Tübingen, Germany.
| | | | | | | | | | | |
Collapse
|
10
|
Nguyen TT, Föller M, Lang F. Tin triggers suicidal death of erythrocytes. J Appl Toxicol 2009; 29:79-83. [PMID: 18937211 DOI: 10.1002/jat.1390] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Suicidal erythrocyte death or eryptosis is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine (PS) exposure at the erythrocyte surface. Triggers of eryptosis include increase in cytosolic Ca(2+) activity, formation of ceramide and energy depletion. Excessive eryptosis contributes to several anemic conditions. Intoxication with inorganic tin(II) may lead to anemia. The present study therefore explored whether tin influences eryptosis. To this end, erythrocytic phosphatidylserine exposure was estimated from annexin V-binding, cell volume from forward scatter, cytosolic Ca(2+) activity from Fluo3 fluorescence, ceramide formation from binding of fluorescent antibodies and cytosolic ATP utilizing a luciferin-luciferase assay kit. Under control conditions, eryptosis was observed in less than 5% of the erythrocytes. Exposure to tin (1-100 microm) significantly increased the percentage of PS-exposing erythrocytes and decreased cell volume. The effect was paralleled by an increase in the cytosolic Ca(2+) concentration, ceramide formation and a decrease of intracellular ATP concentration. In conclusion, tin triggers eryptosis, an effect at least partially due to Ca(2+ )entry, ceramide formation and ATP depletion. The effect could contribute to tin-induced anemia.
Collapse
Affiliation(s)
- Tan Thanh Nguyen
- Physiologisches Institut der Universitat Tubingen, Tubingen, Germany
| | | | | |
Collapse
|
11
|
Gatidis S, Föller M, Lang F. Hemin-induced suicidal erythrocyte death. Ann Hematol 2009; 88:721-6. [PMID: 19184015 DOI: 10.1007/s00277-009-0697-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 01/08/2009] [Indexed: 11/30/2022]
Abstract
Several diseases, such as malaria, sickle cell disease, and ischemia/reperfusion may cause excessive formation of hemin, which may in turn trigger hemolysis. A variety of drugs and diseases leading to hemolysis triggers suicidal erythrocyte death or eryptosis, i.e., cell membrane scrambling and cell shrinkage. Eryptosis is elicited by increased cytosolic Ca(2+) activity and by ceramide. The present study explored whether hemin stimulates eryptosis. Cell membrane scrambling was estimated from annexin V-binding to phosphatidylserine exposed at the cell surface, cell shrinkage from forward scatter in fluorescence-activated cell sorter analysis, cytosolic Ca(2+) activity from Fluo3 fluorescence and ceramide formation from fluorescence-labeled antibody binding. Exposure to hemin (1-10 microM) within 48 h significantly increased annexin V-binding, decreased forward scatter, increased cytosolic Ca(2+) activity, and stimulated ceramide formation. In conclusion, hemin stimulates suicidal cell death, which may in turn contribute to the clearance of circulating erythrocytes and thus to anemia.
Collapse
Affiliation(s)
- Sergios Gatidis
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | |
Collapse
|
12
|
Abstract
Eryptosis, the suicidal death of erythrocytes, is characterised by cell shrinkage, membrane blebbing and cell membrane phospholipid scrambling with phosphatidylserine exposure at the cell surface. Phosphatidylserine-exposing erythrocytes are recognised by macrophages, which engulf and degrade the affected cells. Reported triggers of eryptosis include osmotic shock, oxidative stress, energy depletion, ceramide, prostaglandin E(2), platelet activating factor, hemolysin, listeriolysin, paclitaxel, chlorpromazine, cyclosporine, methylglyoxal, amyloid peptides, anandamide, Bay-5884, curcumin, valinomycin, aluminium, mercury, lead and copper. Diseases associated with accelerated eryptosis include sepsis, malaria, sickle-cell anemia, beta-thalassemia, glucose-6-phosphate dehydrogenase (G6PD)-deficiency, phosphate depletion, iron deficiency, hemolytic uremic syndrome and Wilsons disease. Eryptosis may be inhibited by erythropoietin, adenosine, catecholamines, nitric oxide (NO) and activation of G-kinase. Most triggers of eryptosis except oxidative stress are effective without activation of caspases. Their signalling involves formation of prostaglandin E(2) with subsequent activation of cation channels and Ca2+ entry and/or release of platelet activating factor (PAF) with subsequent activation of sphingomyelinase and formation of ceramide. Ca2+ and ceramide stimulate scrambling of the cell membrane. Ca2+ further activates Ca2+-sensitive K+ channels leading to cellular KCl loss and cell shrinkage and stimulates the protease calpain resulting in degradation of the cytoskeleton. Eryptosis allows defective erythrocytes to escape hemolysis. On the other hand, excessive eryptosis favours the development of anemia. Thus, a delicate balance between proeryptotic and antieryptotic mechanisms is required to maintain an adequate number of circulating erythrocytes and yet avoid noneryptotic death of injured erythrocytes.
Collapse
Affiliation(s)
- Michael Föller
- Department of Physiology, University of Tübingen, Germany
| | | | | |
Collapse
|
13
|
Braun M, Föller M, Gulbins E, Lang F. Eryptosis triggered by bismuth. Biometals 2008; 22:453-60. [PMID: 19048190 DOI: 10.1007/s10534-008-9180-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 11/13/2008] [Indexed: 01/07/2023]
Abstract
Bismuth is used for multiple industrial purposes and in the treatment of several gastrointestinal diseases. Untoward effects of bismuth include anemia, which could, in theory, result from suicidal erythrocyte death or eryptosis. Hallmarks of eryptosis are cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the cell surface. Phosphatidylserine-exposing cells are rapidly cleared from circulating blood. Signaling leading to eryptosis includes increase in cytosolic Ca(2+) activity and formation of ceramide. The present experiments explored whether bismuth elicits eryptosis. To this end, phosphatidylserine exposure was estimated from annexin V-binding, cell shrinkage from decrease of forward scatter in FACS analysis, cytosolic Ca(2+) activity from Fluo3 fluorescence and ceramide abundance from binding of fluorescent antibodies. A 48 h exposure to bismuth (> or =500 microg/l BiCl(3)) enhanced the percentage of annexin V-binding cells and decreased forward scatter, increased cytosolic Ca(2+) activity, and stimulated ceramide formation. In conclusion, bismuth stimulates eryptosis, the suicidal death of erythrocytes. The effect may contribute to or even account for the development of anemia during bismuth treatment. Moreover, ceramide formation in intestinal cells may participate in the therapeutic efficacy of bismuth preparations.
Collapse
Affiliation(s)
- Manuel Braun
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | |
Collapse
|
14
|
Bobbala D, Koka S, Lang C, Boini KM, Huber SM, Lang F. Effect of cyclosporine on parasitemia and survival of Plasmodium berghei infected mice. Biochem Biophys Res Commun 2008; 376:494-8. [PMID: 18789889 DOI: 10.1016/j.bbrc.2008.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 09/03/2008] [Indexed: 01/10/2023]
Abstract
Cyclosporine triggers suicidal erythrocyte death or eryptosis, which is characterized by cell shrinkage and exposure of phosphatidylserine at the erythrocyte surface. The present study explored whether cyclosporine influences eryptosis of Plasmodium infected erythrocytes, development of parasitemia and thus the course of the disease. Annexin V binding was utilized to depict phosphatidylserine exposure and forward scatter in FACS analysis to estimate erythrocyte volume. In vitro infection of human erythrocytes with Plasmodium falciparum increased annexin binding and decreased forward scatter, effects potentiated by cyclosporine (> or = 0.01 microM). Cyclosporine (> or = 0.001 microM) significantly decreased intraerythrocytic DNA/RNA content and in vitro parasitemia (> or = 0.01 microM). Administration of cyclosporine (5 mg/kg b.w.) subcutaneously significantly decreased the parasitemia (from 47% to 27% of circulating erythrocytes 20 days after infection) and increased the survival of P. berghei infected mice (from 0% to 94% 30 days after infection). In conclusion, cyclosporine augments eryptosis, decreases parasitemia and enhances host survival during malaria.
Collapse
Affiliation(s)
- Diwakar Bobbala
- Physiologisches Institut, der Universität Tübingen, Gmelinstr. 5, D-72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Kucherenko Y, Geiger C, Shumilina E, Föller M, Lang F. Inhibition of cation channels and suicidal death of human erythrocytes by zidovudine. Toxicology 2008; 253:62-9. [PMID: 18822339 DOI: 10.1016/j.tox.2008.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 08/20/2008] [Accepted: 08/21/2008] [Indexed: 12/13/2022]
Abstract
Zidovudine, a drug widely used in the treatment of AIDS, has been shown to influence cytosolic calcium activity in HIV-infected lymphocytes. Thus, zidovudine may modify the activity of Ca(2+)-permeable ion channels. In erythrocytes, activation of Ca(2+)-permeable cation channels stimulates eryptosis, the suicidal erythrocyte death. Eryptosis is characterized by cell shrinkage (apparent from a decrease of forward scatter) and phosphatidylserine (PS) exposure (apparent from annexin V-binding) at the erythrocyte surface. Triggers of eryptosis include isotonic cell shrinkage (Cl(-) replacement by gluconate), energy depletion (removal of glucose) or exposure to a variety of drugs including azathioprine. The present study explored, whether zidovudine influences the activity of erythrocytic Ca(2+)-permeable cation channels and eryptosis. Whole-cell patch-clamp recordings indeed revealed that zidovudine blocked the Ca(2+)-permeable cation channels activated by Cl(-) removal. In the presence of Cl(-) and glucose, the percentage of annexin V-binding cells was low and not significantly modified by the presence of zidovudine. Both, Cl(-) removal and glucose depletion increased annexin V-binding and decreased forward scatter, effects significantly blunted by zidovudine (2 microg/ml). According to Fluo3 fluorescence, zidovudine (2 microg/ml) did not significantly modify cytosolic Ca(2+) concentration under control conditions, but significantly blunted the increase in cytosolic Ca(2+) activity following glucose depletion. Furthermore, zidovudine significantly inhibited azathioprine-induced eryptosis. The present observations disclose a completely novel effect of zidovudine, i.e. its inhibitory influence on Ca(2+) entry and subsequent suicidal erythrocyte death during isotonic cell shrinkage or energy depletion.
Collapse
|
16
|
Geiger C, Föller M, Herrlinger KR, Lang F. Azathioprine-induced suicidal erythrocyte death. Inflamm Bowel Dis 2008; 14:1027-32. [PMID: 18340638 DOI: 10.1002/ibd.20433] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Azathioprine is widely used as an immunosuppressive drug. The side effects of azathioprine include anemia, which has been attributed to bone marrow suppression. Alternatively, anemia could result from accelerated suicidal erythrocyte death or eryptosis, which is characterized by exposure of phosphatidylserine (PS) at the erythrocyte surface and by cell shrinkage. METHODS The present experiments explored whether azathioprine influences eryptosis. According to annexin V binding, erythrocytes from patients indeed showed a significant increase of PS exposure within 1 week of treatment with azathioprine. In a second series, cytosolic Ca2+ activity (Fluo3 fluorescence), cell volume (forward scatter), and PS-exposure (annexin V binding) were determined by FACS analysis in erythrocytes from healthy volunteers. RESULTS Exposure to azathioprine (> or =2 microg/mL) for 48 hours increased cytosolic Ca2+ activity and annexin V binding and decreased forward scatter. The effect of azathioprine on both annexin V binding and forward scatter was significantly blunted in the nominal absence of extracellular Ca2+. CONCLUSIONS Azathioprine triggers suicidal erythrocyte death, an effect presumably contributing to azathioprine-induced anemia.
Collapse
Affiliation(s)
- Corinna Geiger
- Department of Physiology, University of Tübingen, Germany
| | | | | | | |
Collapse
|
17
|
Mahmud H, Föller M, Lang F. Arsenic-induced suicidal erythrocyte death. Arch Toxicol 2008; 83:107-13. [PMID: 18636241 DOI: 10.1007/s00204-008-0338-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 06/19/2008] [Indexed: 12/23/2022]
Abstract
Environmental exposure to arsenic has been associated with anemia, which could result from suicidal erythrocyte death or eryptosis, characterized by cell shrinkage and phosphatidylserine exposure at the erythrocyte surface. Eryptosis is triggered by increase in cytosolic Ca2+ concentration, ceramide and energy depletion. The present experiments explored, whether arsenic stimulates eryptosis. According to annexin V-binding, arsenic trioxide (7 microM) within 48 h significantly increased phosphatidylserine exposure of human erythrocytes without inducing hemolysis. According to forward scatter, arsenic trioxide (7 microM) significantly decreased cell volume. Moreover, Fluo3-fluorescence showed that arsenic (10 microM) significantly increased cytosolic Ca2+ concentration. According to binding of respective fluorescent antibodies, arsenic trioxide (10 microM) significantly increased ceramide formation. Arsenic (10 microM) further lowered the intracellular ATP concentration. Removal of extracellular Ca2+ or inhibition of the Ca2+-permeable cation channels with amiloride blunted the effects of arsenic on annexin V-binding and cell shrinkage. In conclusion, arsenic triggers suicidal erythrocyte death by increasing cytosolic Ca2+ concentration, by stimulating the formation of ceramide and by decreasing ATP availability.
Collapse
Affiliation(s)
- Hasan Mahmud
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany
| | | | | |
Collapse
|
18
|
Taogoshi T, Nagai J, Yumoto R, Takano M. Transport of prostaglandin E1 across rat erythrocyte membrane. Biol Pharm Bull 2008; 31:1288-91. [PMID: 18520071 DOI: 10.1248/bpb.31.1288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study erythrocyte transport of prostaglandin E1 (PGE1) was investigated by employing inside-out membrane vesicles prepared from rat erythrocytes. The uptake of [3H]PGE1 in the presence of ATP was significantly higher than that of AMP, suggesting the involvement of an ATP-dependent efflux system in PGE1 transport across the erythrocyte membrane. Coincubation of glutathione with ATP further stimulated the uptake of [3H]PGE1. The uptake of [3H]PGE1 in the presence of ATP and glutathione was temperature-sensitive, and various eicosanoids including PGE2 and PGF2alpha decreased the uptake. Multidrug resistance-associated protein (MRP) 4 substrates/inhibitors including methotrexate, indomethacin, taurocholic acid and indocyanine green significantly inhibited [3H]PGE1 uptake. Western blot analysis revealed that Mrp4 is expressed in rat erythrocyte membrane. These results suggest that the release of PGE1 from the erythrocyte into the blood circulation may be mediated by ATP-dependent efflux pump(s) such as Mrp4.
Collapse
Affiliation(s)
- Takanori Taogoshi
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | |
Collapse
|
19
|
Koka S, Lang C, Niemoeller OM, Boini KM, Nicolay JP, Huber SM, Lang F. Influence of NO synthase inhibitor L-NAME on parasitemia and survival of Plasmodium berghei infected mice. Cell Physiol Biochem 2008; 21:481-8. [PMID: 18453756 DOI: 10.1159/000129641] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2008] [Indexed: 12/31/2022] Open
Abstract
Accelerated suicidal death or eryptosis of infected erythrocytes may delay development of parasitemia in malaria. Eryptosis is inhibited by nitric oxide (NO). The present study has been performed to explore, whether inhibition of NO synthase by L-NAME modifies the course of malaria. We show here that L-NAME (>or=10 microM) increased phosphatidylserine exposure of Plasmodium falciparum infected human erythrocytes, an effect significantly more marked than in noninfected human erythrocytes. We further show that parasitemia in Plasmodium berghei infected mice was significantly decreased (from 50% to 18% of circulating erythrocytes 20 days after infection) by addition of 1 mg/ml L-NAME to the drinking water. According to CFSE labelling L-NAME treatment accelerated the clearance of both, noninfected and infected, erythrocytes from circulating blood, but did not significantly extend the life span of infected animals. In conclusion, treatment with L-NAME shortens the life span of circulating erythrocytes and thus delays development of parasitemia during malaria.
Collapse
Affiliation(s)
- Saisudha Koka
- Department of Physiology, University of Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Suicidal erythrocyte death triggered by cisplatin. Toxicology 2008; 249:40-4. [PMID: 18499324 DOI: 10.1016/j.tox.2008.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 04/03/2008] [Indexed: 01/18/2023]
Abstract
Cisplatin, a cytotoxic drug for the treatment of cancer, induces suicidal death or apoptosis of nucleated cells. Side effects of cisplatin include anemia, which, at least in theory, could similarly result from suicidal cell death. Erythrocyte suicidal death or eryptosis is characterized by cell shrinkage and cell membrane scrambling, the latter leading to exposure of phosphatidylserine (PS) at the cell surface. PS-exposing cells are rapidly cleared from circulating blood. The present experiments explored whether cisplatin could trigger eryptosis. According to forward scatter in FACS analysis, a 48 h exposure to cisplatin (> or =1 microM) indeed decreased cell volume and, according to annexin V-binding, cisplatin (> or =1 microM, 48 h) indeed increased PS exposure at the cell surface. Cisplatin did not induce hemolysis. According to Fluo3 fluorescence, cisplatin increased cytosolic Ca2+ activity, a known stimulator of eryptosis. In the absence of extracellular Ca2+, the effect of cisplatin on annexin V-binding was blunted. Cisplatin did not significantly modify the formation of ceramide, another stimulator of eryptosis. Cisplatin moderately decreased the cellular concentration of ATP, which is known to favour eryptosis. In conclusion, cisplatin triggers suicidal erythrocyte death at least partially by increasing cytosolic Ca2+ activity. The effect contributes to or even accounts for the development of anemia during cisplatin treatment.
Collapse
|
21
|
Foller M, Kasinathan RS, Koka S, Lang C, Shumilina E, Birnbaumer L, Lang F, Huber SM. TRPC6 contributes to the Ca(2+) leak of human erythrocytes. Cell Physiol Biochem 2008; 21:183-92. [PMID: 18209485 DOI: 10.1159/000113760] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2007] [Indexed: 12/17/2022] Open
Abstract
Human erythrocytes express cation channels which contribute to the background leak of Ca(2+), Na(+) and K(+). Excessive activation of these channels upon energy depletion, osmotic shock, Cl(-) depletion, or oxidative stress triggers suicidal death of erythrocytes (eryptosis), characterized by cell-shrinkage and exposure of phosphatidylserine at the cell surface. Eryptotic cells are supposed to be cleared from circulating blood. The present study aimed to identify the cation channels. RT-PCR revealed mRNA encoding the non-selective cation channel TRPC6 in erythroid progenitor cells. Western blotting indicated expression of TRPC6 protein in erythrocytes from man and wildtype mice but not from TRPC6(-/-) mice. According to flow-cytometry, Ca(2+) entry into human ghosts prepared by hemolysis in EGTA-buffered solution containing the Ca(2+) indicator Fluo3/AM was inhibited by the reducing agent dithiothreitol and the erythrocyte cation channel blockers ethylisopropylamiloride and amiloride. Loading of the ghosts with antibodies against TRPC6 or TRPC3/6/7 but neither with antibodies against TRPM2 or TRPC3 nor antibodies pre-adsorbed with the immunizing peptides inhibited ghost Ca(2+) entry. Moreover, free Ca(2+) concentration, cell-shrinkage, and phospholipid scrambling were significantly lower in Cl(-)-depleted TRPC6(-/-) erythrocytes than in wildtype mouse erythrocytes. In conclusion, human and mouse erythrocytes express TRPC6 cation channels which participate in cation leak and Ca(2+)-induced suicidal death.
Collapse
Affiliation(s)
- Michael Foller
- Department of Physiology, University of Tubingen, Tubingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Föller M, Shumilina E, Lam R, Mohamed W, Kasinathan R, Huber S, Chakraborty T, Lang F. Induction of suicidal erythrocyte death by listeriolysin from Listeria monocytogenes. Cell Physiol Biochem 2007; 20:1051-60. [PMID: 17975307 DOI: 10.1159/000110715] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Listeriolysin, the secreted cytolysin of the facultative intracellular bacterium Listeria monocytogenes, is its major virulence factor. Previously, non-lytic concentrations of listeriolysin were shown to induce Ca2+-permeable nonselective cation channels in human embryonic kidney cells. In erythrocytes, Ca2+ entry is followed by activation of K+ channels resulting in K+-exit as well as by membrane scrambling resulting in phosphatidylserine exposure at the cell surface. Phosphatidylserine-exposing erythrocytes are recognized by macrophages, engulfed, degraded and thus cleared from circulating blood. Phosphatidylserine exposure is a key event of eryptosis, the suicidal death of erythrocytes. The present study utilized patch-clamp technique, Fluo3-fluorescence, and annexin V-binding in FACS analysis to determine the effect of listeriolysin on cell membrane conductance, cytosolic free Ca2+ concentration, and phosphatidylserine exposure, respectively. Within 30 minutes, exposure of human peripheral blood erythrocytes to low concentrations of listeriolysin (which were non-hemolytic for the majority of cells) induced a Ca2+-permeable cation conductance in the erythrocyte cell membrane, increased cytosolic Ca2+ concentration, and triggered annexin V-binding. Increase of extracellular K+ concentration blunted, but did not prevent, listeriolysin-induced annexin V-binding. In conclusion, listeriolysin triggers suicidal death of erythrocytes, an effect at least partially due to depletion of intracellular K+. Listeriolysin induced suicidal erythrocyte death could well contribute to the pathophysiology of L. monocytogenes infection.
Collapse
Affiliation(s)
- Michael Föller
- Department of Physiology, Eberhard Karls University, Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|